# **Computational Linguistics**

- 1. Natural Language and the Computer
- 2. Words and Wordforms
- 3. Phrases and Sentences
- 4. Discourse: Texts and Dialogs

- phrases and sentences are more than admissible sequences of words
- they have an internal structure (syntax) and a meaning (semantics)
- the meaning of a phrase/sentence can be
  - compositional: combining the meaning contributions of their components (words)
  - holistic: cannot be obtained from simpler components  $\rightarrow$  holophrases

- 1. Language models
- 2. Chunking
- 3. Structural descriptions
- 4. Parsing with phrase structure grammars
- 5. Probabilistic parsers
- 6. Parsing with dependency models
- 7. Principles and Parameters
- 8. Unification-based grammars
- 9. Semantics construction

#### 1. Language models

- 2. Chunking
- 3. Structural descriptions
- 4. Parsing with phrase structure grammars
- 5. Probabilistic parsers
- 6. Parsing with dependency models
- 7. Principles and Parameters
- 8. Unification-based grammars
- 9. Semantics construction

# Language Models

- grammar-based
  - descibing well-formed utterances
  - prediction of the possible wordforms next in an utterance
- probabilistic/connectionist
  - estimating the probability of a (partial) utterance
  - prediction of the probability distribution for the next wordform

Language models

# Grammar-based Language Models

- often used in spoken-language dialog systems (e.g. VoiceXML)
- simplest case: word-pair grammar: bigrams without probability
- more often: context-free rules without recursion

## Probabilistic Language Models

- based on n-gram probability distributions, e.g. trigrams
- probability of a (partial) wordform sequence

$$P(w_{1...n}) = \prod_{i=1}^{n} P(w_i | w_{i-2} w_{i-1})$$

probability distribution for the next wordform

$$P(w_n|w_{1...n-1}) = \frac{P(w_{1...n})}{P(w_{1...n-1})}$$

# Probabilistic Language Models

training by maximum likelihood estimation on unannotated corpus data

$$P(w_i|w_{i-2}w_{i-1}) = \frac{c(w_{i-2}w_{i-1}w_i)}{c(w_{i-2}w_{i-1})}$$

- dealing with data sparseness: backoff, smoothing, interpolation
- measuring the predictive power: perplexity
  - approximated by the testset perplexity

# Continous-Space Language Models



Bengio et al. 2003

Language models

# Continous-Space Language Models

- number of free parameters grows linearly with the size of the vocabulary and the window
- interpolation with a trigram model
- results on the AP news corpus (14M/1M/1M tokens)

|             | n | direct | mixture | validation | test |
|-------------|---|--------|---------|------------|------|
| MLP10       | 6 | no     | yes     | 104        | 109  |
| Del. Int.   | 3 |        |         | 126        | 132  |
| Back-off KN | 3 |        |         | 121        | 127  |
| Back-off KN | 4 |        |         | 113        | 119  |
| Back-off KN | 5 |        |         | 112        | 117  |

- 1. Language models
- 2. Chunking
- 3. Structural descriptions
- 4. Parsing with phrase structure grammars
- 5. Probabilistic parsers
- 6. Parsing with dependency models
- 7. Principles and Parameters
- 8. Unification-based grammars
- 9. Semantics construction

1. Language models

#### 2. Chunking

- 3. Structural descriptions
- 4. Parsing with phrase structure grammars
- 5. Probabilistic parsers
- 6. Parsing with dependency models
- 7. Principles and Parameters
- 8. Unification-based grammars
- 9. Semantics construction

# Chunking

• TODO

- 1. Language models
- 2. Chunking
- 3. Structural descriptions
- 4. Parsing with phrase structure grammars
- 5. Probabilistic parsers
- 6. Parsing with dependency models
- 7. Principles and Parameters
- 8. Unification-based grammars
- 9. Semantics construction

- 1. Language models
- 2. Chunking
- 3. Structural descriptions
- 4. Parsing with phrase structure grammars
- 5. Probabilistic parsers
- 6. Parsing with dependency models
- 7. Principles and Parameters
- 8. Unification-based grammars
- 9. Semantics construction

#### Structural Descriptions

• broad consensus:

trees are necessary and sufficient to capture relevant syntactic relationships

- two types of syntactic trees:
  - phrase structure trees
  - dependency trees

• phrase structure trees:

typed constituents of a sentence are broken down/combined into sucessively smaller/larger constituents



Structural Descriptions

 dependency trees: wordforms (subtrees) are subordinated with a typed relationship under other wordforms



Structural Descriptions

- Phrase structure
- Dependency structure
- Trees as structural descriptions?
- Levels of adequacy

- basic units: constituents
- constituent structure can be described by means of a context free grammar
  - non-terminal symbols: S, NP, VP, PP, ...
  - terminal symbols: waits, for, in, the, John, Mary, park

context free rules:

 $\mathsf{NT-Symbol} \to {\mathsf{T-Symbol} \mid \mathsf{NT-Symbol}}{*}$ 

- rules can be applied
  - generatively: produce sentences that are licensed by the grammar
  - analytically: check whether a sentence is licensed by the grammar
- recursion:
  - · constituents can be embedded into other constituents
  - constituents can be embedded into a constituent of the same type
  - recursion can be indirect

- the phrase structure tree is a byproduct of the derivation process (recursive rule application)
  - $\rightarrow$  close relationship between
    - rule structure
    - structural description
    - rule application (analysis/generation)
- rules can be extracted from a given phrase structure tree

- lexical insertion rules, preterminal rules, lexicon
  - $\begin{array}{l} \mathsf{N} \rightarrow \textit{mother} \\ \mathsf{N} \rightarrow \textit{morning} \\ \mathsf{Pro} \rightarrow \textit{she} \\ \mathsf{P} \rightarrow \textit{in} \\ \mathsf{Det} \rightarrow \textit{the} \\ \mathsf{Det} \rightarrow \textit{her} \\ \mathsf{V} \rightarrow \textit{called} \end{array}$

• structure-building rules, grammar

 $S \rightarrow NP VP$   $VP \rightarrow V NP VP$   $VP \rightarrow V NP$   $VP \rightarrow V PP$   $PP \rightarrow P NP$  $NP \rightarrow Det N$ 

- · first constraint on the possible form of rules
  - lexicon PT-Symbol  $\rightarrow$  T-Symbol
  - grammar NT-Symbol  $\rightarrow$  {NT-Symbol | PT-Symbol}\*

Structural Descriptions

recursive rules:

potentially infinitely many sentences can be generated

 $\rightarrow\,$  creativity of language competence

 goal of linguistic modelling: specification of additional constraints on the possible rule forms

- phrasal categories: distributional type (purely structural perspective)
- phrasal categories are derived from lexical ones by adding additional constituents

$$\begin{array}{l} \mathsf{N} \Rightarrow \mathsf{NP} \\ \mathsf{V} \Rightarrow \mathsf{VP} \\ \mathsf{A} \Rightarrow \mathsf{AP} \\ \mathsf{ADV} \Rightarrow \mathsf{ADVP} \\ \mathsf{P} \Rightarrow \mathsf{PP} \end{array}$$

- lexical core: head of the phrase
  - determines crucial syntactic properties of the phrase

Morphological evidence

 phrasal inflection in English (only noun phrases) possessive genitive

> This crown is  $[_{NP}$  the king]'s. \* This crown is $[_{N}P$  the  $[_{N}$  king]'s]. This crown is  $[_{NP}$  the  $[_{N}$  king] of England]'s. \* This crown is  $[_{NP}$  the  $[_{N}$  king]'s of England]. \* This crown is  $[_{AP}$  very handsome]'s.

Semantic evidence

- explanation of structural ambiguities
- e.g. scope ambiguity

The President could not ratify the treaty.

The President  $[_M$  could not] ratify the treaty. The President could  $[_{VP}$  not ratify the treaty].

The President [ $_M$  simply could not] ratify the treaty. The President could [ $_{VP}$  simply not ratify the treaty].

• explanation depends on phrasal categories, e.g. VP

Phonological evidence

phonological contraction disambiguates

The President couldn't ratify the treaty.

The President [<sub>M</sub> couldn't] ratify the treaty. \* The President could[<sub>VP</sub> n't ratify the treaty].

Syntactic evidence: syntax tests and distributional criteria

cleft transformation

It was [the girl] that called her father in the morning. It was [her father] that the girl called in the morning. It was [in the morning] that the girl called her father. \*It was [her father in the morning] that the girl called.

constituent questions and stand-alone test

Who called her father in the morning? The girl.
Whom the girl called in the morning? Her father.
When the girl called her father? In the morning.
\*Whom the girl called in the morning? Her father in the morning.
What did the girl do? Call her father in the morning.

Syntactic evidence: syntax tests and distributional criteria

coordination

The girl called  $[_{XP}$  her father] and  $[_{XP}$  her mother]. \*The girl called  $[_{XP}$  her father] and  $[_{YP}$  in the morning].  $(XP \neq YP)$ The girl  $[_{XP}$  called her father] and  $[_{XP}$  met her mother]. \*The girl called  $[_{XP}$  her father] and  $[_{YP}$  met her mother].  $(XP \neq YP)$ 

• substitution by a pronoun

[She] called her father in the morning. The girl called [him] in the morning. The girl called her father [then]. The girl did [so].

 subordination of wordforms (modifier) under other wordforms (modifiee)



- the modifiee roughly corresponds to the head
- alternative view: subordination of partial trees under wordforms

 edges can be annotated with syntactic functions (subordination/dependency relations)



- (weak) distributional tests
  - deletion: if a wordform can only appear together with another one, it has to be attached to/depends on the other one
  - substitution: two subtrees that cannot be substituted for each other have to attached with a different label
  - coordination: subtrees that can be coordinated should be attached with the same label

- examples of dependency relations
- SUBJ subject of a verb
- OBJA accusative object of a verb
- OBJD dative object of a verb
- OBJC a finite verb in a subordinate clause modifying the verb in a main clause
- OBJP a preposition (of a prepositional phrase) modifying a verb
- PP prepositional modifier of a verb or a noun
- REL a relative pronoun modifying a noun
- DET a determiner modifying a noun
- AUX a full verb modifying an auxiliary
- ADV an adverbial modifying a verb

. . .

• constituents can be split

 $\rightarrow$  non-projective structures/discontinuous constituents



- non-projective structures cannot be generated by a context-free grammar
  - approximation by means of projective trees or
  - using additional formal mechanisms, e.g movement or transformation

 dependency structures suffer from the same (representational) problem



- but non-projective trees can be produced by more local attachment operations
- generating non-projective trees usually results in exponential parsing effort

• amount of non-projectivity varies from language to language

| language   | amount of nonprojective |           |  |
|------------|-------------------------|-----------|--|
|            | dependencies            | sentences |  |
| Dutch      | 5.4                     | 36.4      |  |
| German     | 2.3                     | 27.8      |  |
| Czech      | 1.9                     | 23.2      |  |
| Slovene    | 1.9                     | 22.2      |  |
| Portuguese | 1.3                     | 18.9      |  |
| Danish     | 1.0                     | 15.6      |  |

measured on the CoNLL-X Shared Task data (KÜBLER 2010)

#### Trees as Structural Representations?

• problem with dependency trees: representing coordination



Structural Descriptions

• elliptical constructions: shared constituent coordination



Phrases and Sentences

Structural Descriptions

- syntax and semantics exhibit different structural relationships
- e.g. raising verbs



syntactic subject  $\neq$  logical subject

# Levels of Adequacy

observational adequacy

specification of all well-formed sentences of a language

- formally explicit
- sound and complete
- no consideration of semantic aspects
- CHOMSKY (1957)
- descriptive adequacy

additionally: specification of structural descriptions, that correspond in a pricipled manner with the intuitions of a speaker of the language

- · connection of linguistic structures with meanings
- CHOMSKY (1965)

# Levels of Adequacy

explanatory adequacy

additionally: specification of at few as possible, universal principles that mirror psychologically plausible assumptions about language processing in humans

- allows to derive predictions
- explains language acquisition phenomena
- CHOMSKY (1981)