
Retracting Assumptions

• Data are always explicitly given

→ deductive data-bases

• Data are always well-structured

→ semi-structured or unstructured data

• Data have to be administered centrally

→ distributed systems, semantic web

• Every data base has to be in normal form

→ data warehouses

• The user knows exactly which information he is in need of

→ data mining

• Data can be indexed along a single dimension

→ Index Structures for Similarity Queries

1

Database and Information Systems

Part II

11. Deductive Databases
12. Data Warehouses and OLAP
13. Data Mining
14. Index Structures for Similarity Queries
15. Semi-Structured Data
16. Document Retrieval
17. Web Mining
18. Content Extraction
19. Multimedia Data

2

Deductive Databases

Readings:

• Ceri, Stefano; Gottlob, Georg; Tanca, Leticia: Logic
Programming and Databases, Springer-Verlag, Berlin 1990.

• Kemper, Alfons; Eickler Andre: Datenbanksysteme: Eine
Einführung, Oldenbourg, München 2006, Kapitel 15.

Deductive Databases 3

Deductive Databases

• Deduction

• Deductive Databases

• Derivation in Deductive Databases

• Extensions to Pure Datalog

• Comparison with Prolog

• Integrity Constraints

• Recursion in SQL

Deductive Databases Deductive Databases 4

Deduction

• requirements for relational databases:

• data independence → declarative specification of data
• avoidance of redundancy → normalization

• many information tasks require the derivation of data from other
data

• e.g. data transformations: date of birth → age
• e.g. data combination: high income ∧ low age → interesting

customer
• e.g. transitive closure: time table enquiries

Deductive Databases Deduction 5

Deduction

• transformations, data combination → complex queries, views

• views of views?

• recursive views?

• usually: computation in separate application procedures

• drawbacks

• application specific solutions
• danger of inefficient solutions
• separate administration of data and programs
• impedance mismatch: declarative vs. imperative specifications

Deductive Databases Deduction 6

Deductive Databases

• deductive databases

• extensional database, facts
• intensional database, rules
• consistency constraints

Deductive Databases Deductive Databases 7

Deductive Databases

• extensional database

parent_of(mary,ellen).

parent_of(ellen,john).

parent_of(mary,dan).

parent_of(ellen,ann).

male(john).

male(dan).

female(mary).

female(ellen).

female(ann).

• corresponds to a relational database

Deductive Databases Deductive Databases 8

Deductive Databases

• intensional database

mother_of(X,Y) :- parent_of(X,Y),female(X).

father_of(X,Y) :- parent_of(X,Y),male(X).

grandmother(X,Y) :- mother_of(X,Z),parent_of(Z,Y).

grandfather(X,Y) :- father_of(X,Z),parent_of(Z,Y).

ancestor_of(X,Y) :- parent_of(X,Y).

ancestor_of(X,Y) :- ancestor_of(X,Z),

ancestor_of(Z,Y).

• rules allow to derive facts from other facts

Deductive Databases Deductive Databases 9

Deductive Databases

• rules allow to derive facts from other facts

• original facts

parent_of(mary,ellen).

parent_of(ellen,john).

parent_of(mary,dan).

parent_of(ellen,ann).

female(mary).

female(ellen).

• rule

mother_of(X,Y) :- parent_of(X,Y),female(X).

• derived facts

mother_of(mary,ellen).

mother_of(ellen,john).

mother_of(mary,dan).

mother_of(ellen,ann).

Deductive Databases Deductive Databases 10

Deductive Databases

• pure datalog

• horn clauses: simplest form of 1st order predicate logic formulae
〈clause〉 := 〈fact〉 | 〈rule〉 | 〈goal〉
〈rule〉 := 〈head〉 {’:-’ 〈body〉 } ’.’
〈head〉 := 〈literal〉
〈body〉 := 〈literal〉 {’,’ 〈literal〉 }
〈literal〉 := 〈functor〉 ’(’ 〈argument〉 {’,’ 〈argument〉} ’)’
〈functor〉 := 〈atom〉
〈argument〉 := 〈variable〉 | 〈atom〉 | 〈number〉 | 〈string〉
〈variable〉 := 〈upper case character〉 {character}
〈atom〉 := 〈lower case character〉 {character}
〈fact〉 := 〈head〉 ’.’
〈goal〉 := 〈body〉 ’.’

• facts are rules with an empty body (unconditionally valid assertions)

Deductive Databases Deductive Databases 11

Deductive Databases

• a predicate definition corresponds to a view in a relational db
• datalog programs can be translated into relational algebra

mother_of(X,Y) :- parent_of(X,Y),female(X).

=⇒ π1,2(PARENT ⊲⊳
1 = 1

FEMALE)

π1,2(

PARENT

1 2
mary ellen
ellen john
.

⊲⊳
1 = 1

FEMALE

1
mary
ellen
. . .

) = π1,2

1 2 3
mary ellen mary
ellen john ellen
.

=

MOTHER

1 2
mary ellen
ellen john
.

grandmother_of(X,Y) :- mother_of(X,Z),

parent_of(Z,Y).

=⇒ π1,4(MOTHER ⊲⊳
2= 1

PARENT)

=⇒ π1,4((π1,2(PARENT ⊲⊳
1= 1

FEMALE)) ⊲⊳
2 = 1

PARENT)

Deductive Databases Deductive Databases 12

Deductive Databases

• goals are queries to

extensional database ∪ intensional database

• datalog goals can be translated into relational algebra

?- mother_of(X,Y).

=⇒ MOTHER

=⇒ π1,2(PARENT ⊲⊳
1 = 1

FEMALE)

• special case: constant selection

?- mother_of(mary,X).

=⇒ σ1=maryMOTHER

=⇒ σ1=mary(π1,2(PARENT ⊲⊳
1 = 1

FEMALE))

Deductive Databases Deductive Databases 13

Deductive Databases

• rules can be recursive

ancestor_of(X,Y) :- parent_of(X,Y).

ancestor_of(X,Y) :- ancestor_of(X,Z),

ancestor_of(Z,Y).

• recursive rules can cause termination problems
→ additional safety conditions needed

• facts must not contain any variables
• each variable which occurs in the head of a rule must also

occur in the body of the same rule

Deductive Databases Deductive Databases 14

Derivation in Deductive Databases

• Datalog comes with a fully declarative semantics
→ results are insensitive to the derivation strategy

• top-down derivation:

• problem generators
• goals are seen as problems to be solved
• a rule generates simpler problems by decomposing more

complex ones
• problem: single solutions instead of answer sets (impedance

mismatch)

Deductive Databases Derivation in Deductive Databases 15

Derivation in Deductive Databases

• bottom-up derivation:

• productions
• generating all the consequences of a rule until no more facts

can be derived (fixpoint)

• Algorithm:

• F set of initial facts, R set of rules, F ′ = ∅
• repeat until F = F ′

• F = F ′

• ∀ rules r ∈ R : F ← F ∪ cons(r ,F)

• intermediate results can be stored in the extensional database
→ materialization

• naive bottom up: apply the rules to original and derived facts

• semi-naive bottom-up: consider derivations only if newly derived
facts are involved

Deductive Databases Derivation in Deductive Databases 16

Derivation in Deductive Databases

• bottom up derivation: which clauses to consider
→ dependency graph

• A literal X depends on a literal Y if Y occurs as a subgoal of a
clause with literal X as head.

• dependencies can be represented as edges in a directed graph

grandmother of ancestor of grandfather of

mother of father of

female parent of male

• if the dependency graph contains cycles → recursive program

Deductive Databases Derivation in Deductive Databases 17

Derivation in Deductive Databases

• transformational approaches: magic sets

• problem with bottom up derivation:

• generates the whole relation
• ignoring constraining information possibly provided with the

goal (e.g. constant selection)
• idea: adding additional constraints to the original program to

force it to consider the variable bindings imposed by the goal

Deductive Databases Derivation in Deductive Databases 18

Derivation in Deductive Databases

• transformation of the program

grandmother_of(X,Y) :- mother_of(X,Z),

parent_of(Z,Y).

• for the variable bindings of the goal

?- grandmother_of(X,dan).

• into a derived program

grandmother_of(X,Y) :- magic(Z),

mother_of(X,Z),

parent_of(Z,Y).

magic(dan).

magic(X) :- magic(Y), parent_of(X,Y).

Deductive Databases Derivation in Deductive Databases 19

Extensions to pure Datalog

• built-in comparison predicates

• negation

• complex objects

Deductive Databases Extensions to Pure Datalog 20

Comparison Predicates

• uncritical: =

• critical: 6=, <,>,≤,≥

• correspond to infinite relations
• can compromise the safety of a Datalog program

sister_of(X,Y) :- parent_of(Z,X),

parent_of(Z,Y),

female(X),

X \= Y.

adult(X) :- person(X),

age(X,Y),

Y>17.

Deductive Databases Extensions to Pure Datalog 21

Comparison Predicates

• extended safety conditions:
every variable in the head of a clause ...

• ... has to also occur in a non-built-in predicate in the body of
the clause or ...

• ... is unified with a constant or a variable for which safety has
been shown already

• evaluation of the predicate needs to be deferred until all its
arguments are bound.

Deductive Databases Extensions to Pure Datalog 22

Negation

• negation by means of a

closed world assumption (CWA)

If a fact does not logically follow from a set of clauses then we can
conclude that the negation of the fact is true

• pure Datalog + CWA allows to deduce negative facts

• but deduced negative facts can not be used to derive further facts

Deductive Databases Extensions to Pure Datalog 23

Negation

• extension with negated literals in the body of a clause necessary

% marriage(Man,Woman,Date). divorce(Man,Woman,Date).

marriage(john,eve’1965.03.12’).

marriage(paul,jane,’1989.11.04’).

divorce(paul,jane,’1990.02.17’).

unmarried(X) :- person(X), not(marriage(X,_,_)),

not(marriage(_,X,_)).

married(X,Y) :- person(X), marriage(X,Y,D1),

not(and(divorce(X,Y,D2),D1<D2)).

married(X,Y) :- person(X), marriage(Y,X,D1),

not(and(divorce(Y,X,D2),D1<D2)).

Deductive Databases Extensions to Pure Datalog 24

Negation

• examples cont.

divorced(X) :- person(X), divorce(X,Y,D1),

not(married(X,_)).

divorced(X) :- person(X), divorce(Y,X,D1),

not(married(X,_)).

widowed(X) :- person(X), married(X,Y), dead(Y).

widowed(X) :- person(X), married(Y,X), dead(Y).

Deductive Databases Extensions to Pure Datalog 25

Negation

• safety constraint: every variable which occurs in a negated literal
must also occur in a non-negated one

• a the negated subgoal must not depend on the head of the clause
→ stratified Datalog, statified programs:

• evaluate the predicate under the negation symbol
• if not true assume the negation to be true

Deductive Databases Extensions to Pure Datalog 26

Complex Objects

• representation as function symbols of a 1st order logic and sets

person(name(ken,smith),

birthdate(1976,may,22),

children(\{ann,dan,susan\}))

• complex objects may compromise the safety

• undecidable whether a program has finitely or infinitely many
results

• finiteness of sets is undecidable

• self-referential set definitions (sets which include themselves) have
no well-defined semantics

Deductive Databases Extensions to Pure Datalog 27

Comparison with Prolog

• syntactically Datalog is a subset of Prolog

• every Datalog clause is a valid Prolog clause

• differences in the semantics

Datalog Prolog

fully declarative semantics procedural elements

many equivalent derivation fixed derivation strategy
strategies

termination guaranteed termination depends on the
order of clauses and subgoals

safety constraints full Horn logic

set oriented derivation fact oriented derivation

Deductive Databases Comparison with Prolog 28

Integrity Constraints

• integrity constraints have the general form

false :- not(condition).

• cannot be used to derive new facts

• have to be fulfilled after every update (static integrity constraints)

false :- marriage(X,_,_), not(male(X)).

false :- marriage(_,X,_), not(female(X)).

false :- age(X,Y), X>150.

false :- marriage(X,Y,_),

first_grade_relatives(X,Y).

• integrity constraints can be inconsistent
→ no valid database content is possible
→ satisfiability checks required

Deductive Databases Integrity Constraints 29

Recursion in SQL

• restricted form of recursion is part of SQL-99

• with-clause defines a table to be used in another query

• with recursive makes recursive self-reference possible

with recursive ancestor as

(select * from parent

union

select parent.parent, ancestor.successor

from parent, ancestor

where parent.child = ancestor.ancestor)

• no semantic means to ensure termination

Deductive Databases Integrity Constraints 30

Recursion in SQL

• safety has to be achieved by the programmer by controlling

• processing order

search depth/breadth first ... set

• maximum recursive depth
• cycle markup

cycle Attribute set Cycle_Mark_Attribute

to Marke using Path_Attribute

• no cycle detection
• has to be programmed individually based on the markup

provided by the system

• SQL allows unrestricted negation, scalar functions and aggregation
and is therefore inherently unsafe!

• individual cycle monitoring is highly error-prone

Deductive Databases Recursion in SQL 31

	Deductive Databases
	Deductive Databases
	Deduction
	Deductive Databases
	Derivation in Deductive Databases
	Extensions to Pure Datalog
	Comparison with Prolog
	Integrity Constraints
	Recursion in SQL

