Data Mining Tasks

- Classification
- Prediction
- Clustering
- Dependency Modelling
- Summarization
- Change and Deviation Detection
- Visualization

Prediction

- \bullet prediction of a (future) category based on observed data \rightarrow classification
- prediction of a (future) numerical value y based on observed data \vec{x}
 - y: response output, dependent variable
 - \vec{x} : input, regressors, explanatory variables, independent variables
- applications
 - · the output is expensive to measure, the input not
 - the value of the inputs is known before the value of the output and a prediction is required
 - simulation of system behaviour by controlling the inputs
 - detecting causal links between the inputs and the output

Data Mining Tasks 1

Regression

- · most common form: linear regression
 - assuming a linar function

$$y = f(\vec{x}) = a_0 + \sum_{i=1}^n a_i \cdot x_i$$

• inserting all m training samples $\rightarrow m$ new equations

$$y_i = \epsilon_j + a_{0j} + \sum_{i=1}^n a_i \cdot x_{ij}$$

 $\epsilon_i (j=1\dots m)$: regression error for each given sample

• modify the linear coefficients a_i to minimize the sum of error squares $e=\sum_{i=1}^n \epsilon_i^2$

Pata Mining Regression

• special case: single predictor variable

$$y = f(x) = a_0 + a_1 \cdot x$$

$$e = \sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} (y_i - y_i')^2 = \sum_{i=1}^{n} (y_i - a_0 - a_1 x_i)^2$$

• minimizing for a₀ and a₁

$$\frac{\delta e}{\delta a_0} = -2 \sum_{i=1}^n (y_i - a_0 - a_1 x_i) = 0$$

$$\frac{\delta e}{\delta a_1} = -2 \sum_{i=1}^{n} (y_i - a_0 - a_1 x_i) \cdot x_i = 0$$

Data Mining Data Mining Tasks: Prediction 3 Data Mining Tasks: Prediction 4

Regression

• minimizing (cont.)

$$na_0 + a_1 \sum_{i=1}^n x_i = \sum_{i=1}^n y_i$$

$$a_0 \sum_{i=1}^{n} x_i + a_1 \sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} x_i y_i$$

$$a_0 = \mu_v - a_1 \mu_v$$

$$a_1 = \frac{\sum_{i=1}^{n} (x_i - \mu_x) \cdot (y_i - \mu_y)}{\sum_{i=1}^{n} (x_i - \mu_x)^2}$$

Regression

• multiple regression (multiple predictor variables)

$$y = a_0 + \vec{a} \vec{x}$$

$$e = (\vec{y} - a_0 \vec{a} \cdot X)^T \cdot (\vec{y} - a_0 \vec{a} \cdot X)$$

X: Matrix of all data vectors $\vec{x_i}$ from the training set

$$\vec{a} = (X^T \cdot X)^{-1} (X^T \cdot \vec{y})$$

- solution of equation set requires exponential effort
- not feasible for realistic training sets

Data Mining Tasks: Prediction 5

Data Mining

Data Mining Tasks: Prediction 6

Data Mining Tasks: Prediction 2

Regression

- identifying the relevant variables
 - · selectively add to or delete variables from an initial set
 - testing for a linear relationship: correlation

$$r = \frac{\sum_{i=1}^{n} (x_i - \mu_x) \cdot (y_i - \mu_y)}{\sqrt{\sum_{i=1}^{n} (x_i - \mu_x) \cdot \sum_{i=1}^{n} (y_i - \mu_y)}}$$

Regression

- non-linear relationships
 - transform to a linear equation

$$\begin{array}{lll} \text{polynomial} & y = ax^2 + bx + c & x^* = x^2 \\ \text{exponential} & y = ae^{bx} & y^* = \ln y \\ \text{power} & y = ax^b & y^* = \log y, x^* = \log x \\ \text{reciprocal} & y = a + b\frac{1}{x} & x^* = \frac{1}{x} \\ \text{hyperbolic} & y = \frac{x}{a + bx} & y^* = \frac{1}{y}, x^* = \frac{1}{x} \end{array}$$

ata Mining Data Mining Tasks: Prediction 7 Data Mining

Data Mining Tasks

- Classification
- Prediction
- Clustering
- Dependency Modelling
- Summarization
- Change and Deviation Detection
- Visualization

Clustering

- grouping of data points according to their inherent structure
 - · based on a similarity measure
 - learning without teacher
- many clustering approaches
 - hierarchical clustering
 - partitioning clustering
 - incremental clustering
 - clustering with neural networks

Data Mining

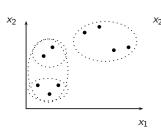
Data Mining Tasks: Prediction 9

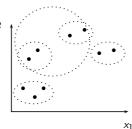
Data Mining

Data Mining Tasks: Clustering 10

Clustering

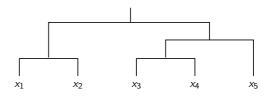
- \bullet computing the optimal clustering is computationally infeasible \to greedy, sub-optimal approaches
- different clustering algorithms might lead to different clustering results





Hierarchical Clustering

- agglomerative hierarchical clustering
- successively merging data sets
- result can be displayed as a dendrogram



Data Mining

Data Mining Tasks: Clustering 11

Data Mining

Data Mining Tasks: Clustering 12

Hierarchical Clustering

- algorithm
 - initially each cluster consists of a single data point
 - determine all inter-cluster distances
 - merge the least distant clusters into a new one
 - continue until all clusters have been merged

Distance Measures

- distance measure for clusters
 - single link: minimum of distances between all pairs of data points
 - complete link: e.g. mean of distances between all pairs of data points
- local clustering criterion for data points: minimal mutual neighbor distance (MND)
 - distance depends also on the local context of a data point

$$d_{MND}(\vec{x_i}, \vec{x_j}) = r(\vec{x_i}, \vec{x_j}) + r(\vec{x_j}, \vec{x_i})$$

 $r(\vec{x_i}, \vec{x_j})$: rank of x_i according to distance from x_i

Data Mining

Data Mining Tasks: Clustering 13

Data Mining

Data Mining Tasks: Clustering 14

Partitioning Clustering

• mutual neighbor distance (MND)

$$d_{MND}(A, B) = r(A, B) + r(B, A)$$

$$= 1 + 1 = 2$$

$$d_{MND}(B, C) = r(B, C) + r(C, B)$$

$$= 2 + 1 = 3$$
C

$$= 3 + 3 = 6$$

$$d_{MND}(B, C) = r(B, C) + r(C, B)$$

$$= 4 + 1 = 5$$

$$C$$

$$B$$

$$E$$

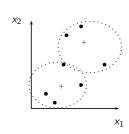
$$A$$

$$D$$

 $d_{MND}(A, B) = r(A, B) + r(B, A)$

Partitioning Clustering

- number of resulting clusters is given in advance
- each cluster is represented by a centroid



Partitioning Clustering

- global clustering criterion: minimizing the mean square error
 - mean vector as centroid

$$\vec{c_k} = \frac{1}{n_k} \sum_{i=1}^{n_k} \vec{x_{ik}}$$

• error for one cluster (within-cluster variation)
$$e_k^2 = \sum_{i=1}^{n_k} (\vec{x_{ik}} - \vec{c_k})^2$$

• global error
$$e = \sum_{k=1}^{K} e_k^2$$

Data Mining Tasks: Clustering 17

Partitioning Clustering

- algorithm for k-means partitioning clustering
 - select a randomly chosen initial partitioning with k clusters
 - · compute the centroids
 - assign each sample to the nearest centroid
 - compute new centroids
 - continue until the clustering stabilizes (or another termination criterion based on the global error is met)

Incremental Clustering

Data Mining

- · huge data sets cannot be clustered in a single step
 - · divide-and-conquer: cluster subsets and merge the results
 - incremental clustering: data points are loaded successively and the cluster representation is updated accordingly

Data Mining

Data Mining Tasks: Clustering 18

Incremental Clustering

- · algorithm
 - · assign the first data point to the first cluster
 - consider the next data point
 - · assign it to an already existing cluster, or
 - create a new cluster
 - · recompute the cluster description for that cluster
 - · continue until all data points are clustered

Data Mining Data Mining Tasks: Clustering 19

Incremental Clustering

- cluster description
 - centroid
 - number of data points in the cluster
 - "radius" of the cluster (based on the mean-squared distance to the centroid)
- problems
 - result depends on the order in which data points are processed → iterative incremental clustering
 - use the centroids of the previous iteration for partitioning in the next one

Data Mining Tasks: Clustering 20

Clustering with Neural Networks

- · competitive learning
 - single layer network
 - · each output neuron corresponds to a cluster
 - the neurons are coupled: lateral inhibition
 - the output of the neuron with maximum activation is set to

all other to zero

$$y'_k = \begin{cases} 1 & \text{if } y_k > y_j \ \forall j \ . \ j \neq k \\ 0 & \text{else} \end{cases}$$

Data Mining Tasks: Clustering 21

Data Mining Tasks: Clustering 22

Clustering with Neural Networks

• the weights of the inputs of the winning neuron are adjusted as to move them towards observed sample

$$w_{ij}' = \left\{ egin{array}{ll} w_{ij} + \eta (x_i - w_{ij}) & ext{ for the winning neuron} \\ w_{ij} & ext{ else} \end{array}
ight.$$

- overall effect: moving the weights towards the center of gravity of the corresponding cluster
- problem: convergence
- · other neural network approaches
 - self-organizing maps (SOM)
 - learning vector quantization (LVQ)

Data Mining Tasks

- Classification
- Prediction
- Clustering
- Dependency Modelling
- Summarization
- Change and Deviation Detection
- Visualization

Data Mining Data Mining Tasks: Clustering 24

Dependency Modelling

- · prediction of events commonly occurring together
- market basket analysis: which items are often purchased together
 - placement of items in a store
 - layout of mail-order catalogues
 - · targeted marketing campaigns
- association rules: rules of the form

$$a \wedge b \wedge \ldots \wedge c \rightarrow d \wedge e$$

· finding good combinations of premises is a combinatorial problem

Association Rules

example data base:

trans-	item	trans-	items
action		action	
001	cola	001	{chips, cola, peanuts}
001	chips	002	{beer, chips, cigarettes}
001	peanuts	003	{beer, chips, cigarettes, cola}
002	beer	004	{beer, cigarettes}
002	chips		
002	cigarettes		

Data Mining

Data Mining Tasks: Dependency Modelling 25

Data Mining

Data Mining Tasks: Dependency Modelling 26

Association Rules

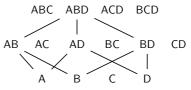
- set of n different items $I = \{x_j | j = 1, \dots, n\}$
- itemset: $I_k \subseteq I$
- i-itemset: $I_k^i \subseteq I$, $|I_k^i| = i$
- transaction $T_k \subseteq I$
- data base: $D = \{(k, T_k) | k = 1, ..., m\}$
- support of an itemset: share of transactions which contain the

$$s(I_i) = \frac{|\{T_k|I_i \subseteq T_k\}|}{|D|}$$

• frequent (strong, large) itemset: $s(I_i) > s_{min}$

Association Rules

• downward closure: every subset of a frequent itemset is also a frequent itemset



• every superset of a not frequent itemset is also a not frequent

Data Mining

Data Mining Tasks: Dependency Modelling 27

Data Mining Tasks: Dependency Modelling 28

Association Rules

- association rule: $X \to Y$, $X, Y \subseteq I, Y \cap X = \emptyset$
- support of a rule: share of transactions which contain both, premise and conclusion of the rule

$$s(X \to Y) = s(X \cup Y) = \frac{|\{T_k | X \cup Y \subseteq T_k\}|}{|D|} = p(XY)$$

confidence of a rule: share of transactions supporting the rule from those supporting the premise

$$c(X \to Y) = \frac{s(X \cup Y)}{s(X)} = \frac{|\{T_k | X \cup Y \subseteq T_k\}|}{|\{T_k | X \subseteq T_k\}|} = p(Y | X)$$

Association Rules

- strong rule: high support + high confidence
- detection of strong rules: two pass algorithm
- 1. find frequent (strong, large) itemsets (Apriori)
 - necessary to generate rules with strong support
 - uses the downward closure
 - itemsets are ordered
- 2. use the frequent itemsets to generate association rules
 - find strong correlations in a frequent itemset

Data Mining

Data Mining Tasks: Dependency Modelling 29

Data Mining

Data Mining Tasks: Dependency Modelling 30

Association Rules

- Apriori: finding frequent itemsets of increasing size itemsets are ordered!
 - start with all itemsets of size one: I1
 - select all itemsets with sufficient support
 - \bullet from the selected itemsets I^i generate larger itemsets I^{i+1}

$$is(\{i_1, \dots, i_{n-2}, i_{n-1}\}) \wedge is(\{i_1, \dots, i_{n-2}, i_n\})$$

 $\rightarrow is(\{i_1, \dots, i_{n-2}, i_{n-1}, i_n\})$

- · already blocks some of the non-frequent itemsets, but not all of them
- · remove those itemsets which still contain a non-frequent immediate subset
 - they cannot have enough support (downward closure)
- · continue until no further frequent itemsets can be generated

• example data base again

Association Rules

• assumption: minimum support $s_{min}=0.5$

k	T_k	I_k^1	#	$s(I_k^1)$
001	{chips, cola, peanuts}	{chips}	3	0.75
002	{beer, chips, cigarettes}	{cola}	2	0.5
003	{beer, chips, cigarettes, cola}	{peanuts}	1	0.25
004	{beer, cigarettes}	{beer}	3	0.75
		{cigarettes}	3	0.75

· no non-empty subsets

Association Rules

• 2-itemsets I_{ν}^2

I_k^1	#	$s(I_k^1)$	I_k^2	#	$s(I_k^2)$
{chips}	3	0.75	{chips, cola}	2	0.5
{cola}	2	0.5	{beer, chips}	2	0.5
{beer}	3	0.75	{chips, cigarettes}	2	0.5
{cigarettes}	3	0.75	{beer, cola}	1	0.25
			{cigarettes, cola}	1	0.25
			{beer, cigarettes}	3	0.75

no itemsets to prune

Association Rules

• 3-itemsets I_{ν}^3

I_k^2	#	$s(I_k^2)$	I_k^3	#	$s(I_k^2)$
{chips, cola}	2	0.5	{beer, chips, cigar.}	2	0.5
{beer, chips}	2	0.5	{chips, cigar., cola}	1	0.25
{chips, cigar.}	2	0.5			
{beer, cigar.}	3	0.75			
			-		

Data Mining

Data Mining Tasks: Dependency Modelling 33

Data Mining Tasks: Dependency Modelling 34

Association Rules

• resulting frequent itemsets:

```
{beer, chips, cigarettes}
{chips, cola}
{chips, beer}
{chips, cigar.}
{beer, cigar.}
{beer}
{chips}
{cigarettes}
{cola}
```

Data Mining

Association Rules

- generation of strong association rules:
 - for all frequent itemsets I_i determine all nonempty subsets I_k

$$c = \frac{s(I_j)}{s(I_k)} \ge c_{min}$$

- add a rule $I_k o Y$, $Y = I_j I_k$ to the rule set
- e.g. $s(\{chips\}) = 0.75, s(\{cola\}) = 0.5,$ $s(\{chips, cola\}) = 0.5$

rule	confidence
$\{cola\} o \{chips\}$	1.00
$\{chips\} \to \{cola\}$	0.67

Data Mining

Data Mining Tasks: Dependency Modelling 35

Data Mining

Data Mining Tasks: Dependency Modelling 36

Association Rules

• interesting association rules: only those for which the confidence is greater than the support of the conclusion

$$c(X \rightarrow Y) > s(Y)$$

• negative border:

$$\{I_k \mid s(I_k) < s_{min} \land \forall I_i \subset I_k . s(I_i) \geq s_{min}\}$$

used

- to compute the set of frequent itemsets more efficiently
- to derive negative association rules

Association Rules

- hierarchical Apriori algorithm
 - in addition to the base level of items, determine also frequent itemsets on a higher level in an is-a hierarchy

· sometimes regularities can only be found at higher levels of abstraction

Data Mining

Data Mining Tasks: Dependency Modelling 37

Data Mining

Data Mining Tasks: Dependency Modelling 38

Association Rules

- the Apriori algorithm requires several scans of the database
- goal: reducing the number of scans
- partitioned Apriori: two scans
 - 1st scan: partition the database and compute locally frequent itemsets on the partitions
 - 2nd scan: determine the support of all locally frequent itemsets
 - heuristics: if an itemset is globally frequent it will be so locally in at least one partition
 - → second scan deals with a superset of possible itemsets

Association Rules

- sampling: multiple scans
 - 1st scan: take a sample and compute frequent itemsets
 - 2nd scan: count their support and the support for their immediate supersets
 - if the itemset is at the negative border
 - all frequent itemsets have been found
 - · else check supersets of the itemsets for being at the negative border in subsequent scans

Data Mining

Data Mining Tasks: Dependency Modelling 39

Data Mining Tasks: Dependency Modelling 40

Association Rules

- incremental update: scan only the added transactions, whether they
 - invalidate a former frequent itemset, or
 - introduce new frequent itemsets

Data Mining Tasks

- Classification
- Prediction
- Clustering
- Dependency Modelling
- Summarization
- Change and Deviation Detection
- Visualization

Data Mining

Data Mining Tasks: Dependency Modelling 41

Data Mining

Data Mining Tasks: Dependency Modelling 42

Summarization

- extraction of representative information about the database
- · simple decriptions: characterizations, generalizations
 - point estimations: mean, variance
 - · confidence intervals
 - · regression functions
 - · cluster with prototypical examples
 - · association rules

Data Mining Tasks

- Classification
- Prediction
- Clustering
- Dependency Modelling
- Summarization
- Change and Deviation Detection
- Visualization

Data Mining

Data Mining Tasks: Summarization 43

Data Mining

Data Mining Tasks: Summarization 44

Temporal Data Bases

- snapshot databases: no support for temporal data
- transaction time databases: tuples or attribute values are timestamped when inserted
- valid time databases: tuples or attribute values can be annotated for the time range in which they are valid
- bitemporal databases: both types of temporal information are supported

Sequential Structures

- time is inherently sequential
- models for capturing sequential structures
 - Finite State Automata
 - Markov Models
 - Hidden Markov Models
- all require supervised training

Data Mining

Data Mining Tasks: Change and Deviation Detection 45

Data Mining

Data Mining Tasks: Change and Deviation Detection 46

Time Series Analysis

- trend detection: smoothing by a moving average
- prediction: fitting the coefficients of a (linear) equation
- (seasonal) cycle detection: autocorrelation
- outlier detection
- event detection: classification based on preceding data points

Pattern Detection

- longest common subsequence
 - fraud detection
 - genomic analysis
 - failure prediction
 - desaster prediction (vulcano eruptions, earthquakes, floodings)
- for categorial data: extension of Apriori to sequences
- flexible match required
 - extension of the similarity measures to sequences
 - special case: elastic match (dynamic time warping)
 - general case: match with transpositions
- for numerical data: (Hidden) Markov Models

Data Mining

Data Mining Tasks: Change and Deviation Detection 47

Data Mining

Data Mining Tasks: Change and Deviation Detection 48

Data Mining Tasks

- Classification
- Prediction
- Clustering
- Dependency Modelling
- Summarization
- Change and Deviation Detection
- Visualization

Visualization

- seeing is the construction of a mental image
 - abstraction: identification of objects, assigning properties
 - generalization: summarized information about many data points
- basic graph types
 - bar charts
 - histograms (distributions)
 - line charts
 - pie charts
 - scatter plots

Data Mining

Data Mining Tasks: Change and Deviation Detection 49

Data Mining

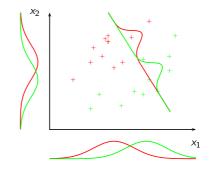
Data Mining Tasks: Visualization 50

Visualization

- problem: limited dimensionality
 - two (three) basic dimensions
 - overlay of multiple graphs
 - color
 - texture
 - shape
 - animation
- combination of visualisation techniques with data cube operations
- interactive exploration of data: browsing

Visualization

• rolling the dice is not always sufficient



Data Mining

Data Mining Tasks: Visualization 51

Data Mining

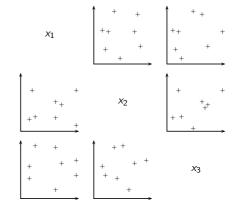
Data Mining Tasks: Visualization 52

Multi-Dimensional Visualization

- scatter-plot matrix
- parameter stacks
- parallel coordinates
- star display
- radial visualization

Scatter-Plot Matrix

• $n \times n$ -matrix of all combinations of two dimensions



Data Mining

Data Mining Tasks: Visualization 53

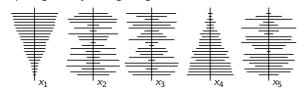
Data Mining

Data Mining Tasks: Visualization 54

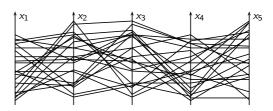
Parameter Stacks

• data plots on vertical lines as centered horizontal lines

• exploring data by sorting along a dimension



Parallel Coordinates



- exploring data by investigating neighborhood relationships between dimensions
 - rearranging

Data Mining Data Mining Tasks: Visualization 55 Data Mining Data Mining Data Mining Tasks: Visualization 56

Star Display

• radial version of parallel coordinates

• only for the display of few data points

• attraction-based: forces proportional to the *n* dimensions pull the point towards the dimension anchors

• important spacial relationships are preserved: e.g. class separation

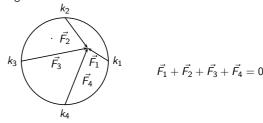
• equilibrium: forces must sum up to 0

• mapping the n-dimensional space into a two dimensional one $(k_1, k_2, k_3, k_4, ..., k_n) \mapsto (x, y)$

• e.g. n=4

Radial Visualisation

Radial Visualization



Data Mining Data Mining Tasks: Visualization 57

Data Mining Tasks: Visualization 58

Radial Visualisation

Data Mining

$$k_{1} \begin{pmatrix} 1 - x \\ 0 - y \end{pmatrix} + k_{2} \begin{pmatrix} 0 - x \\ 1 - y \end{pmatrix} + k_{3} \begin{pmatrix} -1 - x \\ 0 - y \end{pmatrix} + k_{4} \begin{pmatrix} 0 - x \\ -1 - y \end{pmatrix} = 0$$

$$k_{1} - k_{1} \cdot x - k_{2} \cdot x - k_{3} - k_{3} \cdot x - k_{4} \cdot x = 0$$

$$-k_{1} \cdot y + k_{2} - k_{2} \cdot y - k_{3} \cdot y - k_{4} - k_{4} \cdot x = 0$$

$$k_1 - k_3 - x(k_1 + k_2 + k_3 + k_4) = 0$$

 $k_2 - k_4 - y(k_1 + k_2 + k_3 + k_4) = 0$

$$x = \frac{k_1 - k_3}{k_1 + k_2 + k_3 + k_4}$$

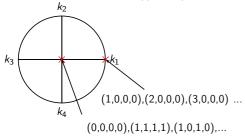
$$y = \frac{k_2 - k_4}{k_1 + k_2 + k_3 + k_4}$$

Data Mining Tasks: Visualization 60

Data Mining Tasks: Visualization 59

Radial Visualisation

information loss: lines are mapped to points



Data Mining Sonification

- · hearing data
- auditory channel is inherently multidimensional
 - volume, rhythm, pitch, harmony, polyphony, sound color, ...
- approaches
 - audification
 - sound mapping
 - model-based sonification

Data Mining

Data Mining Tasks: Visualization 61

Data Mining

Data Mining Tasks: Visualization 62

Sonification

- audification: direct mapping of time-series data to sound patterns
 - · detection of rhythmic patterns
 - · traffic density
- sound mapping: controlling sound synthesis parameter by data items
 - · high-dimensional data can be presented
- model-based sonification: excitation of an oscillating model by data
 - energetically coupled particles, growing neural gas
 - interactive exploration of the (auditory) system response
 - linear structures in a high-dimensional space can be identified