
Applied Intelligence 19, 9–25, 2003
c© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Towards Incremental Parsing of Natural Language Using Recursive
Neural Networks

F. COSTA AND P. FRASCONI
Department of Systems and Computer Science, University of Florence, via di Santa Marta 3, I-50139 Firenze, Italy

V. LOMBARDO
Dipartmento di Informatica, Università di Torino, Corso Svizzera 185, Torino, Italy

G. SODA
Department of Systems and Computer Science, University of Florence, via di Santa Marta 3, I-50139 Firenze, Italy

Abstract. In this paper we develop novel algorithmic ideas for building a natural language parser grounded
upon the hypothesis of incrementality. Although widely accepted and experimentally supported under a cognitive
perspective as a model of the human parser, the incrementality assumption has never been exploited for building
automatic parsers of unconstrained real texts. The essentials of the hypothesis are that words are processed in a
left-to-right fashion, and the syntactic structure is kept totally connected at each step.

Our proposal relies on a machine learning technique for predicting the correctness of partial syntactic structures
that are built during the parsing process. A recursive neural network architecture is employed for computing
predictions after a training phase on examples drawn from a corpus of parsed sentences, the Penn Treebank. Our
results indicate the viability of the approach and lay out the premises for a novel generation of algorithms for natural
language processing which more closely model human parsing. These algorithms may prove very useful in the
development of efficient parsers.

Keywords: incremental parsing of natural language, recursive neural networks, learning discrete structures

1. Introduction

Incremental processing of the human parser is a widely
held assumption in psycholinguistics. This assump-
tion accounts for the intuitive fact that language is
processed from left to right: this is obviously true
for speech, which is obligatorily fed to the proces-
sor in a temporal sequence; it is less obvious for text,
where the bidimensional language transcription (as op-
posed to the monodimensional speech) allows an in-
spection of linguistic material that goes beyond the
left-to-right sequential presentation. Incremental pro-
cessing also accounts for a fact which has received
much experimental support, i.e. that humans inter-
pret language without reaching the end of the input
sentence, that is they are able to assign a meaning

to “almost any” initial (left) fragment of a sentence
[1].

Although incremental processing of natural lan-
guage is uncontroversially supported by many psy-
cholinguistic experiments, effective models for parsing
unconstrained language are rarely based on the incre-
mentality hypothesis. In this area, most solutions con-
sist in stochastic versions of bottom-up parsers, relying
on models grounded upon context-free rule probabili-
ties (e.g. [2]). The incremental approach is at work only
in psycholinguistic models of the human parser, mostly
tested on artificially-generated sentences that display
this or that ambiguity form. Probably, the major reason
is the incomplete knowledge about the human parser,
which makes a reliable algorithmic design consider-
ably hard.

10 Costa et al.

Nevertheless, some of the discovered features of the
human parser have been exploited in NLP system im-
plementations. For example, a number of preference
heuristics (like Late Closure [3] or Minimal Attach-
ment [4], see Section 5), devised in psycholinguistic
environments to describe some aspects of the human
parser, have been implemented to solve local ambigui-
ties (e.g., [5]). After the emergence of the corpus-based
approaches, NLP systems often involve a combination
of heuristics and statistics to guide the parser decisions
(e.g., [6]). In this paper we push further the similarities
with the human parser, by adopting the novel assump-
tion that the parsing strategy incorporates an architec-
tural aspect of the human parser, namely its incremen-
tal nature. To our knowledge, this is the first attempt in
which a psycholinguistic model of the human parser is
applied to parsing real texts. The sense of “towards” in
the paper title is that the result presented here is not a
fully functional system yet, but a concrete assessment
of the proposed methodology.

An operational account of the incrementality hy-
pothesis, called strong incrementality, is at the core
of a number of computational models of the human
parser, as a parsimonious algorithmic version of incre-
mentality [7]. In this version, the parser maintains a to-
tally connected parse, while scanning the input words
from left to right, with no input stored in a discon-
nected state. The major difficulty of implementing a
strongly incremental strategy is that the connection of
the next input word to the existing structure (what is
called the left context) requires the construction of a
substructure called the connection path (see Fig. 1). In
parsing naturally occurring text, this results in a high
number of candidate connection paths, which yields a
hard search problem, affecting the parser accuracy and
speed.

In this paper we propose an incremental parsing
model able to process unconstrained naturally occur-
ring texts. At each step of parsing, the correct connec-
tion path linking the next word to the incrementally
built parse tree is predicted using a neural network
model. Such a prediction effectively acts like a heuristic
that can guide the search process, and significantly re-
duce computational efforts. Designing accurate heuris-
tics for this problem is a difficult task but, on the other
hand, the availability of databases of parsed sentences
(treebanks) makes the problem interesting from a ma-
chine learning perspective. In our experiments, exam-
ples are drawn from a subset of parsed sentences in the
Penn Treebank [8].

NP VP

S

SBAR

0 S

NP VP

V

ADJ

He thinks steeper

N

Connection Path

Figure 1. The connection path for “steeper” in “He thinks steeper
prices are to come.”

As far as we know, there exists one previous attempt
of applying machine learning techniques to formulate
parse decisions. Hermjakob and Mooney [9] used a
modified ID3 algorithm to learn the moves of a shift-
reduce parser. The problem is cast into a representation
which relies on a rich set of morphological, syntactic
and semantic features (around 200). The result is a pars-
ing model that provides an output consisting of a phrase
structure tree and a predicate-argument structure fed to
a machine translation module. Though similar in the
spirit, the work described in this paper relies on a dif-
ferent parsing model, a strongly incremental parser vs.
a shift-reduce parser, and a different machine learning
technique, a recursive neural network vs. ID3 algo-
rithm. Also, the goal of this paper is the assessment of
a methodology rather than a fully functional system:
the numerical data we provide result from a reduced
learning domain which is exclusively syntactic (vs. the
200 features from several sources), in the form of syn-
tactic structures. We are aware that a complete pars-
ing model cannot be realized without the contribution
of other knowledge sources, like a semantic knowl-
edge base and a set of subcategorization frames (or
predicate-argument structures), but the results we have
yielded with the skeletal framework clearly indicate the
effectiveness of the approach.

Instances in our learning domain are naturally repre-
sented as incremental trees, obtained by joining a can-
didate connection path to some left context (another
incremental tree). Uncertainty about the selection of

Towards Incremental Parsing of Natural Language 11

the correct candidate can be naturally modeled in a
probabilistic setting. In particular, the prediction task
consists of estimating the probability that a given at-
tachment between a given incremental tree and a can-
didate path is correct. As a major advantage of this
formulation, the learner outputs a continuous rank-
ing of alternatives so that best candidates can be tried
first.

The probabilistic and supervised nature of the learn-
ing task (correct candidates are known for parsed sen-
tences in the training set) suggests a solution based
on connectionist models. The structured nature of in-
stances requires the adoption of a recently introduced
class of connectionist architectures, called recursive
neural networks [10–12]. Unlike feedforward neural
networks, which are grounded on attribute-value rep-
resentations of data, recursive networks can adaptively
process labeled graphs, effectively taking advantage of
relations among atomic entities that constitute a single
instance. Representation and processing of structured
information is not a recent area of interest in connec-
tionism. Early attempts include distributed reduced de-
scriptors by Hinton [13], Recursive Auto-Associative
Memories (RAAM) by Pollack [14] and Holographic
Reduced Representations by Plate [15]. Recursive neu-
ral networks, however, are the first architecture that can
exploit the supervised learning paradigm on structured
data. They have been successfully applied to chem-
istry [16], pattern recognition [17], and learning search
heuristics for guiding a theorem prover [18]. In this
paper we describe a novel and specialized version of
these networks that enables them to learn how to rank
a forest of alternatives.

The paper is organized as follows: Section 2 intro-
duces the basic notions of incremental natural language
processing. In Section 3 we formulate the learning task.
Section 4 reviews the basic neural network architec-
ture presented in Frasconi et al. [12] and specialize it
to solve the learning problem of the present paper. In
Section 5 we explain in detail data preparation and the
experimental setup, with a discussion of the results ob-
tained so far.

2. Incremental Parsing

Incremental processing of natural language (incremen-
tality for short) is an intuitively plausible hypothesis
upon the human language processor.

This incrementality hypothesis has received a large
experimental support in the psycholinguistic commu-

nity over the years: the shadowing experiments [1]
proved that people are able to interpret speech word-
by-word with a latency time of just 250 ms1; data about
head-final language processing2 suggest that the human
parser assembles substructures eagerly before reaching
the structure head [19–22]; finally, eye-movement stud-
ies of visual object recognition show that the referent
in a visual context of a noun phrase with pre-modifiers
is computed well before reaching the nominal head
[23].

The incrementality hypothesis poses some con-
straints upon the general parsing strategy. In its general
form, the hypothesis implies that the semantic inter-
pretation of some fragment of the sentence is avail-
able as the scan of the input material proceeds from
left to right. This does not involve any specific con-
straint on how the interaction between the syntactic
analysis and the semantic interpretation can be im-
plemented at the algorithmic level. One possible (and
parsimonious) solution to the interaction problem is
offered by the strongly incremental version of the hy-
pothesis [7, 24–27]. The interaction occurs at the word
level, and compels the syntactic analyzer to keep a to-
tally connected structure at all times (that is, the se-
mantic interpreter has no means to work on discon-
nected items3). Parsing proceeds from left to right
through a sequence of incremental trees, each span-
ning one more word to the right. Here are the formal
definitions.4

Given a sentence s = w0w1 . . . wi . . . w|s|−1 and a
tree T for it (whose internal nodes are labeled by
nonterminal symbols and whose leaves are labeled
by words), we define recursively the incremental
trees Ti (i = 0, 1, . . . , |s| − 1) spanning w0 . . . wi as
follows:

• T0 consists of the chain of nodes and edges from w0

to its maximal projection;
• Ti consists of all the nodes and edges in Ti−1 and

the chain of nodes and edges from wi to N , where
N is

– either a node of Ti−1,
– or the lowest node of T dominating both the root

of Ti−1 and wi (in this case Ti also includes the
edge from N to the root of Ti−1).

Given two incremental trees T1 and T2, we define the
difference between T1 and T2 as the tree formed by all
the edges which are in T1 and not in T2, and all the
nodes touched by such edges.

12 Costa et al.

Now, given a sentence s = w0w1 . . . w|s|−1 and a
tree T for it, the connection path for wi is the difference
between the incremental trees Ti and Ti−1. Moreover,

• A node both in Ti and in Ti−1 is called an anchor
(that is, a node where the connection path anchors to
Ti−1).

• The node labeled by the POS tag of wi is called a
foot.

In Fig. 2, we show the sequence of incremental trees
for a sentence of the corpus.

When the parser tries to connect an input word wi to
the incremental tree Ti−1 (i.e. the structure that spans all
the words that precede the current word), it computes a
connection path, that is the structural portion that must
be built in order to yield Ti . However, the number of
paths that allow to link wi with Ti−1 can be high (see
Section 5 for a quantitative estimation on the corpus).
Ambiguity comes in two forms: the number of possible
anchors on the right edge of Ti−1, and the number of
different paths that can link wi with Ti−1 from some
anchor (see Fig. 3). A selection procedure chooses the
best connection path and anchor for continuation, and
instantiates it to generate the new incremental tree Ti .
The better is the selection procedure, the less parsing
decisions are wrong.

The success of a selection depends on the ultimate
task of the parsing model. If the goal is to simulate the
human parser (this is interesting from a psycholinguis-

Figure 2. The incremental trees of the sentence “It has no bearing on the performance of our company stock.” Nodes are labeled with the
incremental tree that includes them for the first time.

tic standpoint), then the selection procedure must return
the connection path that would be chosen by a human,
even if it is wrong. In fact, it can happen that first pass
analyses lead to a parsing breakdown, and the control
goes to a reanalysis module, a quasi-necessary compo-
nent of a psycholinguistic model [29]. On the contrary,
if the goal is the design of an efficient automatic parser,
then the selection procedure must minimize the num-
ber of failures due to the wrong choice of the connec-
tion path. The goal of this paper is to evaluate whether
machine learning algorithms can effectively solve the
local ambiguity due to the selection of the connection
path. Thus, the reference task considered in this paper
is the design of an efficient automatic parser. In the next
section we formalize the learning task.

3. Formal Definition of the Learning Problem

In the following, we assume that a treebank (a corpus
of sentences with associated parse trees) is available.
A treebank is denoted as B = {(s(p), T (s(p))), p =
1, . . . , P} where s(p) is a generic sentence and T (s(p))
its parse tree.

3.1. Universe of Connection Paths

The universe of connection paths U (B) is the set
of all connection paths that can be extracted from
T (s(p)), p = 1, . . . , P . This set of paths can be

Towards Incremental Parsing of Natural Language 13

Figure 3. Legal attachment of a connection path to incremental trees. The sentence in this example is “It has no bearing on the performance
of our company stock.” (a) An incremental tree Ti−1; nodes marked as “anchor” are potential anchor points for joining a connection path. (b)
After one of the potential anchor points has been selected (NP in the example), several alternative paths can be joined to form Ti ; in the example,
these are all the paths having NP as an anchor and IN (the POS tag of “on”) as foot. The correct path for this sentence is highlighted.

obtained by running a simulation algorithm that com-
putes all the incremental trees associated with the sen-
tences in the corpus. The algorithm scans the sentence
covered by this tree in a word-by-word fashion from
left to right, and for each word wi , finds the legal

connection paths which would be built in order to at-
tach wi to the current left context Ti−1. The algorithm
simulates the building of structure by marking, dur-
ing the scan of the tree, the branches which would
be built by a perfectly informed incremental parser.

14 Costa et al.

More details are explained in Lombardo and Sturt
[28].

The universe U (B) effectively plays the role of a
grammar for the sentences in B. For a large enough
corpus, we can expect that U (B) will provide an ap-
proximately complete coverage of rules for covering
all the sentences in the language under consideration.

3.2. The Forests of Candidates

Suppose we are given a new sentence s = w0, . . . ,

w|s|−1 (not in the corpus B), and suppose that at stage i
of parsing we know the correct incremental tree Ti−1(s)
spanning w0, . . . , wi−1. The goal of an incremental
parser is then to compute the next tree Ti (s) in or-
der to accommodate the next word wi . Assuming that
U (B) has a rich enough coverage, we know that Ti (s)
can be obtained by joining Ti−1(s) to one of the paths
in U (B). However, other trees spanning w1, . . . , wi

can be generated by legally attaching other connection
paths. In this regard, recall from Section 2 that an at-
tachment is legal if the anchor matches one of the nodes
in the right edge of the tree and the foot matches the
POS tag of wi (see Fig. 3). Legal foots can be eas-
ily obtained by running a part-of-speech tagger on the
sentence. The set of trees obtained by legally attach-
ing Ti−1(s) to any path in U (B) is called the forest
of candidates for word wi within sentence s, denoted
Fi (s) = {Ti,1(s), . . . , Ti,mi (s)}, where mi = |Fi |. It is
worth noting that distinct sentences having the same
associated sequence of POS tags are indistinguishable
in our approach.

Of course, only one of the trees in Fi (s), Ti, j� (s), is
the correct one (i.e., it is a subgraph of the actual parse
tree T for the sentence) but for unparsed sentences it
is unknown. If an oracle were available to select the
correct incremental tree from the candidate set, then
incremental parsing would become a trivial procedure.
The machine learning algorithms in this paper aim to
accurately approximate such an oracle.

3.3. The Learning Task

We propose that the learning algorithm rely on a sta-
tistical model in charge of assigning probabilities of
correctness to each candidate tree. Parameters of the
model will be estimated from examples. The main ad-
vantage of a probabilistic formulation is that during re-
call, when unseen sentences are processed, the model

can be effectively employed to rank alternative trees,
sorting them by increasing probability of correctness.
In this way, the parser can try first candidate trees with
higher probability of correctness. If we look at parsing
as a search problem (where the goal is the full parse tree
for s) then ranking candidates can be seen as a heuristic
evaluation function that guides the search problem. A
perfect predictor (i.e., one that always assigns the high-
est probability to the correct tree) would give a perfect
heuristic, reducing the branching factor of the search
problem to 1. Performance of the learning algorithm
should be evaluated having this aspect in mind. This
means that two learners should not be compared by
simply computing the number of failures to assign the
highest probability to the correct tree (as in a winner-
take-all scheme). In facts, we need that the number
of candidates ranked above the correct tree is small.
Hence, one performance measure for the predictor can
be the average position of the correct tree in the list of
candidates, after trees have been sorted by increasing
probability of correctness.

In this paper, we assume that the model does not
make use of lexical information, that is, correctness
is assessed by only observing nonterminal symbols
in each tree, discarding all the leaves (which are la-
beled by words). There are two reasons for this choice.
First, incorporating lexical knowledge in a connection-
ist model necessarily involves a large number of param-
eters to be estimated, requiring large amount of training
data. In our experiments (see Section 5) we show that
even a limited amount of training sentences is suffi-
cient to achieve interesting performance. Second, we
are interested in showing that the pure syntactic level
contains significant information under the incremen-
tality assumption. In the framework we are outlining,
lexical knowledge can be employed after learning to
detect parsing breakdowns and to implement recovery
mechanisms.

There are two possible formulations of the learning
task:

• Each instance is a candidate incremental tree. The
instance space is then partitioned into positive and
negative instances. Candidate Ti, j (s) is a positive in-
stance if and only if it is the correct incremental tree
for s at position i . In this formulation, the learner
must classify labeled trees into one of two classes.

• Each instance is the whole forest of candidate trees
Fi (s). The task consists of learning the correct mem-
ber of the forest, which can be identified by a multi-
nomial variable with realizations in {1, . . . , mi (s)}.

Towards Incremental Parsing of Natural Language 15

Training examples are pairs (Fi (s), j�
i (s)), where the

input portion is the candidate forest and the output
portion (supervision) is the integer j�

i (s) ∈ [1, mi (s)]
identifying the correct tree.

While the first formulation relies on the standard con-
cept learning framework, the second formulation re-
quires more attention because it does not involve clas-
sification as commonly intended. In fact, one instance
is a “bag” of objects (trees), in a way that loosely re-
sembles multi-instance learning [30, 31]. In our case
(as a major difference with respect to multi-instance
learning), each bag contains exactly one positive tree,
and such tree can be always identified in the training
set.

The importance of our second formulation stems
from the fact that it more accurately describes the kind
of uncertainty we are dealing with. To explain this,
let us consider the probabilistic interpretations of the
two formulations. In the first case, the learner makes
decisions about boolean output variables Oi, j (s), each
indicating whether a given candidate incremental tree
is correct for position i of sentence s. In this case, the
output of the learner for word i and candidate j , de-
noted yi, j (s), is interpreted as

yi, j (s) = P(Oi, j (s) = correct | Ti, j (s)). (1)

When computing this probability the learner is not in-
formed about competing candidate trees. In the second
formulation, the learner makes decisions about a multi-
nomial output variables Oi (s) whose realizations are
integers in [1, . . . , mi (s)] identifying the correct tree
in the bag associated with word wi in sentence s:

yi, j (s) = P(Oi (s) = j | Fi (s)) (2)

where Oi (s) = j means that Ti, j (s) is the correct tree.
In this case, predictions are conditional to the whole
set of candidates, thus introducing competition among
trees in the forest. Assuming that the universe of paths
can cover the sentence s (i.e. the grammar is sufficiently
expressive), we have

mi (s)∑
i=1

yi, j (s) = 1. (3)

This is because one and only one candidate tree
is the correct one (but which one is unknown). If
the grammar is not sufficiently expressive, predic-
tions are meaningless but, on the other hand, in that

case parsing would fail anyway. Hence, as far as the
learning task is concerned, we can assume that (3)
holds.

In the following section we shall explain how this
learning task can be solved using a connectionist ap-
proach. To simplify notation, reference to the par-
ticular sentence s will be omitted in the following
discussion.

4. Neural Network Architecture

Neural network architectures for supervised learning
are well known in the case of attribute-value represen-
tations. However, as explained in Section 3, the learn-
ing task that can instruct parse decisions involves mak-
ing predictions about structured objects (namely, la-
beled trees). Feedforward neural networks cannot take
as input labeled trees because they cannot deal with
structured objects that have variable size, and embed
relations among atomic constituents. In principle, re-
current neural networks [32] might be employed by
converting the tree into a sequence (e.g., by visiting it
in preorder). However, such an approach would lead
to difficult learning tasks for at least two important
reasons. First, the exponential relation between num-
ber of nodes and height in a tree leads to very long
sequences even for trees of modest height. This has
a very negative impact on learning because of van-
ishing gradient problems [33]. Second, once a tree is
linearized into a sequence, hierarchical relations are
blurred and intermixed, making generalization to new
instances hard [12]. These considerations motivate a
different class of architectures, called recursive neu-
ral networks, that generalize recurrent neural networks
to deal with labeled directed acyclic graphs [10–12].
In Section 4.1 we briefly review the essential architec-
tural and algorithmic ideas for supervised classification
of data structures—more details can be found in Fras-
coni et al. [12]. In Section 4.2 we reformulate the basic
classification model for ranking alternative incremen-
tal trees according to the second formulation outlined
in Section 3.

4.1. Recursive Neural Networks

From a connectionist (or statistical) standpoint, su-
pervised learning for classification is formalized as
the problem of estimating the conditional probability
P(O | I). The output O is a discrete variable associated

16 Costa et al.

with the class and I is a generic input object. The gen-
eral theory developed in Frasconi et al. [12] allows I
to be a directed acyclic graph with a supersource. Here
we are interested in the case of the input I being a la-
beled ordered m-ary tree. By ordered we mean that,
for each vertex v, a total order is defined on the m
children of v. Specifically, ch[v] denotes the ordered
m-tuple of vertices whose elements are v’s children. If
v has k < m children, then the last m − k elements
of ch[v] are filled with a special entry nil, denoting a
missing child. I (v) denotes the label attached to ver-
tex v. Although the general theory allows to mix dis-
crete, continuous, and possibly multivariate labels, in
this paper we are only interested in the case of dis-
crete labels, i.e. random variables with realizations in
a finite alphabet I = NT1, . . . , NT N (in our appli-
cation, this is the set of nonterminal symbols in the
treebank).

The basic neural network architecture is based on
the following recursive state space representation:

x(v) = f (x(ch[v]), I (v)) (4)

In the above equation, x(v) ∈ R
n denotes the state vec-

tor associated with node v and x(ch[v]) ∈ R
m·n is a

vector obtained by concatenating the components of
the state vectors contained in v’s children. This vector
can be interpreted as a distributed representation of the
subtree dominated by vertex v. f : I × R

m·n → R
n

is the state transition function that maps states at v’s
children and the label at v into the state vector at v.
States in Eq. (4) are updated bottom-up, traversing the
tree in post-order. If a child is missing, the correspond-
ing entries in x(ch[v]) are filled with the frontier state
x̄, which is associated with the base step of recur-
sion. A typical choice is x̄ = 0. This computational
scheme closely resembles the one used by frontier-
to-root tree automata [34], but in that case states are
discrete whereas here states are real vectors. After re-
cursion (4) is completed, a distributed representation
of the whole tree is obtained in correspondence of the
root r . Output predictions are then computed as

o = g(x(r)). (5)

where g : R
n → [0, 1]m is the output function, that

maps the state x(r) (at the root r of the tree) into the
probability P(O | I) that the input tree is a positive
example.

The transition function f is implemented by a feed-
forward neural network, according to the following

Figure 4. The state transition function f of a RNN is realized by a
feedforward neural network.

scheme (see also Fig. 4):

ah(v) = ωh,0 +
N∑

j=1

ωhj z j (I (v))

+
m∑

k=1

n∑
	=1

whk	x	(chk[v]) (6)

xh(v) = tanh(ah(v)) h = 1, . . . , n (7)

where xh(v) denotes the h-th component of the state
vector at vertex v, z j (N Tq) = 1 if j = q or zero other-
wise (i.e., we are using a one-hot encoding of symbols),
chk[v] denotes the k-th child of v, and ωi j , whk	 are ad-
justable weights. It is important to remark that weights
in the transition network are independent of the node v

at which the transition function is applied. This can be
seen as a form of weight sharing.

The output function g is implemented by another
network:

o = 1

1 + e−a
(8)

where

a = w0 +
n∑

	=1

w	x	(r) (9)

weights w	 are also trainable.
Supervised learning is based on the maximum likeli-

hood principle as in many other neural network models.
In the case of classification, the likelihood function has
the form of a cross-entropy. Let D = {(I (k), ō(k)), k =
1, . . . , K } be a training set of labeled trees (where ō(k)

denotes the class of I (k)). Then the cost function is the
negative log-likelihood:

J (D)

= −
(

K∑
k=1

ō(k) log o(k) + (
1 − ō(k)

)
log

(
1 − o(k)

))

(10)

Towards Incremental Parsing of Natural Language 17

Figure 5. Network unrolling and backpropagation through struc-
ture.

o(k) being the output of the network after processing the
k-th tree. Optimization is solved by gradient descent. In
this case, gradients are computed by a special form of
backpropagation on the feedforward network obtained
by unrolling the state transition network according to
the topology of the input tree I . The algorithm was first
proposed in Goller and Küchler [10] and is referred
to as backpropagation through structure (BPTS). The
main idea is depicted in Fig. 5: On the left an example
input tree is shown. On the right, the state transition
network f () is unrolled to match the topology of the
input tree. The output network g() is attached to the
replica of f () associated with the root. After recur-
sion (4) is completed, the state vector x(r) at the root r
contains an adaptive encoding of the whole tree. This
is similar to the encoding performed by recursive au-
toassociative memories first proposed by Pollack [14]
but here the encoding results from a supervised learn-
ing mechanism. Forward propagation (dark arrows) is
bottom up and follows Eq. (4). Backward propagation
(light arrows) is employed to compute the gradients and
proceeds from the root to the leaves. Note that gradient
contributions must be summed over all the replicas of
the transition network to correctly implement weight
sharing.

4.2. Recursive Networks for Ranking Alternatives

As explained in Section 3, an alternative formulation
of the learning task establishes that the input portion

of each example is a forest of candidate trees. Such
an object is not connected and thus not readily suit-
able as the input to a recursive neural network. In this
formulation, moreover, we do not have a standard clas-
sification task. The network has to pick up one out of
mi candidates, and the number of candidates depends
on the particular instance (this is somewhat similar to
having a variable number of classes). In this section we
describe the required modifications to the basic model
presented above, to make it suitable for solving the
natural language learning task at hand.

The basic idea is rather simple and consists of pro-
cessing each tree in the forest separately, and then in-
tegrating results with a normalization step to satisfy
Eqs. (2) and (3). As a first step, we modify the out-
put function g() (see Eqs. (8) and (9)) of the recursive
model as follows:

o = w0 +
n∑

	=1

w	x	(r)

i.e. the output network reduces to a (linear) weighted
sum of the state components at the root of each tree. In
this way we obtain a vector oi = [oi,1, . . . , oi,mi] whose
components are real numbers in (−∞, +∞) associated
with each candidate in Fi . Correctness probabilities are
finally obtained by taking the softmax function of oi :

yi, j = eoi, j∑mi
	=1 eoi,	

(11)

In this way we satisfy the multinomial model expressed
by Eqs. (2) and (3) and yi, j can be interpreted as the
probability that the j-th candidate tree in Fi is the cor-
rect tree. Each member of the forest is separately pro-
cessed by this modified recursive network. The same
network is used to process each tree in the forest so
the resulting unrolled network is a forest of neural net-
works sharing the same weights for the transition func-
tion f () and the output function g(). An immediate
consequence of this choice is that the probabilities yi, j

are not affected by a permutation of trees in the can-
didate set, a property which is clearly desirable at this
level.

The cost function (negative log-likelihood according
to the multinomial model) is written as follows:

J (D) = −
P∑

p=1

|s(p)|−1∑
i=0

log yi, j∗ (12)

where D denotes the training set, the first sum ranges
over sentences in the training set, the second sum ranges

18 Costa et al.

over words within each sentence, and j� is the index of
the correct incremental tree in the candidate list (which
is known in the training set).

At this point, the calculation of delta errors needed to
compute gradients is straightforward. It begins by fol-
lowing the classic scheme of multinomial classification
described in Rumelhart et al. [35], that we report here
for completeness. Denoting

δi, j
.= ∂ J (D)

∂oi, j

we have

δi, j =
{

1 − yi, j if j = j∗

−yi, j if j �= j∗ .

For each network j in the forest, δi, j is injected as
the delta output error, and subsequently passed to the
BPTS algorithms. Of course, since networks in the for-
est share the same weights, gradients are computed
by summing all the contributions relative to the same
shared weight.

5. Implementation and Results

5.1. Data Preparation and Experimental Setup

The experiments were run on a set B of 2000 parsed
sentences, randomly extracted from the Wall Street
Journal Section of the Penn II Treebank. The universe
of paths U (B) was extracted from these sentences using
the incremental parsing simulation algorithm described
in Section 2. This resulted in a set of 1,675 connection
paths, that we kept indexed by anchor and foot. Then,
we selected four subsets of B, called B1, B2, B3, and
B4, containing 100, 500, 100, and 500 sentences, re-
spectively. B2, B3, and B4 were disjoint, and were used
to construct the training set, the validation set,5 and the
test set, respectively. B1 is a subset of B2, and was also
used as a training set. Each sentence in these sets was
processed to extract a forest of candidate incremental
trees as follows. A connection path is valid for Ti if
its anchor and its foot match the corresponding entities
in Ti . Therefore, for every incremental tree we have to
identify an anchor (that can be any node on the right
frontier of Ti−1) and a foot (given by the rightmost leaf
of Ti). At this point, the universe U (B) is searched for
legal paths matching every pair anchor-foot (see Fig. 3).
In turn, legal connection paths are then joined to Ti−1

to form the forest Fi . On the available data, the aver-
age cardinality of a candidate set Fi is 56, while the
maximum cardinality is 388. In the training set, B1, the
total number of words is 2,685 and the total number of
candidates is 183,841. In the test set, the total number
of words is 11,617 and the total number of candidates
is 698,735.

Nodes are labeled with non terminal symbols (syn-
tactic categories) of the context free grammar used in
the Penn II Treebank. We have decided to use a subset
of non terminal symbols in order to filter out infor-
mation that is not relevant to our task, or that would
make some rules to be learned based on specific and
rare examples. As a result, we reduced the nonterminal
symbols to a subset of 71 elements, collapsing some of
the non terminal variations into their base form. Table 1
shows details of the merge we have performed.

The first recursive network used for the experiments
implements the model described in Section 4.1, and has
the following specifications: m = 14 (maximum out-
degree), N = 71 labels (one-hot encoded), and n = 40
state components, yielding a total of about 25,000 ad-
justable parameters. The dimension n must be large
enough to give sufficient expressive power to the net-
work, but not too large to avoid overfitting. In our ex-
periments, n = 40 was sufficient to load the entire
training set and to give good generalization accuracy.
In this experiment we used B1 (100 sentences) as the
training set. When using 0–1 classification, the ratio of

Table 1. Reduction of non terminal symbols. Entries
within each column are merged into the symbol reported
in the header of the column.

ADJP NP PP

ADJP-ADV NP-ADV PP-BNF

ADJP-CLR NP-BNF PP-CLR

ADJP-PRD NP-CLR PP-DIR

ADVP-CLR NP-DIR PP-DIR-CLR

ADVP-DIR NP-EXT PP-DTV

ADVP-DIR-CLR NP-HLN PP-EXT

ADVP-EXT NP-LGS PP-LGS

ADVP-LOC NP-LOC PP-LOC

ADVP-LOC-CLR NP-LOC-PRD PP-LOC-CLR

ADVP-LOC-PRD NP-MNR PP-LOC-PRD

ADVP-MNR NP-PRD PP-MNR

ADVP-PRP NP-SBJ PP-PRD

ADVP-PUT NP-TMP PP-PRP

ADVP-TMP NP-TTL PP-PUT

Towards Incremental Parsing of Natural Language 19

positive over negative examples turns out to be very
small (2,685/181,156 = 0.015). This follows from the
fact that for each positive example there is a large num-
ber of competing candidate incremental trees. The net-
work is trained to minimize the number of misclas-
sifications, but this goal would be easily achieved by
predicting always 0 (regardless of the input) since the
base accuracy6 for this learning problem is 98.5%.
This theoretical expectation has been practically veri-
fied, and our experiments using all the available exam-
ples in each epoch did not produce any useful results
(the network output was always very close to zero). We
found that a viable way of dealing with this problem is
to present the negative examples in the training phase
with a lesser frequency than the positive ones, in order
to re-establish an average ratio of 1:1 positive-negative
examples per training epoch. The set of negative trees
was rotated at each epoch, so any given negative tree
is used once in a round of 67 epochs.

In a second experiment we implemented the multino-
mial model described in Section 4.2. In this case, each
tree in the forest is processed separately by a recur-
sive network with one linear output unit. The resulting
numbers are then normalized with the softmax func-
tion. The recursive network used in the experiment had
the same size of the one described above (i.e., about
25,000 weights). The training set was also B1. In this
case, since the input to the network is an entire forest of
candidates, the unbalance problem of positive/negative
examples does not occur. All the trees (both the correct
and the incorrect ones) are grouped into 2,685 forests
and are employed to train the network in each epoch.

A third experiment was identical to the previous onw,
but using B2 (500 sentences) as a training set. The
experiment was performed to investigate the effect of
the training set size on the prediction accuracy.

In all the experiments, we estimated generalization
(the average position R of the correct candidate) by
running the partially trained networks in recall mode
on the 100 validation sentences B3. Gradient descent
was stopped when the performance on the validation
set was maximum. This early stopping is expected to
be useful in order to prevent overfitting. In the case
of 0–1 classification, training was stopped after 1000
epochs. In the case of multinomial ranking, 90 epochs
were sufficient (note, however, that less trees per epoch
are processed in the first case, due to negative examples
subsampling). For all the experiments, the reported ac-
curacy (see Section 5.3) was measured on the test set
B4 (500 sentences).

5.2. Psycholinguistic Preferences

A fair comparison with other approaches to score parse
decision can involve the psycholinguistic preferences
mentioned in the introduction, Late Closure (LC) and
Minimal Attachment (MA), that are at work in many
parsing models because of their immediate implemen-
tation and the reasonable results they yield. Briefly, LC
is the preference for attaching a new constituent at the
lowest legal site on the right edge; MA is the prefer-
ence for the attachment that involves the creation of the
minimum number of new nodes.

LC preference explains the surprise effect in the
interpretation of a sentence. For example, consider
“The president declared that he will resign yesterday.”
According to LC, “yesterday” is initially attached to
the lower verb “will resign,” but this attachment is
then reject on the basis of the semantic knowledge
(“yesterday” is incompatible with the future tense of
“will resign”); on the contrary, the higher attachment
to “declared” is semantically plausible. MA expresses a
preference for flatter structures. In “John wrote a letter
to Mary,” “to Mary” is preferably attached to “wrote”
rather than to “a letter,” because of a minor number of
nodes involved. Notice that in this case MA overrides
LC, which would predict an attachment to “the letter.”

Though it is common in the psycholinguistic liter-
ature to describe initial parsing decisions as the result
of the application of a number of preferences, (almost)
everybody does still believe that preferences for re-
cency (as in LC) and structural simplicity (as in MA)
have an influence on parsing decisions in some form
or other. The reason for considering LC and MA in
the context of this paper is that such preferences are of
exclusively syntactic nature, and (though overridden
by lexical and semantic heuristics) they are invoked
when other sophisticate methods do not produce any
valuable result. For example, Weischedel et al. [36]
report a 75% of correctness of LC preference on 166
PP-attachment cases in the Penn treebank; these cases
remained unsolved after a run of a partial parser based
on a probabilistic model, and were accounted for by the
LC preference.7 Lombardo and Sturt [28] report on a
sophisticate form of MA in the context of a strongly
incremental parser. The sophistication is due to the
distinction of the syntactic nodes between headed and
headless: headed nodes are those nodes for which the
head word have already been scanned; otherwise, they
are headless. Headedness reformulates MA from the
number of nodes in a constituent to the number of

20 Costa et al.

headless nodes in a constituent: this reformulation is
more adequate with the recent lexicalist trend in lin-
guistics. According to this trend, syntactic phenomena
cannot be adequately explained without including lex-
ical knowledge in a theory of natural language syntax.
For example, a rule of a context free grammar for nat-
ural language may exist only if there exists a word (in
the lexicon) that licenses it. The results on a sample
of about 50,000 words from the Wall Street Journal
section of the Penn treebank were that the 82% of con-
nection paths had 0 headless nodes, 15% had 1 headless
nodes, 2% had 2 headless nodes, and 1% had 3 headless
nodes.

Since LC and MA are often in conflict with each
other (see example “John wrote a letter to Mary”
above), we have collected the data for the two prefer-
ences by alternating the one which overrides the other:
in one trial, LC overrides MA (LC over MA), that is,
incremental trees are ranked higher if the connection
path anchors low and then with a minimum number of
nodes; in the other trial, MA overrides LC (MA over
LC), that is, incremental trees are ranked higher if they
have a minimum number of nodes and then the con-
nection path anchors low. In the next section we report
the results.

5.3. Results

After training, the network assigns a probability to each
candidate incremental tree. A parser can employ the
network output to rank candidate trees (by increasing
probability of correctness) for continuation. Hence, the
performance measure of our approach to parse deci-
sions is based on the rank assigned to the correct tree
in each forest Fi .

A synthesis of results on the 500 test sentences is
reported in Table 2. In the table, R is the average posi-
tion of the correct tree, after having sorted candidates
according to network predictions. R = 1 would yield
a perfect predictor that always ranks the correct tree in
first position. The next column, F , is the percentage of
times the correct tree is ranked in first position. Global
results are reported in the first row of the table. We
can see that the multinomial ranking (“ANN multin.”)
outperforms 0–1 classification by about one position,
when both models are trained on B1 (100 sentences).
Of course, when the number of candidates is higher, we
can expect that it is more difficult to rank the correct one
on the first positions. To give a more detailed overview
of prediction quality, we should report R separately

for each value of Fi . For conciseness, results are aver-
aged over bins associated with ranges of candidate list
lengths. The total number of forests in each bin is also
reported in the last column. Multinomial ranking fur-
ther improves when training on 500 sentences (set B2).
The results on the mean value R clearly demonstrate
that the ranking produced by the network significantly
reduces the number of candidate trees at each incre-
mental parsing step. For example, when the number of
candidates is between 100 and 111, the correct tree is
ranked in position 1.95 (on average).

Columns 8–11 in Table 2 report R and F for the two
strategies (LC over MA, and MA over LC) described
in Section 5.2. The results obtained with the neural
network model compare very favorably with respect
to psycholinguistic preferences. The only exception is
when there are only 2 or 3 alternative trees (in this case
MA and LC preferences slightly outperform the neu-
ral network). Moreover, multinomial ranking performs
significantly better than the 0–1 approach. This can be
expected theoretically since the architecture proposed
in Section 4.2 is a more accurate model of the task at
hand. This can also be explained intuitively: if the cor-
rect candidate is not ranked in first position, the contri-
bution to cost function (12) is large. On the other hand,
the contribution to cost function (10) could be small if
the score of the correct candidate is close to 1 but other
competing candidates achieve higher scores. This ex-
plains why F is consistently higher for the multinomial
ranking method.

In Fig. 6 we report the cumulative histogram of the
five ranking models. Two histograms are reported for
the multinomial method, one using training set B1 (100
sentences), and another using training set B2 (500 sen-
tences). Test is done on B4 in all the five cases. The
graph represents the percentage of times that the cor-
rect tree is ranked within the first k positions. Again,
we can see that neural network based predictions out-
perform the two heuristics.

5.4. Discussion

Although too weak for a complete parsing model,
the predictions summarized in Table 2 and Fig. 6 are
very encouraging, and certainly motivate a research on
the employment of incremental parsing supported by
RNN decisions as an effective model for wide coverage
parsing.

The results reported here need some comments in
the NLP setting. A general comment concerns the

Towards Incremental Parsing of Natural Language 21

Table 2. Prediction performance (see text for explanation).

ANN multin. ANN multin. ANN 0–1 LC MA
trained on 500 trained on 100 trained on 100 over MA over LC

|Fi | R F (%) R F (%) R F (%) R F (%) R F (%)
No. of test

forests

2–388 2.02 74.0 3.26 63.5 4.29 31.6 4.74 48.8 6.90 42.2 11,617

2–3 1.17 85 1.25 77 1.41 63 1.35 75 1.36 75 381

4–5 1.20 88 1.54 60 2.05 33 2.62 28 2.48 25 427

6 1.41 82 1.92 59 2.10 38 2.90 29 2.67 27 168

7 1.52 75 1.85 50 2.29 33 3.17 32 3.01 29 275

8 1.27 87 1.49 76 1.81 65 2.81 51 2.77 48 274

9 1.52 74 2.45 34 2.42 44 4.00 37 3.54 36 221

10 1.31 82 1.79 60 2.54 43 3.04 42 3.02 39 273

11–13 1.50 78 2.31 56 2.44 49 5.27 30 4.64 19 308

14–16 1.51 79 1.88 65 2.41 47 4.03 41 3.97 36 380

17 1.84 73 2.29 49 2.97 30 4.09 21 4.25 17 219

18 1.21 92 1.64 79 1.74 77 1.99 79 2.20 76 298

19–20 1.90 73 2.88 50 3.09 28 4.22 34 3.79 28 258

21–23 1.47 76 2.56 48 3.05 28 4.70 42 4.47 36 386

24–27 1.80 69 3.25 47 3.48 31 5.10 44 4.39 39 402

28–30 1.88 74 2.29 54 2.80 26 4.36 39 4.36 28 381

31–34 2.13 63 3.12 49 3.75 29 4.69 43 4.83 38 287

35–38 1.74 70 2.99 52 3.70 32 4.72 41 5.56 36 425

39–41 2.38 58 3.14 51 4.05 24 6.68 33 7.47 27 294

42–45 1.91 75 2.41 59 3.16 32 4.22 48 5.37 43 355

46–49 1.89 76 2.67 54 3.45 32 4.56 54 5.59 46 319

50–53 2.31 63 3.34 53 4.16 27 4.18 45 5.79 36 372

54–58 1.97 75 2.84 52 3.44 30 4.29 61 5.30 54 420

59–64 1.87 72 3.72 51 4.40 31 3.47 62 5.29 53 357

65–69 2.50 69 3.57 50 5.21 19 5.89 45 8.30 38 303

70–74 2.43 69 5.39 49 5.82 24 5.61 56 6.45 50 385

75–81 2.02 72 3.31 57 4.52 27 4.93 54 7.95 44 414

82–89 1.78 71 4.01 46 5.26 21 5.95 47 10.42 38 360

90–99 2.42 70 4.29 50 5.51 23 4.24 59 8.03 50 386

100–111 1.95 74 4.17 42 5.19 23 5.86 54 9.00 42 444

112–126 3.06 71 4.80 51 6.90 20 6.20 49 10.45 39 427

127–145 2.53 69 4.44 49 5.85 20 6.19 49 12.72 37 374

146–173 3.42 67 4.76 42 7.33 17 7.69 43 13.94 31 381

174–222 3.23 61 7.14 33 11.21 14 8.83 36 18.65 26 395

223–388 5.64 56 7.02 32 13.60 11 13.46 26 32.75 19 268

confirmation in our data of the complexity of natural
language parsing. In the strongly incremental version
adopted in this work, where the problem is coded as the
selection of the best incremental tree, the data on the
Penn treebank sample show that the search space has an

average branching factor of 56, with a maximum factor
of 388. These data confirm the necessity of having some
form of sophisticate elaboration of parse decisions.

The rank position of the correct incremental tree
is consistently low in thecandidate list. The result is

22 Costa et al.

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
or

re
ct

 c
la

ss
ifi

ca
tio

n
%

k

Multinomial 500
Multinomial 100

Binomial 100
LC over MA
MA over LC

Figure 6. Experimental comparison of knowledge-based heuristics (Late Closure, Minimal Attachment) and neural network predictions
(Multinomial ranking and 0–1 classification). The graph reports the percentage of times that, after sorting candidates by one of the heuristics,
the correct tree is found within the first k trees, for k = 1, . . . , 20.

particularly positive, especially if taken in its naive con-
ception. Consider that corpus-based models in the liter-
ature usually take into account several cues for reach-
ing a parse decision; on the contrary, in the experiments
described here only syntactic knowledge is taken into
account. Lexical knowledge, which is at the core of
many parsing models (e.g. [37]), is totally neglected
here. Connection paths include at most POS-tags. On
the contrary, most models are trained on relations es-
tablished between the head words of syntactic phrases;
the use of syntactic categories is limited to those cases
when data about lexical relations are sparse. Also se-
mantics is taken into account when available for limited
domains, and including subcategorization frames and
a number of thematic roles. The II version of the Penn
treebank includes the latter knowledge because of the
relevance for disambiguation.

Actually, some of the structural ambiguities on
which the network performs badly are the PP-
attachment cases. It is exactly on these cases that
corpus-based models employ the lexical and semantic
knowledge. Other common errors are then due to the
lack of context for decisions concerning initial words
and to the large extension of the context (right frontier)
for decisions concerning words at the end of a sen-

tence. The first typology of errors could be dealt with
by delaying initial parse decisions for the first word
in the sentence; the second typology could hardly be
addressed without introducing lexical knowledge. For
other types of errors, we did not find an obvious rela-
tionship with grammatical structure.

If structural preferences are not enough for a
complete parsing model, their contribution to human
parsing decisions needs to be well assessed. A first re-
sult in this direction is an experiment on the validation
of a number of psycholinguistic preferences in a real-
istic environment. In the psycholinguistic community,
it has often been claimed that ambiguity resolution
involves structural preferences (as is the case for Late
Closure and Minimal Attachment seen above), and this
has been shown on toy grammars. However, a precise
characterization of structural preferences is hard to
achieve as soon as one begins to work with realistically
large grammars. A wide-coverage model of structural
preferences in the human parser must then rely on pref-
erence estimation from a corpus: the model must be
able to work with tree structures that are large enough
to represent any structural ambiguity, but should also be
able to deal with the sparse-data problem, as the larger
the configuration, the less frequently it will be found in

Towards Incremental Parsing of Natural Language 23

any corpus. So, the model described in this paper has
been applied to the prediction of first-pass attachment
decisions on psycholinguistic examples [38, 39]. First-
pass attachment decisions concern the disambiguation
that takes place as soon as one hears/reads a passage;
this decision then undergoes a revision when the struc-
ture that has been chosen does not fit with subsequent
material. So, the goal is not to predict the correct pars-
ing decision with respect to the whole sentence, but
to reproduce a human preference which is susceptible
of revision. Using the training corpus described in
Section 5.1, the model reproduces correctly a number
of well known preferences, such as recency attachment
for adverbs (a sort of Late Closure limited to adverbs),
relative clause attachment in English, the preference for
NP over S in complement ambiguities (in sentences like
“The athlete realized his goals” vs. “The athlete real-
ized his goals were out of reach”). If we want to pursue
further the model of the human parser, we must provide
a correct way to recover from first-pass attachment
errors.

6. Conclusions

The paper has presented a novel methodology for pars-
ing unrestricted texts, based upon the incrementality
hypothesis, a widely held assumption about the human
parser. A recursive neural network, trained on tree por-
tions extracted from the Penn treebank via a simulation
of the incremental strategy, carries out the parse deci-
sions in case of ambiguity. The decision is in the form
of the selection of the correct incremental tree in the
list of possible candidates for continuation in left-to-
right processing. The learning task is formulated as the
identification of the correct incremental tree in the list
of candidates; the prediction is a ranking of the candi-
dates according to the conditional probability of being
the correct one. The results, although the method cur-
rently takes into account only the syntactic structure
labeled with non terminal categories, are very posi-
tive. The comparison with well-known parsing pref-
erences in the psycholinguistic literature clearly indi-
cates a superiority of the parse predictions provided
by the network. On the architectural side, a novel con-
tribution of this paper is the proposal of a neural net-
work approach for learning to rank candidates. The
same architecture can, in principle, be applied to other
tasks in which each object is a collection of instances
among which a “winner” is to be probabilistically
selected.

The future application of our results to parsing are
immediate, and consists in the development of an ef-
ficient incremental parser which is informed by the
network architecture in taking decisions about attach-
ment ambiguity. An immediate improvement to the
methodology presented here is the insertion of other
features in the definition of the learning task. Corpus-
based approaches usually rely on lexical and thematic
knowledge for the formulation of parse decisions.
Purely syntactic knowledge is empirically demon-
strated to be insufficient in a realistic parsing process.
Moreover, a clear direction to pursue further the model
of the human parser is to provide a correct way to re-
cover from first-pass attachment errors, possibly in-
cluding non-local information as done for example in
Roark and Johnson [40].

Acknowledgment

We would like to thank Patrick Sturt for providing
the processed corpus of sentences used in the exper-
iments, and for comments on an early draft of this
paper.

Notes

1. In a shadowing experiment, subjects listen to passages from a
novel and say words out loud as fast as they can. Subjects do
not know that certain words in the passage are mispronounced.
In many cases, subjects tend to utter words correctly with no
loss of time with respect to the correct pronunciation. These and
other data have been interpreted as a proof that people tend to
interpret the meaning of sentences as soon as they can, probably
on a word-by-word basis.

2. Head-final languages are languages where constituents feature
the head word in the rightmost position. Examples are Dutch,
German and Japanese.

3. This is an assumption upon the semantic interpreter: it could well
be that the human processor has some means of interpreting the
disconnected pieces of structure in memory. However, the latter
is an unparsimonious assumption.

4. These definitions introduce two simplifications with respect to
Lombardo and Sturt [28]: first, we include in the connection path
the edges that link a word and its maximal projection, that is the
substructure headed by that word; second, we neglect the presence
of empty nodes (traces) between the lexical elements wi−1 and
wi . Both simplifications make the design of the learning domain
easier, because we are not considering the distinction between
headed and headless nodes in connection paths (see Section 5)
and co-referring symbols, respectively.

5. The validation set was employed to estimate generalization per-
formance, in order to stop gradient descent and prevent overfitting.

6. The base accuracy is the fraction of correctly classified instances
when always predicting the most frequent class.

24 Costa et al.

7. Note that this 75% correctness cannot be compared with the re-
sults described in this paper (Section 5.3), since they are based on
two different parsing models.

References

1. W. Marslen-Wilson, “Linguistic structure and speech shadowing
at very short latencies,” Nature, vol. 244, pp. 522–533, 1973.

2. M. Collins, “A new statistical parser based on bigram lexical
dependencies,” in Proc. of 34th ACL, 1996, pp. 184–191.

3. J.P. Kimball, “Seven principles of surface structure parsing in
natural language,” Cognition, vol. 2, pp. 15–47, 1973.

4. L. Frazier and J.D. Fodor, “The sausage machine: A new two-
stage parsing model,” Cognition, vol. 6, pp. 291–325, 1978.

5. J. Hobbs and J. Bear, “Two principles of parse preference,” in
Proceedings of COLING90, 1990, pp. 162–167.

6. M. Nagao, “Varieties of heuristics in sentence processing,” in
Current Issues in Natural Language Processing: In Honour of
Don Walker, Giardini with Kluwer, 1994.

7. E.P. Stabler, “The finite connectivity of linguistic structure,” in
Perspectives on Sentence Processing, edited by C. Clifton, L.
Frazier, and K. Reyner, Lawrence Erlbaum Associates, 1994,
pp. 303–336.

8. M. Marcus, B. Santorini, and M.A. Marcinkiewicz, “Building a
large annotated corpus of english: The penn treebank,” Compu-
tational Linguistics, vol. 19, pp. 313–330, 1993.

9. U. Hermjakob and R.J. Mooney, “Learning parse and translation
decisions from examples with rich context,” in Proceedings of
ACL97, 1997, pp. 482–489.

10. C. Goller and A. Küchler, “Learning task-dependent distributed
structure-representations by backpropagation through struc-
ture,” in IEEE International Conference on Neural Networks,
pp. 347–352, 1996.

11. A. Sperduti and A. Starita, “Supervised neural networks for the
classification of structures,” IEEE Transactions on Neural Net-
works, vol. 8, no. 3, 1997.

12. P. Frasconi, M. Gori, and A. Sperduti, “A general framework for
adaptive processing of data structures,” IEEE Trans. on Neural
Networks, vol. 9, no. 5, pp. 768–786, 1998.

13. G.E. Hinton, “Mapping part-whole hierarchies into connection-
ist networks,” Artificial Intelligence, vol. 46, pp. 47–75, 1990.

14. J.B. Pollack, “Recursive distributed representations,” Artificial
Intelligence, vol. 46, no. 1/2, pp. 77–106, 1990.

15. T.A. Plate, “Holographic reduced representations,” IEEE Trans-
actions on Neural Networks, vol. 6, no. 3, pp. 623–641, 1995.

16. A. Bianucci, A. Micheli, A. Sperduti, and A. Starita, “Applica-
tion of cascade-correlation networks for structures to chemistry,”
Applied Intelligence, vol. 12, pp. 115–145, 2000.

17. E. Francesconi, P. Frasconi, M. Gori, S. Marinai, J. Sheng, G.
Soda, and A. Sperduti, “Logo recognition by recursive neural
networks,” in Graphics Recognition—Algorithms and Systems,
edited by R. Kasturi and K. Tombre, Springer Verlag, 1997.

18. C. Goller, “A Connectionist Approach for Learning Search-
Control Heuristics for Automated Deduction Systems,” Ph.D.
Thesis, Tech. Univ. Munich, Computer Science, 1997.

19. M. Bader and I. Lasser, “German verb-final clauses and sentence
processing,” in Perspectives on Sentence Processing, edited by
C. Clifton, L. Frazier, and K. Reyner, Lawrence Erlbaum Asso-
ciates, pp. 225–242, 1994.

20. L. Frazier, “Syntactic processing: Evidence from dutch,” Natural
Language and Linguistic Theory, vol. 5, pp. 519–559, 1987.

21. Y. Kamide and D.C. Mitchell, “Incremental pre-head attachment
in japanese parsing,” Language and Cognitive Processes, vol. 14,
no. 5/6, pp. 631–662, 1999.

22. K. Yamashita, “Processing of Japanese and Korean,” Ph.D.
Thesis, Ohio State University, Columbus, Ohio, 1994.

23. K.M. Eberhard, M.J. Spivey-Knowlton, J. Sedivy, and M.K.
Tanenhaus, “Eye movements as a window into real-time spo-
ken language comprehension in natural contexts,” Journal of
Psycholinguistic Research, vol. 24, pp. 409–436, 1995.

24. V. Lombardo, L. Lesmo, L. Ferraris, and C. Seidenari, “Incre-
mental processing and lexicalized grammars,” in Proceedings of
the XXI Annual Meeting of the Cognitive Science Society, 1998,
pp. 621–626.

25. D. Milward, “Incremental interpretation of categorial grammar,”
in Proceedings of EACL95, 1995.

26. M.J. Steedman, “Grammar, interpretation and processing from
the lexicon,” in Lexical Representation and Process, edited by
W.M. Marslen-Wilson, MIT Press, 1989, pp. 463–504.

27. P. Sturt and M. Crocker, “Monotonic syntactic processing:
A cross-linguistic study of attachment and reanalysis,” Lan-
guage and Cognitive Processes, vol. 11, no. 5, pp. 449–494,
1996.

28. V. Lombardo and P. Sturt, “Incrementality and lexicalism: A
treebank study,” in Lexical Representations in Sentence Pro-
cessing, edited by S. Stevenson and P. Merlo, John Benjamins,
1999.

29. J.D. Fodor and F. Ferreira (eds.). Reanalysis in Sentence Pro-
cessing, Kluwer Academic Publishers, 1998.

30. P. Auer, “On learning from multi-instance examples: Empirical
evaluation of a theoretical approach,” in Proc. 14th Int. Conf.
Machine Learning, edited by D.H. Fisher, Morgan Kaufmann,
pp. 21–29, 1997.

31. G. Dietterich, R.H. Lathrop, and T. Lozano-Perez, “Solving the
multiple-instance problem with axis-parallel rectangles,” Artifi-
cial Intelligence, vol. 89, no. 1/2, pp. 31–71, 1997.

32. J. Kolen and S. Kremer (eds.). A Field Guide to Dynamical
Recurrent Networks. IEEE Press, 2000.

33. Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term de-
pendencies with gradient descent is difficult,” IEEE Transactions
on Neural Networks, vol. 5, no. 2, pp. 157–166, 1994.

34. J. Thacher, “Tree automata: An informal survey,” in Currents in
the Theory of Computing, edited by A. Aho, Prentice-Hall Inc.:
Englewood Cliffs, pp. 143–172, 1973.

35. D.E. Rumelhart, R. Durbin, R. Golden, and Y. Chauvin, “Back-
propagation: The basic theory,” in Backpropagation: Theory,
Architectures and Applications, Lawrence Erlbaum Associates,
Hillsdale, NJ, 1995, pp. 1–34.

36. R. Weischedel, M. Meter, R. Schwartz, L. Ramshaw, and J.
Palmucci, “Coping with ambiguity and unknown words through
probabilistic models,” Computational Linguistics, vol. 19, no. 2,
pp. 359–382, 1993.

37. B. Srinivas and A. Joshi, “Supertagging: An approach to almost
parsing,” Computational Linguistics, vol. 25, no. 2, pp. 237–265,
1999.

38. P. Sturt, V. Lombardo, F. Costa, and P. Frasconi, “A wide-
coverage model of first-pass structural preferences in human
parsing,” in 14th Annual CUNY Conference on Human Sentence
Processing, Philadelpha, PA, 2001.

Towards Incremental Parsing of Natural Language 25

39. P. Sturt, F. Costa, V. Lombardo, and P. Frasconi, “Learning first-
pass attachment preferences with dynamic grammars and recur-
sive neural networks,” in preparation, 2001.

40. B. Roark and M. Johnson, “Efficient probabilistic top-down and
left-corner parsing,” in Proceedings of the 37th Annual Meeting
of the Association for Computational Linguistics, pp. 421–428,
1999.

Fabrizio Costa was born in Firenze, Italy, on March 21, 1971. He
received the Laura Diploma from the University of Firenze, Italy,
in Electronical Engineering in 1998. He is currently a Ph.D. student
in Computer Science in the University of Florence, Italy. In 2001
he has collaborated with the Department of Psychology, Glasgow
University, UK and with the Human Communication Research Cen-
tre, Edinburgh University, UK. His current interests include machine
learning, connectionist architectures, multiple experts systems, rein-
forcement learning and natural language processing. Dr. Costa is a
member of the Italian Association of Artificial Intelligence.

Paolo Frasconi received the M.Sc. degree in Electronic Engineer-
ing in 1990, and the Ph.D. degree in Computer Science in 1994, both
from the University of Florence, Italy. Since 2000 he is an Associate
Professor of Computer Science with the Department of Systems and
Computer Science (DSI) at the University of Florence. In 1999 he
was an Associate Professor at the University of Cagliari, Italy. In
1998 he was a Visiting Lecturer with the School of Information
Technology and Computer Science at the University of Wollongong,
Australia. From 1995 to 1998 he was an Assistant Professor at the
University of Florence. In 1992 he was a Visiting Scholar in the De-
partment of Brain and Cognitive Science at Massachusetts Institute
of Technology. His current research interests are in the area of ma-
chine learning with connectionist models and belief networks, with
particular emphasis on problems involving learning about sequential

and structured information. Application fields of his interest include
bioinformatics, natural language processing, pattern recognition, and
document processing.

Dr. Frasconi serves as an Associate Editor for the IEEE
Transactions on Neural Networks and for the IEEE Transactions
on Knowledge and Data Engineering. In 2001 he co-directed the
NATO Advanced Studies Institute “Artificial Intelligence and Heuris-
tic Methods for Bioinformatics.” He is a member of the ACM, the
IAPR, the IEEE, and the AI∗IA.

Vincenzo Lombardo received a Ph.D. in Computer Science from the
University of Torino in 1993. He is currently an Associate Professor
at the Department of Computer Science of the University of Torino.
His research areas are in cognitive models for natural language pro-
cessing (syntax, parsing, computational psycholinguistics), human
reasoning, and music performance.

Giovanni Soda received his degree in Mathematics from the Uni-
versity of Florence, Italy, in 1969. From 1971 he was researcher at
the National Council of Research, where his activity included for-
mal systems for language manipulation. Since 1975 he has been
at the University of Florence where he is presently full professor
of Artificial Intelligence at the Department of Systems and Com-
puter Science (DSI) of the University of Florence. Giovanni Soda’s
current research interests include Knowledge Representation Sys-
tems, integration of Artificial Intelligence techniques with Neural
Networks, text classification, pattern recognition and Document Pro-
cessing in particular. He was general chair of AI∗IA95 Conference
and Program Chairman of the DEXA99 Conference. He is a member
of the executive board of AI∗IA (the Italian Association of Artifi-
cial Intelligence) and is a member of the IEEE, ACM, IAPR Soci-
eties. Giovanni Soda is the editor in chief of the “AI∗IA Notizie”
Journal.

