Database and Information Systems

- 11. Deductive Databases
- 12. Data Warehouses and OLAP
- 13. Data Mining
- 14. Index Structures for Similarity Queries
- 15. Semi-Structured Data
- 16. Document Retrieval
- 17. Web Mining
- 18. Content Extraction
- 19. Multimedia Data

Data Mining Tasks

- Classification
- Prediction
- Clustering
- Summarization
- Dependency Modelling
- Change and Deviation Detection

Data Mining

- Data-Mining: The Task
- Data-Mining as a Process
- Data Preprocessing
- Data Mining Tasks

Data Mining Techniques 2

Classification

- well understood
 - decision theory
 - many heuristic solutions
- applications in
 - customer relationship management: tailored marketing
 - banking: credit authorization
 - document management: e-mail routing

Data Mining Tasks 3 Data Mining Tasks 3 Data Mining Tasks: Classification 4

Classification

- given
 - a data base $D = \{t_1, t_2, ..., t_n\}$
 - of tupels $t_i = \vec{x}$ and
 - a set of classes $C = \{c_1, c_2, ..., c_m\}$,
- find a mapping $f: D \rightarrow C$
 - such that *f* partitions *D*.

Data Mining

Data Mining Tasks: Classification 5

Data Mining

Classification

notation

• classes are predefined:

• usually: $|D| \gg |C|$

supervised learning, learning with a teacher

• $c_t(t_i)$: class assignment in the training data

• $c(t_i)$: class assignment by the classifier

• class is a set of tuples: $c_i = \{t_i | f(t_i) = c_i\}$

• no tuple belongs to several classes

Data Mining Tasks: Classification 6

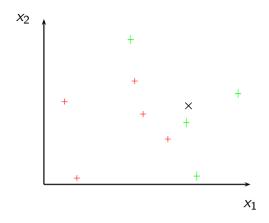
Classification

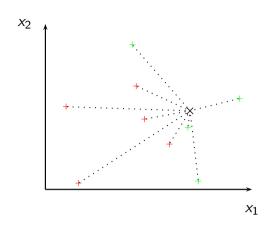
- Nearest-Neighbor Classifier
- Threshold-based Classifiers
- Decision Trees
- Neural Networks
- Stochastic Classification
- Evaluation

Nearest-Neighbor Classifier

- direct approach: training data $T = \{(\vec{x_i}, k)\}$ are
 - directly stored in the classifier and
 - used for classification
- nearest neighbor

$$c(\vec{x}) = \arg_{c_k}(\vec{x_j}, k), \ \ j = \arg\min_i d(\vec{x}, \vec{x_i})$$


Data Mining

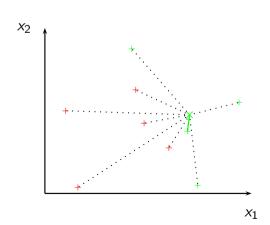

Data Mining Tasks: Classification 7

Data Mining

Nearest-Neighbor Classifier

Nearest-Neighbor Classifier

Data Mining

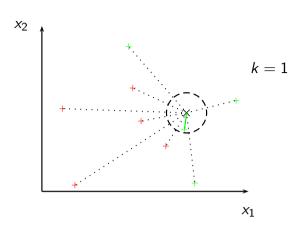

Data Mining Tasks: Classification 9

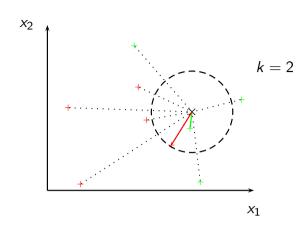
Data Mining

Data Mining Tasks: Classification 10

Nearest-Neighbor Classifier

Nearest-Neighbor Classifier


- *k*-nearest neighbors
 - determine the set N of the k nearest neighbors of \vec{x} in T
 - \bullet choose the class with the maximum number of data points in N

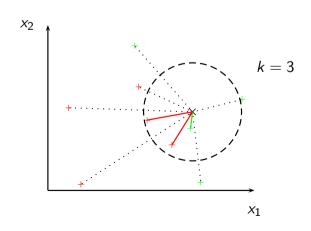

$$c(\vec{x}) = \arg\max_{c_k} |\{c_k | c_k \in N\}|$$

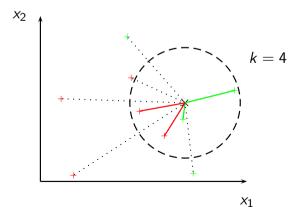
- more robust against singular data points
- but more expensive

Nearest-Neighbor Classifier

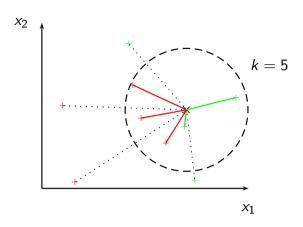
Nearest-Neighbor Classifier

Data Mining


Data Mining Tasks: Classification 13


Data Mining

Data Mining Tasks: Classification 14


Nearest-Neighbor Classifier

Nearest-Neighbor Classifier

Nearest-Neighbor Classifier

Data Mining

Classification

- Nearest-Neighbor Classifier
- Threshold-Based Classifiers
- Decision Trees
- Neural Networks
- Stochastic Classification
- Evaluation

Nearest-Neighbor Classifier

- NN-classifier is instance-based
 - model size and classification effort grow linearly with amount of training data
 - no generalization of the available training data
- generalizing models required
 - use class representatives as data points
 - e.g. mean of class or class-dependent clusters

Data Mining

Data Mining Tasks: Classification 18

Threshold-Based Classifiers

- simple generalizing model
- a threshold divides the data space into two subspaces

$$c(\vec{x_i}) = \begin{cases} 1 & x_j > \theta_j \\ 2 & else \end{cases}$$

• analogue separation criteria for non-numeric data

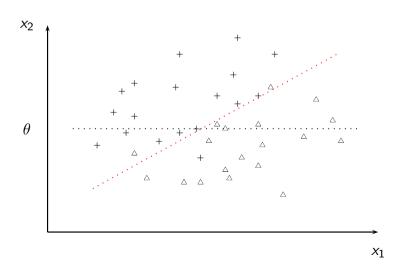
Data Mining Tasks: Classification 17

Data Mining

Threshold-Based Classifiers

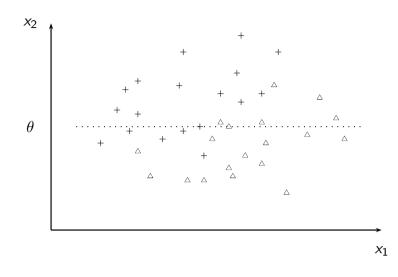
- choice of the optimal threshold:
 - minimizing the classification error on the training data

$$\theta = \arg\min_{\theta} |\{t_i | c(t_i) \neq c_t(t_i)\}|$$


 for numeric data approximated by minimizing the distance of misclassified samples to the threshold

$$\theta = \arg\min_{\theta} \sum_{t_i, c(t_i) \neq c_t(t_i)} |x_j - \theta_k|$$

Data Mining Tasks: Classification 21


Threshold-Based Classifiers

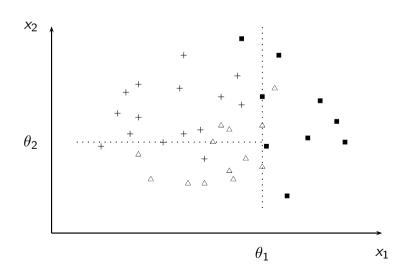
• better class separation

Threshold-Based Classifiers

• insufficient to separate more difficult distributions

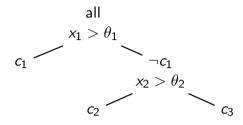
Threshold-Based Classifiers

Data Mining


- algorithm for finding an optimal threshold
 - 1. sort the values $[v_1, ..., v_m]$
 - 2. extract m-1 potential thresholds by either
 - computing the mean of all neighboring values or
 - choosing the smaller one of two neighboring values
 - 3. evaluate all potential thresholds and select the one with the maximum gain

Classification

- Nearest-Neighbor Classifier
- Threshold-Based Classifiers
- Decision Trees
- Neural Networks
- Stochastic Classification
- Evaluation


Data Mining

Decision trees

Decision trees

- extension of threshold-based classifiers to multiple classes:
 - multi-branch splits
 - decomposition into a sequence of sub-decisions

- finding the optimal decision tree is NP complete
 - → deterministic (non-backtracking), greedy algorithms

Decision trees

- ID3: split along a dimension as to maximise information gain
- entropy of a set S partitioned into k classes

$$E(S) = -\sum_{i=1}^{k} p(c_i) \cdot \log p(c_i)$$

 entropy of a test set T partitioned into n subsets by an attribute test X with n possible outcomes

$$E_X(T) = -\sum_{i=1}^n \frac{|T_i|}{|T|} \cdot E(T_i)$$

• information gain of the attribute test

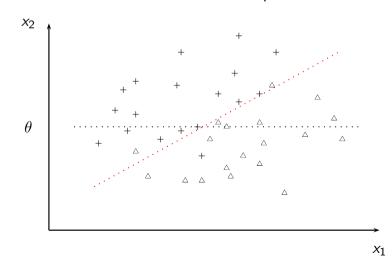
$$G(X) = E(T) - E_X(T)$$

Decision trees

- C4.5: extension of ID3 to numerical data
 - split along a dimension so that the resulting subsets have lowest class entropy
 - i.e. contain data points of as few classes as possible
- problem of overfitting
 - splitting until no data point is misclassified usually means to adapt the classifier too much to the training data
 - "learning off by heart"
 - degrading performance on held out test data
 - cut-off criterion required, or post-pruning

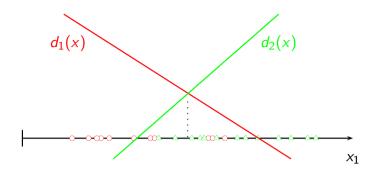
Data Mining Tasks: Classification 29 Data Mining Tasks: Classification 30

Classification


- Nearest-Neighbor Classifier
- Threshold-Based Classifiers
- Decision Trees
- Neural Networks
- Stochastic Classification
- Evaluation

Decision trees

- decision rules can be extracted from a decision tree
 - IF part: combine all tests on the path from the root node to the leave node
 - THEN part: the final classification


Neural Networks

• sometimes linear functions can be used to separate two classes

Data Mining Data Mining Tasks: Classification 31 Data Mining Data Mining Tasks: Classification 32

• classes are represented by means of linear discrimination functions $d_k(\vec{x})$

 $\rightarrow \text{linear discriminance analysis (LDA)}$

Neural Networks

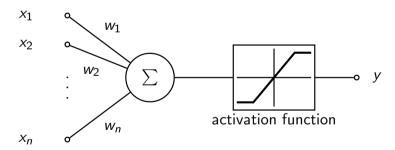
• class decision is reduced to a maximum detection

$$c(\vec{x}) = \arg\max_{c_k} d_k(\vec{x})$$

• discriminating functions are (in the simplest case) linear combinations of the components of a data point

$$d_k(\vec{x}) = w_0 + \sum w_i x_i$$

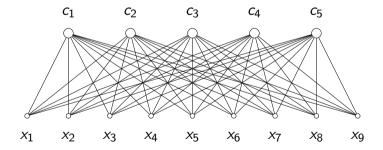
Data Mining


Data Mining Tasks: Classification 33

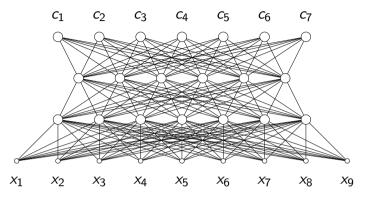
Data Mining

Data Mining Tasks: Classification 34

Neural Networks


• corresponds to first part of a perceptron

- single perceptron: classification only for
 - two class problems and
 - linear separable classes


Neural Networks

• extension to multiple classes: single-layer networks

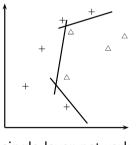
• class decision: maximum detection ("the winner takes all")

- multiple perceptrons simulate a piecewise-linear discrimination function
- single layer networks only for simple problems
 - → usually multiple-layer networks required

Neural Networks

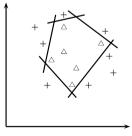
- optimal architecture has to be determined experimentally
- only few heuristic criteria available

Data Mining

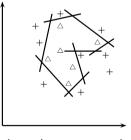

Data Mining Tasks: Classification 37

Data Mining

Data Mining Tasks: Classification 38


Neural Networks

• How many layers are necessary?


single-layer network

no islands

two-layer network

only convex islands

three-layer network

also concave islands

Neural Networks

- How many nodes per layer are required?
 - the more nodes, the smoother the class separation
 - the more nodes, the more training data and training cycles are required

Data Mining Data Mining Tasks: Classification 39 Data Mining Data Mining Tasks: Classification 4

- training of neuronal networks
- error driven learning
 - assume an initial (random) assignment of synaptic weights w_{ij}
 - determine the error of the output value of a node i: $e_i = \frac{(y_i d_i)^2}{2}$
 - change the weights w_{ii} according to a learning rule
 - continue with the next training sample
- backpropagation of the error signal from the output layer to the input layer

Data Mining

Neural Networks

- gradient descent search: all weights are changed until no significant change of the global error measure can be observed
 - · high number of training iterations is required
 - local search: optimum is not guaranteed
 - not even convergence of the algorithm is guaranteed

Neural Networks

- examples of learning rules
 - Hebb rule

$$\Delta w_{ij} = \eta x_{ij} y_j$$

 η : learning rate (approx 1/|T|) does not consider the desired output

• delta rule

$$\Delta w_{ij} = \eta \ x_{ij} \left(d_j - y_j \right)$$

· learning rules with momentum

$$\Delta w_{ij}(n) = \eta x_{ij} (d_j - y_j) + \alpha \Delta w_{ij}(n-1)$$

Data Mining

Neural Networks

- problems
 - many parameters have to be determined empirically
 - number of layers, number of nodes per layer
 - learning rate, momentum
 - initialization
 - termination criterion
 - overfitting may occur
 - stop training early enough
 - choose the most simple architecture possible

Data Mining Tasks: Classification 43 Data Mining

Data Mining Tasks: Classification 41

- decision rules can be extracted from a neural network
 - cluster the node activations
 - generate rules from high synaptic links
 - combine the rules across layers

Data Mining

Data Mining Tasks: Classification 45

Data Mining

Data Mining Tasks: Classification 46

Stochastic Classification

- Bayesian inference
 - given: a prior data distribution
 - observe data
 - infer a posterior distribution
- Bayes' theorem

$$p(c_k|\vec{x}) = \frac{p(\vec{x}|c_k) \cdot p(c_k)}{p(\vec{x})}$$

- $p(\vec{x})$ does not influence a class decision
- $p(\vec{x}|c_k)$ and $p(c_k)$ have to be estimated using the available training data

Classification

- Nearest-Neighbor Classifier
- Threshold-Based Classifiers
- Decision Trees
- Neural Networks
- Stochastic Classification
- Evaluation

Stochastic Classification

• $p(c_k)$: class probability

$$p(c_k) = \frac{|c_k|}{|S|}$$

- $p(\vec{x}|c_k)$: data generation (or emission) model
 - more difficult to estimate
 - simplifying assumption: conditional independence between attributes
 - → naïve / simple Bayesian classifier

$$p(\vec{x}|c_k) = \prod_{i=1}^n p(x_i|c_k)$$

• training method: maximum likelihood (ML) estimation

Stochastic Classification

classification rule

$$k = \arg \max_{k} p(c_k | \vec{x}) = \arg \max_{k} p(\vec{x} | c_k) \cdot p(c_k)$$

- Bayes classifier has optimal error rates
- but: in practice worse because of the independence assumption

Data Mining Data Mining Tasks: Classification 49

Comparison of classifiers

	Nearest	Decision	(Linear)	Stochastic
	Neighbor	Trees	Discriminance	Models
model	sample	ranking	class	probabilistic
	set	of tests	boundaries	generation
generalization	no	forced	yes	yes
robust against				_
incons. data	no	now	yes	yes
outliers	only k-NN	low	yes	yes
perspicuity	high	high	low	low
scalability	very low	low	good	very good
additional	metrics	no	architecture	(architecture)
assumptions			learning rule	distribution

Stochastic Classification

- problems with non-trivial input output dependencies
 - strongly correlated variables
 - time series analysis
- Bayesian networks
- emission probabilities are conditioned on the state of the model
- \bullet state of the model is not directly observable \rightarrow hidden variable
- simplifying assumption: state probabilities depend only on the preceding state
- ML training requires direct counting of observations
- alternative: expectation maximization (EM)
 - start with an initial probability estimation
 - modify the current probabilities as to better fit the training data
- resulting probabilities are only approximations

Data Mining

Data Mining Tasks: Classification 50

Classification

- Nearest-Neighbor Classifier
- Threshold-Based Classifiers
- Decision Trees
- Neural Networks
- Stochastic Classification
- Evaluation

Data Mining Tasks: Classification 51 Data Mining Tasks: Classification 52 Data Mining Tasks: Classification 52 Data Mining Tasks: Classification 52 Data Mining Tasks: Classification 51 Data Mining Tasks: Classification 52 Data Mining

Evaluation

- goal: predicting future model performance
 - estimation of an error rate on a sample of test cases
- testing on the training data is too optimistic
 - error rate is significantly lower compared to a real application scenario
 - → evaluation only on separate data: test set
- but: available test set data is usually limited
 - · manual data cleansing
 - manual class assignment
- using data for training and testing: resampling

Data Mining

Data Mining Tasks: Classification 53

Data Mining

Data Mining Tasks: Classification 54

Resampling Methods

- n-fold cross validation
 - combines hold-out and leave-one-out
 - divide data set into p partions
 - use p-1 partitions for training; evaluate on the remaning one
- bootstrapping
 - generate artificial training data by replacing data items
 - obtain bootstrap estimations of the error rates on these data sets
 - useful if few data are available

Resampling Methods

- held out data
 - 30% ... 50% of the data are reserved for testing
 - training and test data are independent
 - error estimation is pessimistic and depends on the partitioning

 → repeat the measurement with different partitionings and
 average
- leave one out
 - use n-1 samples for training and evaluate on the n-th one
 - repeat with all *n* samples
 - extremely expensive

Quality Measures

error rate

$$e = \frac{|M|}{|S|}$$

S: test set, $M \subseteq S$: misclassified data

accuracy

$$a = 1 - e = \frac{|S| - |M|}{|S|}$$

• only for atomic data!

Quality Measures

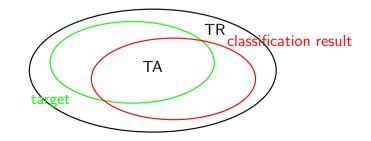
- contrastive analysis:
 - absolute improvement/degradation: comparison with a baseline case

$$\Delta_{abs}a = a_n - a_{n+1}$$

• relative improvement/degradation

$$\Delta_{rel}a = \frac{a_n - a_{n+1}}{a_n}$$

Data Mining

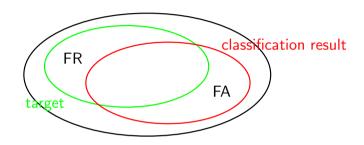

Quality Measures

• true positives/acceptance: true acception rate

$$TAR = \frac{|\{x | c(x) = \text{true} = c_t(x)\}|}{|\{x | c(x) = \text{true}\}|}$$

• true negatives/rejection: true rejection rate

$$TRR = \frac{|\{x | c(x) = \text{false} = c_t(x)\}|}{|\{x | c(x) = \text{false}\}|}$$

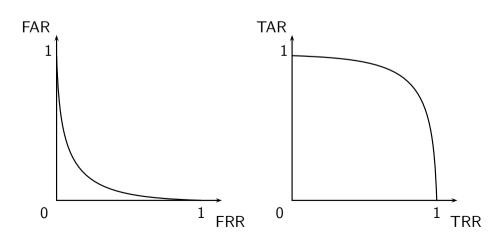

Quality Measures

- special case: 2 classes (true/false) \rightarrow 2 error cases
- false positives/acceptance: false acception rate (sensitivity)

$$FAR = \frac{|\{x|c(x) = \text{true} \neq c_t(x)\}|}{|\{x|c(x) = \text{true}\}|}$$

• false negatives/rejection: false rejection rate (specificity)

$$FRR = \frac{|\{x | c(x) = \mathsf{false} \neq c_t(x)\}|}{|\{x | c(x) = \mathsf{false}\}|}$$

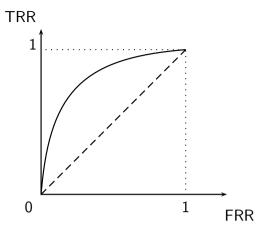


Data Mining

Data Mining Tasks: Classification 58

Quality Measures

• trade-off between FAR and FRR / TAR and TRR



• trivial classifier: upper threshold for the error rate

$$e_{max} = \min(p(true), p(false))$$

Quality Measures

• receiver operating characteristic (ROC): TRR vs. FRR

• quality: area under the ROC-curve

Quality Measures

- in general $k^2 k$ (k: number of classes) error types
- description of the error type distribution as a confusion matrix
- biased error consequences: weighted error measures
 - error types e_{ij} are associated with costs c_{ij}

$$e_w = \frac{\sum_{i=1}^m \sum_{j=1}^m e_{ij} \cdot c_{ij}}{|S|}$$