Database and Information Systems

- 11. Deductive Databases
- 12. Data Warehouses and OLAP
- 13. Data Mining
- 14. Index Structures for Similarity Queries
- 15. Semi-Structured Data
- 16. Document Retrieval
- 17. Web Mining
- 18. Content Extraction
- 19. Multimedia Data

Data Mining

- Data-Mining: The Task
- Data-Mining as a Process
- Data Preprocessing
- Data Mining Tasks

Data Mining

Data Mining Techniques 2

Data Mining Tasks

- Classification
- Prediction
- Clustering
- Summarization

• Change and Deviation Detection

• Dependency Modelling

Classification

- well understood
 - · decision theory
 - · many heuristic solutions
- applications in
 - customer relationship management: tailored marketing
 - banking: credit authorization
 - · document management: e-mail routing

Data Mining

Classification

- given
 - a data base $D = \{t_1, t_2, ..., t_n\}$
 - of tupels $t_i = \vec{x}$ and
 - a set of classes $C = \{c_1, c_2, ..., c_m\}$,
- find a mapping $f: D \rightarrow C$
 - such that f partitions D.

Classification

Data Mining

- classes are predefined: supervised learning, learning with a teacher
- - $c_t(t_i)$: class assignment in the training data
 - $c(t_i)$: class assignment by the classifier
- usually: $|D| \gg |C|$
- class is a set of tuples: $c_i = \{t_i | f(t_i) = c_i\}$
- no tuple belongs to several classes

Data Mining

Data Mining Tasks: Classification 5

Data Mining Tasks 3

Data Mining

Data Mining Tasks: Classification 6

Data Mining Tasks: Classification 4

Classification

- Nearest-Neighbor Classifier
- Threshold-based Classifiers
- Decision Trees
- Random Forests
- Neural Networks
- Stochastic Classification
- Evaluation

Nearest-Neighbor Classifier

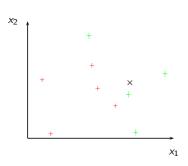
- direct approach: training data $T = \{(\vec{x_i}, k)\}$ are
 - · directly stored in the classifier and
 - used for classification
- nearest neighbor

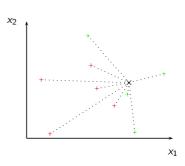
$$c(\vec{x}) = \arg_{c_k}(\vec{x_j}, k), \quad j = \arg\min_{i} d(\vec{x}, \vec{x_i})$$

Data Mining Data Mining Tasks: Classification 7 Data Mining Tasks: Classification 8

Nearest-Neighbor Classifier

Nearest-Neighbor Classifier





Data Mining

Data Mining Tasks: Classification 9

Data Mining

Data Mining Tasks: Classification 10

Nearest-Neighbor Classifier

Nearest-Neighbor Classifier

- k-nearest neighbors
 - determine the set N of the k nearest neighbors of \vec{x} in T
 - choose the class with the maximum number of data points in $\ensuremath{\textit{N}}$

$$c(\vec{x}) = \arg\max_{c_k} |\{c_k | c_k \in N\}|$$

- more robust against singular data points
- · but more expensive

Data Mining

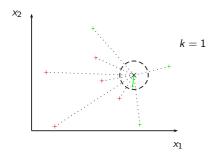
Data Mining Tasks: Classification 11

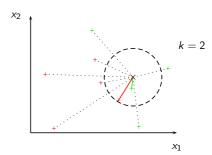
Data Mining

Data Mining Tasks: Classification 12

Nearest-Neighbor Classifier

Nearest-Neighbor Classifier





Data Mining

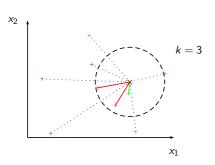
Data Mining Tasks: Classification 13

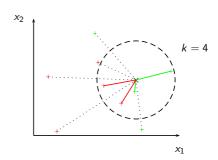
Data Mining

Data Mining Tasks: Classification 14

Nearest-Neighbor Classifier

Nearest-Neighbor Classifier





Nearest-Neighbor Classifier

k = 5

Nearest-Neighbor Classifier

- NN-classifier is instance-based
 - model size and classification effort grow linearly with amount of training data
 - no generalization of the available training data
- generalizing models required
 - use class representatives as data points
 - e.g. mean of class or class-dependent clusters

Data Mining Tasks: Classification 17

Classification

- Nearest-Neighbor Classifier
- Threshold-Based Classifiers
- Decision Trees
- Random Forests
- Neural Networks
- Stochastic Classification
- Evaluation

Data Mining

Data Mining Tasks: Classification 18

Data Mining Tasks: Classification 20

Threshold-Based Classifiers

- simple generalizing model
- a threshold divides the data space into two subspaces

$$c(\vec{x_i}) = \left\{ egin{array}{ll} 1 & x_j > heta_j \ 2 & \textit{else} \end{array}
ight.$$

• analogue separation criteria for non-numeric data

Data Mining Tasks: Classification 19

Threshold-Based Classifiers

- choice of the optimal threshold:
 - minimizing the classification error on the training data

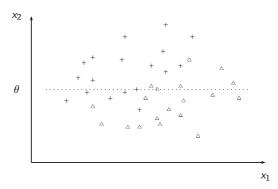
$$\theta = \arg\min_{\theta} |\{t_i | c(t_i) \neq c_t(t_i)\}|$$

 for numeric data approximated by minimizing the distance of misclassified samples to the threshold

$$\theta = \arg\min_{\theta} \sum_{t_i, c(t_i) \neq c_t(t_i)} |x_j - \theta_k|$$

Threshold-Based Classifiers

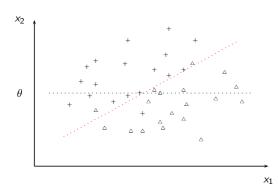
• insufficient to separate more difficult distributions



ata Mining Data Mining Tasks: Classification 21

Threshold-Based Classifiers

• better class separation



Data Mining

Data Mining Tasks: Classification 22

Threshold-Based Classifiers

- algorithm for finding an optimal threshold
 - 1. sort the values $[v_1, ..., v_m]$
 - 2. extract m-1 potential thresholds by either
 - computing the mean of all neighboring values or
 - \bullet choosing the smaller one of two neighboring values
 - 3. evaluate all potential thresholds and select the one with the maximum gain

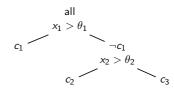
Data Mining Data Mining Tasks: Classification 23 Data Mining Tasks: Classification 24 Data Mining Tasks: Classification 25 Data Mining Tasks: Classification 26 Data Mining Tasks: Classification 26 Data Mining Tasks: Classification 27 Data Mining Tasks: Classification 28 Data Mining Tasks: Classification 28 Data Mining Tasks: Classification 29 Data Mining Tasks: Classification 20 Data Mining M

Classification

- Nearest-Neighbor Classifier
- Threshold-Based Classifiers
- Decision Trees
- Neural Networks
- Stochastic Classification

Decision trees

- extension of threshold-based classifiers to multiple classes:
 - · multi-branch splits
 - · decomposition into a sequence of sub-decisions



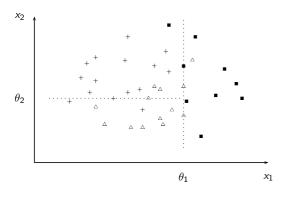
- finding the optimal decision tree is NP complete
 - → deterministic (non-backtracking), greedy algorithms

Data Mining

Data Mining Tasks: Classification 25

Data Mining Tasks: Classification 26

Decision trees



Decision trees

Data Mining

- ID3: split along a dimension as to maximise information gain
- entropy of a set S partitioned into k classes

$$E(S) = -\sum_{i=1}^{k} p(c_i) \cdot \log p(c_i)$$

• entropy of a test set T partitioned into n subsets by an attribute test X with n possible outcomes

$$E_X(T) = -\sum_{i=1}^n \frac{|T_i|}{|T|} \cdot E(T_i)$$

• information gain of the attribute test

$$G(X) = E(T) - E_X(T)$$

Data Mining

Data Mining Tasks: Classification 27

Decision trees

Data Mining

Data Mining Tasks: Classification 28

Decision trees

- C4.5: extension of ID3 to numerical data
 - split along a dimension so that the resulting subsets have lowest class entropy

i.e. contain data points of as few classes as possible

- · problem of overfitting
 - · splitting until no data point is misclassified usually means to adapt the classifier too much to the training data
 - "learning off by heart"
 - degrading performance on held out test data
 - cut-off criterion required, or post-pruning

- · decision rules can be extracted from a decision tree
 - IF part: combine all tests on the path from the root node to the leave node
 - THEN part: the final classification

Data Mining

Data Mining Tasks: Classification 29

Data Mining

Data Mining Tasks: Classification 30

Classification

- Nearest-Neighbor Classifier
- Threshold-Based Classifiers
- Random Forests
- Neural Networks
- Evaluation

Random Forests

- ensemble based method
- goal: reducing the effect of "almost" random split decisions
- · forcing the training to consider alternative splits
- given: N training instances with M variables
- T random samples (with replacement) with a sample size $S \approx 0.66N$; the remaining instances are used for estimating the prediction error (out-of-bag evaluation)
- for each node of the tree $m \ll M$ variables are selected randomly to take the decision at that node
- no pruning is applied
- · classification: (weighted) majority vote among the results of the individual trees

Data Mining

Data Mining Tasks: Classification 31

Data Mining Tasks: Classification 32

Random Forests

- highly accurate classifiers without much prior knowledge
- fast training
- highly parallel classification
- can deal with very large problems (training data, number of variables, number of classes)
- estimates the importance of the different variables
- build-in evaluation; no separate test data required

Random Forests

- prone to overfitting, in particular for noisy data sets
- · does not handle large amounts of irrelevant features
- sensitive to correlations between trials: "small heterogeneous is better than large homogeneous" (GASHLER ET AL. 2008)
 - · growing too many trees might reduce the accuracy

Data Mining

Data Mining Tasks: Classification 33

Data Mining

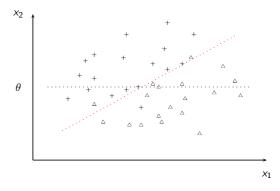
Data Mining Tasks: Classification 34

Classification

- Nearest-Neighbor Classifier
- Threshold-Based Classifiers
- Random Forests
- Neural Networks
- Evaluation

Neural Networks

· sometimes linear functions can be used to separate two classes



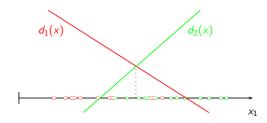
Data Mining

Data Mining Tasks: Classification 35

Data Mining Tasks: Classification 36

Neural Networks

· classes are represented by means of linear discrimination functions $d_k(\vec{x})$



→ linear discriminance analysis (LDA)

Neural Networks

· class decision is reduced to a maximum detection

$$c(\vec{x}) = \arg\max_{c_k} d_k(\vec{x})$$

· discriminating functions are (in the simplest case) linear combinations of the components of a data point

$$d_k(\vec{x}) = w_0 + \sum w_i x_i$$

Data Mining

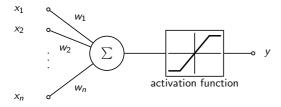
Data Mining Tasks: Classification 37

Data Mining

Data Mining Tasks: Classification 38

Neural Networks

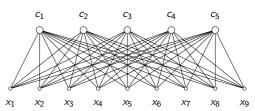
• corresponds to first part of a perceptron



- single perceptron: classification only for
 - two class problems and
 - linear separable classes

Neural Networks

· extension to multiple classes: single-layer networks



• class decision: maximum detection ("the winner takes all")

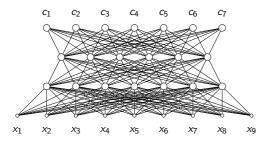
Data Mining

Data Mining Tasks: Classification 39

Data Mining Tasks: Classification 40

Neural Networks

- multiple perceptrons simulate a piecewise-linear discrimination function
- · single layer networks only for simple problems
 - → usually multiple-layer networks required



Neural Networks

- · optimal architecture has to be determined experimentally
- only few heuristic criteria available

Data Mining

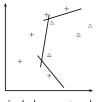
Data Mining Tasks: Classification 41

Data Mining

Data Mining Tasks: Classification 42

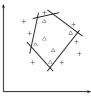
Neural Networks

· How many layers are necessary?



single-layer network

no islands



two-layer network

three-layer network

also concave islands

Neural Networks

- · How many nodes per layer are required?
 - the more nodes, the smoother the class separation
 - the more nodes, the more training data and training cycles are required

Data Mining

Data Mining Tasks: Classification 43

Data Mining Tasks: Classification 44

Neural Networks

- · training of neuronal networks
- error driven learning
 - assume an initial (random) assignment of synaptic weights w_{ij}
 - determine the error of the output value of a node i: $e_i = \frac{(y_i d_i)^2}{2}$
 - change the weights wij according to a learning rule
 - · continue with the next training sample
- backpropagation of the error signal from the output layer to the input layer

Neural Networks

- · examples of learning rules
 - Hebb rule

$$\Delta w_{ij} = \eta \ x_{ij} \ y_j$$

 η : learning rate (approx 1/|T|) does not consider the desired output

delta rule

$$\Delta w_{ij} = \eta \; x_{ij} \; (d_j - y_j)$$

· learning rules with momentum

$$\Delta w_{ij}(n) = \eta x_{ij} (d_j - y_j) + \alpha \Delta w_{ij}(n-1)$$

Data Mining

Data Mining Tasks: Classification 45

Data Mining

Data Mining Tasks: Classification 46

Neural Networks

- gradient descent search: all weights are changed until no significant change of the global error measure can be observed
 - · high number of training iterations is required
 - · local search: optimum is not guaranteed
 - not even convergence of the algorithm is guaranteed

Neural Networks

- problems
 - · many parameters have to be determined empirically
 - number of layers, number of nodes per layer
 - · learning rate, momentum
 - initialization
 - termination criterion
 - · overfitting may occur
 - · stop training early enough
 - choose the most simple architecture possible

Data Mining

Data Mining Tasks: Classification 47

Data Mining Tasks: Classification 48

Neural Networks

- · decision rules can be extracted from a neural network
 - cluster the node activations
 - generate rules from high synaptic links
 - combine the rules across layers

• Nearest-Neighbor Classifier

- Threshold-Based Classifiers
- Decision Trees

Classification

- Random Forests
- Neural Networks
- Stochastic Classification
- Evaluation

Data Mining Data Mining Tasks: Classification 49

Stochastic Classification

- · Bayesian inference
 - given: a prior data distribution
 - observe data
 - infer a posterior distribution
- · Bayes' theorem

$$p(c_k|\vec{x}) = \frac{p(\vec{x}|c_k) \cdot p(c_k)}{p(\vec{x})}$$

- $p(\vec{x})$ does not influence a class decision
- $p(\vec{x}|c_k)$ and $p(c_k)$ have to be estimated using the available training data

Data Mining Data Mining Tasks: Classification 51

Stochastic Classification

· classification rule

$$k = \arg\max_{k} p(c_k | \vec{x}) = \arg\max_{k} p(\vec{x} | c_k) \cdot p(c_k)$$

- Bayes classifier has optimal error rates
- but: in practice worse because of the independence assumption

Data Mining

Data Mining Tasks: Classification 50

Data Mining Tasks: Classification 52

Stochastic Classification

• $p(c_k)$: class probability

$$p(c_k) = \frac{|c_k|}{|S|}$$

- $p(\vec{x}|c_k)$: data generation (or emission) model
 - · more difficult to estimate
 - simplifying assumption: conditional independence between attributes
 - \rightarrow naı̈ve / simple Bayesian classifier

$$p(\vec{x}|c_k) = \prod_{i=1}^n p(x_i|c_k)$$

• training method: maximum likelihood (ML) estimation

Stochastic Classification

- · problems with non-trivial input output dependencies
 - strongly correlated variables
 - time series analysis
- Bayesian networks
- emission probabilities are conditioned on the state of the model
- state of the model is not directly observable \rightarrow hidden variable
- · simplifying assumption: state probabilities depend only on the preceding state
- ML training requires direct counting of observations
- alternative: expectation maximization (EM)
 - · start with an initial probability estimation
 - · modify the current probabilities as to better fit the training data
- resulting probabilities are only approximations

Data Mining Data Mining Tasks: Classification 53 Data Mining Data Mining Tasks: Classification 54

Comparison of classifiers

	Nearest	Decision	(Linear)	Stochastic
	Neighbor	Trees	Discriminance	Models
model	sample	ranking	class	probabilistic
	set	of tests	boundaries	generation
generalization	no	forced	yes	yes
robust against				
incons. data	no	now	yes	yes
outliers	only k-NN	low	yes	yes
perspicuity	high	high	low	low
scalability	very low	low	good	very good
additional	metrics	no	architecture	(architecture)
assumptions			learning rule	distribution

Classification

• Nearest-Neighbor Classifier

• Threshold-Based Classifiers

• Decision Trees

Random Forests

• Neural Networks

• Stochastic Classification

Evaluation

Data Mining Data Mining Tasks: Classification 55 Data Mining Tasks: Classification 56

- goal: predicting future model performance
 - estimation of an error rate on a sample of test cases
- testing on the training data is too optimistic
 - error rate is significantly lower compared to a real application scenario
 - \rightarrow evaluation only on separate data: test set
- but: available test set data is usually limited
 - manual data cleansing
 - manual class assignment
- using data for training and testing: resampling

Resampling Methods

- held out data
 - 30% ... 50% of the data are reserved for testing
 - · training and test data are independent
 - error estimation is pessimistic and depends on the partitioning

 → repeat the measurement with different partitionings and
 average
- · leave one out
 - use n-1 samples for training and evaluate on the n-th one
 - ullet repeat with all n samples
 - extremely expensive

Data Mining

Resampling Methods

- n-fold cross validation
 - · combines hold-out and leave-one-out
 - divide data set into p partions
 - use p-1 partitions for training; evaluate on the remaning one
- bootstrapping
 - generate artificial training data by replacing data items
 - obtain bootstrap estimations of the error rates on these data sets
 - · useful if few data are available

Data Mining

Data Mining Tasks: Classification 58

Quality Measures

error rate

$$e = \frac{|M|}{|S|}$$

S: test set, $M \subseteq S$: misclassified data

accuracy

$$a = 1 - e = \frac{|S| - |M|}{|S|}$$

• only for atomic data!

Data Mining

Data Mining Tasks: Classification 59

Data Mining Tasks: Classification 57

Data Mining

Data Mining Tasks: Classification 60

Quality Measures

- contrastive analysis:
 - absolute improvement/degradation: comparison with a baseline case

$$\Delta_{abs}a=a_n-a_{n+1}$$

• relative improvement/degradation

$$\Delta_{rel}a=rac{a_n-a_{n+1}}{a_n}$$

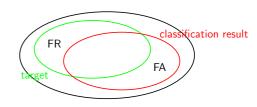
Quality Measures

- special case: 2 classes (true/false) \rightarrow 2 error cases
- false positives/acceptance: false acception rate (sensitivity)

$$\mathit{FAR} = \frac{|\{x|c(x) = \mathsf{true} \neq c_t(x)\}|}{|\{x|c(x) = \mathsf{true}\}|}$$

• false negatives/rejection: false rejection rate (specificity)

$$FRR = rac{|\{x|c(x) = \mathsf{false}
eq c_t(x)\}|}{|\{x|c(x) = \mathsf{false}\}|}$$



Data Mining

Data Mining Tasks: Classification 61

Data Mining

Data Mining Tasks: Classification 62

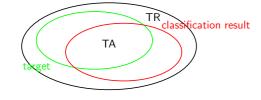
Quality Measures

• true positives/acceptance: true acception rate

$$TAR = rac{|\{x|c(x) = \mathsf{true} = c_t(x)\}|}{|\{x|c(x) = \mathsf{true}\}|}$$

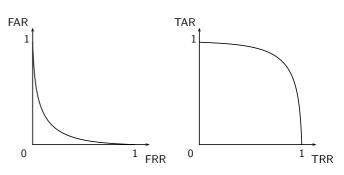
• true negatives/rejection: true rejection rate

$$TRR = rac{|\{x|c(x) = \mathsf{false} = c_t(x)\}|}{|\{x|c(x) = \mathsf{false}\}|}$$



Quality Measures

 \bullet trade-off between FAR and FRR / TAR and TRR

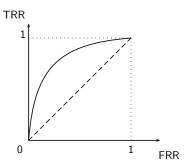


• trivial classifier: upper threshold for the error rate

$$e_{max} = \min(p(true), p(false))$$

Quality Measures

• receiver operating characteristic (ROC): TRR vs. FRR



• quality: area under the ROC-curve

Quality Measures

- in general $k^2 k$ (k: number of classes) error types
- description of the error type distribution as a confusion matrix
- biased error consequences: weighted error measures
 - ullet error types e_{ij} are associated with costs c_{ij}

$$e_w = \frac{\sum_{i=1}^m \sum_{j=1}^m e_{ij} \cdot c_{ij}}{|S|}$$

Data Mining Data Mining Tasks: Classification 65 Data Mining Tasks: Classification 66 Data Mining Mini