Phrases and Sentences

- 1. Language models
- 2. Chunking
- 3. Structural descriptions
- 4. Parsing with phrase structure grammars
- 5. Probabilistic parsers
- 6. Parsing with dependency grammars
- 7. Principles and Parameters
- 8. Unification-based grammars
- 9. Semantics construction

Phrases and sentences

Phrases and Sentences

- 1. Language models
- 2. Chunking
- 3. Structural descriptions
- 4. Parsing with phrase structure grammars
- 5. Probabilistic parsers
- 6. Parsing with dependency grammars
- 7. Principles and Parameters
- 8. Unification-based grammars
- 9. Semantics construction

Phrases and sentences

Unification-based Grammars

- Feature structures
- Rules with complex categories
- Subcategorization
- Movement
- Constraint-based models

Unification-based grammars

- feature structures
- rules with complex categories
- subcategorization
- movement

- feature structures describe linguistic objects (lexical items or phrases) as sets of attribute value pairs
- complex categories: name of the category may be part of the feature structure

$$Haus: \begin{bmatrix} \mathsf{cat} & \mathsf{N} \\ \mathsf{case} & \mathsf{nom} \\ \mathsf{num} & \mathsf{sg} \\ \mathsf{gen} & \mathsf{neutr} \end{bmatrix} \quad \begin{array}{c} \mathsf{house:} \\ \mathsf{house:} \\ \mathsf{num} & \mathsf{sg} \\ \end{bmatrix}$$

- a feature structure is a functional mapping from a finite set of attributes to the set of possible values
 - unique names for attributes / unique value assignment
 - number of attributes is finite but arbitrary
 - feature structure can be extended by additional features

partial descriptions: underspecified feature structures

subsumtion:

A feature structure M_1 subsumes a feature structure M_2 iff every attribute-value pair from M_1 is also contained in M_2 .

- \rightarrow not all pairs from M_2 need also be in M_1
- constraint-based notation (SHIEBER 1986): $M_1 \sqsubseteq M_2$
 - M₂ contains a superset of the constraints contained in M₁
 - M₂ is an extension of M₁ (POLLARD UND SAG 1987)
 - M₁ is less informative than M₂ (SHIEBER 1986, POLLARD UND SAG 1987)

but:

- M₁ is more general than M₂
- alternative notation:

instance-based (POLLARD UND SAG 1987): $M_1 \succeq M_2$

• subsumtion hierarchy

- formal properties of subsumtion
 - reflexive: $\forall M_i.M_i \sqsubseteq M_i$
 - transitive: $\forall M_i \forall M_j \forall M_k. M_i \sqsubseteq M_j \land M_i \sqsubseteq M_k \rightarrow M_i \sqsubseteq M_k$
 - antisymmetrical: $\forall M_i \forall M_j . M_i \sqsubseteq M_j \land M_j \sqsubseteq M_i \rightarrow M_i = M_j$
- subsumtion relation defines a partial order
- not all feature structures need to be in a subsumtion relation

• unification I (subsumtion-based)

If $M_1,\,M_2$ and M_3 are feature structures, then M_3 is the unification of M_1 and M_2

$$M_3 = M_1 \sqcup M_2$$

iff

- \bullet M₃ is subsumed by M₁ and M₂ and
- M_3 subsumes all other feature structures, that are also subsumed by M_1 and M_2 .
- result of a unification (M_3) is the most general feature structure which is subsumed by M_1 and M_2

- not all feature structures are in a subsumtion relation
 → unification may fail
- completing the subsumtion hierarchy to a lattice
 - bottom (⊥): inconsistent (overspecified) feature structure
 - top (⊤): totally underspecified feature structure corresponds to an unnamed variable ([])

subsumtion lattice

 unification II (based on the propositional content) (POLLARD UND SAG 1987)

The unification of two feature structures M_1 und M_2 is the conjunction of all propositions from the feature structures M_1 and M_2 .

- unification combines two aspects:
 - 1. test of compatibility
 - 2. accumulation of information
- result of a unification combines two aspects
 - 1. BOOLEAN value whether the unification was successful
 - 2. union of the compatible information from both feature structures

- formal properties of the unification
 - idempotent: $M \sqcup M = M$
 - commutative: $M_i \sqcup M_j = M_j \sqcup M_i$
 - associative: $(M_i \sqcup M_j) \sqcup M_k = M_i \sqcup (M_j \sqcup M_k)$
 - neutral element: $\top \sqcup M = M$
 - zero element: $\bot \sqcup M = \bot$
- unification and subsumtion can be mutally defined from each other $M_i \sqsubseteq M_j \leftrightarrow M_i \sqcup M_j = M_j$

- recursive feature structures: conditions are not to be defined for individual features but complete feature collections (data abstraction)
- value of an attribute is again a feature structure

cat Pro cat bar bar pers 3rd she: pers US: num agr agr num gen case acc case nom

· access to the values through paths

unification III (constructive algorithm)

Two feature structures M_1 and M_2 unify, iff for every common feature of both structures

- in case of atomic values both value assignments are identical or
- in case of complex values both values unify.

If successful unification produces as a result the set of all complete paths from M_1 and M_2 with their corresponding values. If unification fails the result will be \bot .

- recursive data structures can be used
 - lists
 - trees

$$(A \ B \ C) \quad \Longrightarrow \quad \begin{bmatrix} \mathsf{first} & \mathsf{A} \\ \\ \mathsf{rest} & \begin{bmatrix} \mathsf{first} & \mathsf{B} \\ \\ \mathsf{rest} & \begin{bmatrix} \mathsf{first} & \mathsf{C} \\ \\ \mathsf{rest} & \mathsf{nil} \end{bmatrix} \end{bmatrix}$$

• example: subcategorisation list

- two lists unify iff
 - · they have the same length and
 - their elements unify pairwise.

- information in a feature structure is conjunctively combined
- feature structures may also contain disjunctions

$$\begin{bmatrix} & & & \\ \text{gen} & \text{fem} & \\ \text{num} & \left\{ \begin{array}{cc} sg & pl \end{array} \right\} \\ \text{case} & \left\{ \begin{array}{cc} nom & acc \end{array} \right\} \end{bmatrix}$$

categories with complexity level information

$$\begin{bmatrix} \mathsf{cat} & \mathsf{N} \\ \mathsf{bar} & 2 \end{bmatrix} \to \begin{bmatrix} \mathsf{cat} & \mathsf{D} \end{bmatrix} \begin{bmatrix} \mathsf{cat} & \mathsf{N} \\ \mathsf{bar} & 1 \end{bmatrix}$$

· modelling of government

$$\begin{bmatrix} \mathsf{cat} & \mathsf{N} \\ \mathsf{bar} & 1 \end{bmatrix} \to \begin{bmatrix} \mathsf{cat} & \mathsf{N} \\ \mathsf{bar} & 0 \end{bmatrix} \begin{bmatrix} \mathsf{cat} & \mathsf{N} \\ \mathsf{bar} & 2 \\ \mathsf{cas} & \mathsf{gen} \end{bmatrix}$$

• representing the rule structure as a feature structure example: binary branching rule: $X0 \rightarrow X1 X2$

representation of feature structures as path equations

$$\begin{bmatrix} X0 & \begin{bmatrix} \mathsf{cat} & \mathsf{N} \\ \mathsf{bar} & 2 \end{bmatrix} \\ X1 & \begin{bmatrix} \mathsf{cat} & \mathsf{D} \\ \mathsf{bar} & 0 \end{bmatrix} \\ X2 & \begin{bmatrix} \mathsf{cat} & \mathsf{N} \\ \mathsf{bar} & 1 \end{bmatrix} \end{bmatrix} \implies \begin{cases} \langle \mathsf{XO} \; \mathsf{cat} \, \rangle = \mathsf{N} \\ \langle \mathsf{XO} \; \mathsf{bar} \, \rangle = 2 \\ \langle \mathsf{X1} \; \mathsf{cat} \, \rangle = \mathsf{D} \\ \langle \mathsf{X1} \; \mathsf{bar} \, \rangle = 0 \\ \langle \mathsf{X2} \; \mathsf{cat} \, \rangle = \mathsf{N} \\ \langle \mathsf{X2} \; \mathsf{bar} \, \rangle = 1 \end{cases}$$

• features may corefer (coreference, reentrancy, structure sharing)

- applications of coreference:
 - agreement: $\langle X1 \text{ agr } \rangle = \langle X2 \text{ agr } \rangle$
 - projection: \langle X0 agr \rangle = \langle X2 agr \rangle

 representation in feature matricees by means of coreference marker or path equations

$$\begin{bmatrix} \mathsf{cat} & \mathsf{N} \\ \mathsf{bar} & 2 \\ \mathsf{agr} \end{bmatrix}$$

$$\begin{bmatrix} \mathsf{cat} & \mathsf{D} \\ \mathsf{bar} & 0 \\ \mathsf{agr} & = \langle \ \mathsf{X0} \ \mathsf{agr} \ \rangle \end{bmatrix}$$

$$\begin{bmatrix} \mathsf{cat} & \mathsf{N} \\ \mathsf{bar} & 1 \\ \mathsf{agr} & = \langle \ \mathsf{X0} \ \mathsf{agr} \ \rangle \end{bmatrix}$$

coreference corresponds to a named variable

feature structures with coreference correspond to a directed acyclic graph

• generalised adjunct rule for prepositional phrases

consequences of coreference on the information content:

• structural equality (type identity):
$$\begin{bmatrix} x & [\] \\ y & [\] \end{bmatrix}$$

• referential identity (token identity):

a coreference is an additional constraint

• equality is more general than identity:
$$\begin{bmatrix} x & [\] \\ y & [\] \end{bmatrix} \sqsubseteq \begin{bmatrix} x & \boxed{1} \ [\] \\ y & \boxed{1} \end{bmatrix}$$

 definition of unification is not affected by the introduction of coreference

construction of arbitrary structural descriptions
 e.g. logical form

- construction of left recursive structures with right recursive rules
- left recursive rules (DCG-notation)

```
np(np(Snp,Spp)) --> np(Snp), pp(Spp).
np(np(Sd,Sn)) --> d(Sd), n(Sn).
```

• right recursive rules

```
np(np(Sd,Sn)) --> d(Sd), n(Sn).
np(Spps) --> d(Sd), n(Sn), pps(np(Sd,Sn),Spps).

pps(Snp,np(Snp,Spp)) --> pp(Spp).
pps(Snp,Spps) --> pp(Spp), pps(np(Snp,Spp),Spps).
```

example: the house behind the street with the red roof

- parsing with complex categories
 - test for identity has to be replaced by unifiability
 - but: unification is destructive
 - information is added to rules or lexical entries
 - feature structures need to be copied prior to unification

Subcategorization

· modelling of valence requirements as a list

Subcategorisation

processing of the information by means of suitable rules

$$\begin{bmatrix} \mathsf{cat} & \mathsf{V} \\ \mathsf{bar} & 1 \end{bmatrix} \to \begin{bmatrix} \mathsf{cat} & \mathsf{V} \\ \mathsf{bar} & 0 \\ \mathsf{subcat} & \mathsf{nil} \end{bmatrix}$$

rule 1

rule 2

Subcategorisation

list notation

Subcategorisation

Movement

- movement operations are unidirectional and procedural
- goal: declarative integration into feature structures
- slash operator

```
S/NP sentence without a noun phrase VP/V verb phrase without a verb S/NP/NP
```

- first used in categorial grammar (BAR-HILLEL 1963)
- also order sensitive variant: S\NP/NP

Movement

topicalization

$$\begin{array}{lll} \mathsf{CP} \to \mathsf{SpecCP/NP} & \mathsf{C^1/NP} \\ \mathsf{SpecCP/NP} \to \mathsf{NP} \\ \mathsf{C^1/NP} \to \mathsf{C} & \mathsf{IP/NP} \\ \mathsf{IP/NP} \to \mathsf{NP/NP} & \mathsf{I^1} \\ \mathsf{NP/NP} \to \varepsilon \end{array}$$

slash introduction slash transition slash transition slash elimination

Movement

- encoding in feature structures: slash feature
 - moved constituents are connected to their trace by means of coreference
 - computation of the logical form is invariant against movement operations

- head-driven phrase-structure grammar (HPSG, POLLARD AND SAG 1987, 1994)
- inspired by the principles & parameter model of Chomsky (1981)
- constraints: implications over feature structures:
 if the premise can be unified with a feature structure unify the
 consequence with that structure.

• can be used to model principles of universal grammar

· feature structures need to be typed

- extention of unification and subsumtion to typed feature structures
 - subsumtion:

$$M_i^m \sqsubseteq M_j^n$$
 gdw. $M_i \sqsubseteq M_j$ und $m = n$

unification:

$$M_i^m \sqcup M_i^n = M_k^o$$
 gdw. $M_k = M_i \sqcup M_j$ und $m = n = o$

graphical interpretation: types as node annotations

- types are organized in a type hierarchy:
 - partial order for types: sub(verb, finite) sub(verb, infinite)
 - hierarchical abstraction
- subsumtion for types:

$$m \sqsubseteq n$$
 iff $\begin{cases} sub(m, n) \\ sub(m, x) \land sub(x, n) \end{cases}$

unification for types:

$$m \sqcup n = o$$
 iff $m \sqsubseteq o \land n \sqsubseteq o$ and $\neg \exists x. m \sqsubseteq x \land n \sqsubseteq x \land x \sqsubseteq o$

subsumtion for typed feature structures:

$$\mathsf{M}_i^m \sqsubseteq \mathsf{M}_j^n$$
 iff $\mathsf{M}_i \sqsubseteq \mathsf{M}_j$ and $\mathsf{m} \sqsubseteq \mathsf{n}$

unification for typed feature structures:

$$M_i^m \sqcup M_j^n = M_k^o$$
 iff $M_k = M_i \sqcup M_j$ and $o = m \sqcup n$

• HPSG: lexical signs

- HPSG: phrasal signs
 - signs of type phrase additional features: Daughters, (Quantifier-Store)
 - most important special case: head-comp-struc

- DAUGHTERS (DTRS)
 - constituent structure of a phrase
 - HEAD-DTR (phrase)
 - COMP-DTRS (list of elements of type phrase)

Principles and Parameters

- universal grammar
 - sign hierarchy: universally available types (with type definitions)
 - dominance schemata:
 limited inventory of universally applicable phrase types
 - head-complement structures, head-adjunct structures, . . .
 - universal constraints
 - head feature principle, subcategorisation principle, ...
- language specific grammar
 - lexicon (possibly supplemented by lexical rules)
 - specialisations of the sign hierarchy
 - additional or specialised dominance schemata

- head-feature principle
 - · projection of head features to the phrase level
 - the HEAD-feature of a head structure corefers with the HEAD-feature of its head daughter.

subcategorisation principle:

In a head-complement-phrase the SUBCAT-value of the head daughter is equal to the combination of the SUBCAT-list of the phrase with the SYNSEM-values of the complement daughters (arranged according to increasing obliqueness).

```
\begin{bmatrix} \mathsf{DTRS} & \begin{bmatrix} \mathsf{head\text{-}compl\text{-}struc} \end{bmatrix} & \rightarrow \\ & \begin{bmatrix} \mathsf{SYNSEM} | \mathsf{LOC} | \mathsf{CAT} | \mathsf{SUBCAT} & \mathbb{I} \\ \mathsf{DTRS} & \begin{bmatrix} \mathsf{HEAD\text{-}DTR} | \mathsf{SYNSEM} | \mathsf{LOC} | \mathsf{CAT} | \mathsf{SUBCAT} & \mathsf{append}(\mathbb{I}, \mathbb{2}) \\ \mathsf{COMP\text{-}DTRS} & \mathbb{2} \end{bmatrix} \end{bmatrix}
```

• subcategorization principle:

 disjunctively specified principle: every phrase instantiates one of a finite set of structural patterns

$$| phrase | \rightarrow schema_1 \lor \ldots \lor schema_n$$

• Schema 1:

a saturated phrase ($[SUBCAT \ \langle \ \rangle]$) with a DTRS value of type head-comp-structure where the value of feature HEAD-DTR is a phrasal sign and the value of COMP-DTRS is a list of length one.

53


```
      phrase

      SYNSEM|LOC|CAT
      HEAD 1 SUBCAT ⟨⟩

      DTRS
      HEAD-DTR|SYNSEM|LOC|CAT SUBCAT ⟨2⟩

      COMP-DTRS
      ⟨2⟩
```

- immediate consequence of the subcategorisation and head feature principles
- licenses phrases like

$$S \rightarrow NP VP$$

 $NP \rightarrow Det N^1$

Schema 2:

an almost saturated phrase with a single subcat element remaining, a DTRS value of type *head-comp-struc* and a lexical sign as head daughter

- licenses verb phrases including all complements of the head
- complexity levels of the \bar{X} theory are replaced by the distinctions between
 - lexical / phrasal signs
 - saturated / unsaturated phrases

• Schema 3:

- licenses "scrambling" structures: almost free phrase order (including the subject) e.g. German, Japanese
- Schema 4: head-marker structures (that John left)
- Schema 5: head-adjunct structures (e.g. adjective modifiers)
 - idea: adjuncts select their head

- more constraints for constructing a semantic description (predicate-argument structure, quantor handling, ...)
- advantages of principle-based modelling:
 - modularization: general requirements (e.g. agreement, construction of a semantic representation) are implemented once and not repeatedly in various rules
 - object-oriented approach: heavy use of inheritance
 - context-free backbone of the grammar is removed almost completely; only very few general structural schemata remain (head-complement structure, head-adjunct structure, coordinated structure, ...)
 - integrated treatment of semantics in a general form