
Wide coverage incremental parsing by learning
attachment preferences

Fabrizio Costa1, Vincenzo Lombardo2, Paolo Frasconi1, and Giovanni Soda1
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Abstract. This paper presents a novel method for wide coverage parsing
using an incremental strategy, which is psycholinguistically motivated.
A recursive neural network is trained on treebank data to learn first pass
attachments, and is employed as a heuristic for guiding parsing decision.
The parser is lexically blind and uses beam search to explore the space
of plausible partial parses and returns the full analysis having highest
probability. Results are based on preliminary tests on the WSJ section
of the Penn treebank and suggest that our incremental strategy is a
computationally viable approach to parsing.

1 Introduction

The most successful approaches to wide coverage parsing are the history-based
algorithms, where the parse tree is viewed as a sequence of decisions (a deriva-
tion), and the probability of the tree is calculated by combining single deci-
sion probabilities. The resolution of structural ambiguity in probabilistic terms
relies on a learning process over large text corpora annotated with syntactic
structures (treebanks). History-based parsers are generally modeled upon prob-
abilistic context-free grammars, and produce more accurate results if they learn
about bilexical dependencies between head words of constituents [2, 3]. Though
in general these approaches use specialized machine learning techniques, general
learning frameworks are also applicable (ID3 algorithm [7], maximum entropy
model [13]). The most common control structure is the chart-based (or dynamic
programming) technique.

This paper explores the possibility that a psycholinguistically motivated
parser can also perform well on freely occurring text. Our reference theories
in the psycholinguistic literature are those theories that rely on learning parse
decisions from the past experience (e.g., [12]). Specifically, we have developed an
incremental history-based parsing model that relies on a dynamic grammar, and
solves attachment ambiguities by using a general machine learning technique
(recursive neural networks).

The incrementality hypothesis assumes that humans process language from
left to right, and proceed by chunking partial parses that span the initial frag-
ment of the sentence (we can call these partial parses incremental trees). Wide
coverage parsing models are rarely based on the incrementality hypothesis. An
exception to this claim is the work of [14], who have implemented a predictive
parser, which selects the parses to expand with a probabilistic best-first method
and a beam search algorithm. With the incremental strategy, the probabilistic
model follows the chain of rule predictions that allow the linking of the next



input word. A natural way to encode such linguistic knowledge is the dynamic
grammar approach. A dynamic grammar characterizes the syntactic knowledge
in terms of states, and transitions between states [11], thus forming a framework
where competence and performance can be easily put in relation (derivation
steps and parsing actions coincide). In our approach, the states of the dynamic
grammar are the incremental trees, and the transitions between states are the
attachment operations of partial structures that extend an incremental tree to
include the next input word.

The probabilistic model that informs the parsing decisions relies on a learning
technique that involves a neural network model, called recursive neural network
[5]. Recursive neural networks can adaptively process labeled graphs, and exploit
the supervised learning paradigm on structured data. The incremental trees
are the instances in the learning domain, and the prediction task consists in
estimating the probability that a given incremental tree is the correct one.

The paper is organized as follows: Section 2 introduces the basic notions
of incremental processing, and illustrates the parsing strategy. In section 3 we
formulate the learning task, and specialize the basic network architecture to solve
the learning problem considered here. In section 4 we describe the experimental
setup, and discuss the results.

2 Incremental parsing with connection paths

Incremental processing of natural language (incrementality for short) is a widely
held hypothesis upon the parsing actions of the human language processor. Ac-
cording to incrementality, the semantic interpretation of some fragment of the
sentence occurs as the scan of the input material proceeds from left to right.
This incrementality hypothesis has received a large experimental support in the
psycholinguistic community over the years: from the shadowing experiments [10],
to the data about head-final language processing [1, 6, 8], to the eye-movement
studies of visual object recognition [4]. In this section, we provide an operational
definition of incrementality, which forms the core of the parsing process.

The operational account of the incrementality hypothesis we are going to
pursue here is called strong incrementality, and is a parsimonious version of
incrementality (see [15]). This proposal shares some commonalities with a num-
ber of psycholinguistic models [16, 17] and the broad coverage predictive parser
described in [14]. Parsing proceeds from left to right through a sequence of in-
cremental trees, each spanning one more word to the right. No input is stored
in a disconnected state.

The connection of the next input word to the existing structure (what is
called the left context) requires the construction of a substructure called the
connection path (see Figure 1). In parsing naturally occurring text, this results
in a high number of candidate connection paths, which yields a hard search
problem.

Before describing the parsing algorithm, we provide some basic definitions.
Given a sentence s = w0w1 · · ·wi · · ·w|s|−1 and a tree T for it, we define recur-
sively the incremental trees Ti(i = 0, 1, ..., |s| − 1) spanning w0 · · ·wi as follows:
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Fig. 1. The connection path for “steeper” in “He thinks steeper prices are to come.”

– T0 consists of the node w0;
– Ti consists of all the nodes and edges in Ti−1 and the chain of nodes and

edges from wi to N , where N is
• either a node of Ti−1,
• or the lowest node of T dominating both the root of Ti−1 and wi (in this

case Ti also includes the edge from N to the root of Ti−1).

Given two incremental trees T1 and T2, we define the difference between T1

and T2 as the tree formed by all the edges which are in T1 and not in T2, and
all the nodes touched by such edges. Now, given a sentence s = w0w1 · · ·w|s|−1

and a tree T for it, the connection path for wi is the difference between the
incremental trees Ti and Ti−1. Moreover,

– A node both in Ti and in Ti−1, and touched by an edge only in Ti, is called
an anchor (that is, a node where the connection path anchors to Ti−1).

– The node labeled by the POS tag of wi is called a foot.

In Figure 2a, we show the sequence of incremental trees for a sentence of the
corpus. The notions introduced so far underlie a parsing schema that operates
incrementally with a grammar composed of connection paths. The grammar of
connection paths is a sort of dynamic grammar [11], that is a grammar that de-
fines the linguistic knowledge in the form of possible transitions between parsing
states.

In order to implement a wide coverage parser, we have collected a large basic
grammar of connection paths. We have run a simulation algorithm on sections
2-21 of the Penn treebank (about 40,000 sentences). The simulation algorithm
collects all the incremental trees associated with the trees in the sample, by
simulating the building of the syntactic structure as it would be built by a per-
fectly informed incremental parser (a similar approach has been described in
[9]). The data base (or universe) of connection paths extracted from the dataset
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Fig. 2. (a) The incremental trees of the sentence “It has no bearing on the performance
of our company stock.” Nodes are labeled with the incremental tree that includes them
for the first time. (b): Local ambiguity in incremental processing of the same sentence.
The figure shows the incremental tree T3, with its potential anchors and the connection
paths compatible with one of the anchors (NP).

counts 5.348. The connection paths as defined here do not include any informa-
tion beyond the structural commitments which are necessary to incorporate the
new word in input (see Figures 1 and 2a). Linguistically informed connection
paths would include further nodes required by constraints posed by the individ-
ual words. For example, in Figure 1 the node SBAR would be predicted by the
sub-categorization frame of the word “thinks”, and so it would not be part of
the connection path for linking “steeper”.

2.1 Parsing strategy

Let us consider the parsing search space S(s) associated with a given sen-
tence s = w1, . . . , wn. States in this space consist of incremental trees, and
state transitions (search operators) correspond to legal attachments of connec-
tion paths to incremental trees. The initial state is the empty tree. Goals are
all the states whose associated parse trees span the whole sentence under con-
sideration. Clearly, the generic parse tree at depth i of the search tree spans
w1, . . . , wi. The search space S(s) is a tree for every sentence s, and any incre-
mental tree for w1, . . . , wi can be identified by the unique sequence of connection
path attachments j1, j2, . . . , ji in its derivation. We denote by Tj1,...,ji the result-
ing incremental tree. Note that only one derivation j∗1 , . . . , j∗n leads to the correct
tree for w1, . . . , wn. Our method consists of defining a probability distribution
over the space of possible derivations and then seeking the most likely derivation.
The probability distribution over derivation is factorized using the psycholinguis-
tic notion of preference in the first pass attachment, modeled as the conditional
probability

P (Tj1,...,ji
|Tj1,...,ji−1) (1)

Given an incremental tree spanning w1, . . . , wi−1, several candidate incremental
trees can be built to accommodate the next word wi. We denote by Fj1,...,ji−1 the
forest of candidate parse trees obtained by linking wi to Tj1,...,ji−1 . We assume



this set of candidates is exhaustive and contains the correct incremental tree for
w1, . . . wi. Hence: ∑

Tj1,...,ji
∈Fj1,...,ji−1

P (Tj1,...,ji
|Tj1,...,ji−1) = 1 (2)

Since derivations are unambiguous, we can recursively apply equation 1, obtain-
ing

P (Tj1,...,ji
) = P (Tj1,...,ji

|Tj1,...,ji−1)P (Tj1,...,ji−1). (3)

where in the base step we assign probability one to the empty tree spanning the
empty sentence. As a result, the probability of a full parse Tj1,...,jn

is

P (Tj1,...,jn) =
n∏

i=1

P (Tj1,...,ji |Tj1,...,ji−1). (4)

Conditional probabilities in Eq. 1 are empirically estimated from a treebank and
modeled by a recursive neural network, a machine learning architecture that can
solve the supervised learning problem when instances are represented by labeled
acyclic graphs [5]. The algorithm for learning first pass attachments is outlined
in the next section.

Finding the most likely analysis in this framework is computationally ex-
pensive due to the large size of the state space. We found that the average
branching factor (corresponding to the number of first pass attachment alterna-
tives) is about 132 in the set of 40k sentences mentioned above. Since exhaustive
search is computationally unfeasible, a beam search algorithm is employed for
selecting a pool of candidate analyses receiving high probability according to the
above model. The outer loop of the algorithm sweeps the sentence word by word,
from left to right. At each stage i, we create a beam of Bi best candidates by
expanding and scoring each candidate selected in the previous stage. Branches
of search space with low probability incremental trees are thus pruned, based on
the rationale that they are unlikely to appear as the left fragment of the most
likely full analysis.

3 Formulating parse decisions with a neural network

Ambiguity comes in two forms: the number of possible anchors on the right edge
of Ti−1, and the number of different paths that can link wi with Ti−1 from some
anchor (see Figure 2b). A selection procedure chooses the best connection path
and anchor for continuation, and instantiates it to generate the new incremental
tree Ti. Now we first formulate the learning task, and then we illustrate the
network architecture.

3.1 The learning task
The instances of the learning domain are the incremental trees. We start from
a core corpus of parsed sentences, which is denoted as B = {(s(p), T (s(p))), p =
1, · · · , P} where s(p) is a generic sentence and T (s(p)) its parse tree. The universe



of connection paths U(B) is the set of all connection paths that can be extracted
from T (s(p)), p = 1, · · · , P by running the simulation algorithm described above.
The universe U(B) effectively plays the role of a dynamic grammar for the
sentences in B.

Given a sentence s = w0, . . . , w|s|−1 (not in the corpus B), at stage i of
parsing we know the correct incremental tree Ti−1(s) spanning w0, . . . , wi−1. The
goal of an incremental parser is then to compute the next tree Ti(s) in order to
accommodate the next word wi. Ti(s) can be obtained by joining Ti−1(s) to one
of the connection paths in U(B). However, other trees spanning w1, · · · , wi can be
generated by legally attaching other connection paths. The set of trees obtained
by legally attaching Ti−1(s) to any path in U(B) is called the forest of candidates
for word wi within sentence s, denoted F i(s) = {Ti,1(s), . . . , Ti,mi(s)}. Of course,
only one of the trees in F i(s), Ti,j?(s), is the correct one (and maybe none, in
case of incompleteness of the grammar).

The learning algorithm relies on a statistical model that assigns probabilities
of correctness to each candidate tree. Parameters of the model are estimated
from examples. Then the model can be effectively employed to rank alternative
trees, sorting them by increasing probability of correctness.

The learning task is formulated as follows: Each instance is the whole forest
of candidate trees F i(s). The task consists of learning the correct member of
the forest, which can be identified by a multinomial variable with realizations
in {1, . . . ,mi(s)}. Training examples are pairs (F i(s), j?

i (s)), where the input
portion is the candidate forest and the output portion (supervision) is the integer
j?
i (s) ∈ [1,mi(s)] identifying the correct tree.

One learning instance is a “bag” of objects (trees), which contains exactly
one positive instance, and such instance can be always identified in the training
set. In a probabilistic setting this means that the learner should make deci-
sions about multinomial output variables Oi(s) whose realizations are integers
in [1, · · · ,mi(s)] identifying the correct tree in the bag associated with word wi

in sentence s. In particular, for each position i within s and for each alternative
j, the learner should predict the quantity

yi,j(s) = P (Oi(s) = j|F i(s)) (5)

where Oi(s) = j means that Ti,j(s) is the correct tree. Predictions are conditional
to the whole set of candidates thus introducing competition among trees in the
forest. In the following subsection we shall explain how this learning task can
be solved using a connectionist approach. To simplify notation, reference to the
particular sentence s will be omitted in the following discussion.

3.2 Neural network architecture

We use an architecture, called recursive neural network, which is suitable for
dealing with labeled directed acyclic graphs [5]. The input I in the present case
is a labeled ordered forest of m-ary trees, where labeled means that each vertex
has a label from a finite alphabet I = I1, . . . , IN (namely, the current set of non-
terminal symbols in the universe of connection paths), and ordered means that



for each vertex v, a total order is defined on the m children of v (ch[v] denotes the
ordered m-tuple of vertices that are v’s children; I(v) denotes the label attached
to vertex v). The basic network computation is based on the following recursive
state space representation:

x(v) = f(x(ch[v]), I(v))
a = g(x(r)). (6)

x(v) ∈ IRn denotes the state vector associated with node v; x(ch[v]) ∈ IRm·n

is a vector obtained by concatenating the components of the state vectors con-
tained in v’s children; f : I × IRm·n → IRn is the state transition function
that maps states at v’s children and the label at v into the state vector at v;
g : IRn → IR is the output function, that maps the state x(r) (at the root r
of the input tree) into a real number a. States in Eq. (6) are updated bottom-
up, traversing the tree in post-order. If a child is missing, the corresponding
entries in x(ch[v]) are filled with the frontier state x, which is associated with
the base step of recursion. Functions f and g are implemented by two multilay-
ered perceptrons. After all mi(s) trees in the forest F i(s) have been processed
by the same network, we obtain a vector of mi(s) real outputs ai,j(s). These
real numbers are eventually passed through the softmax function (normalized
exponentials) to obtain the probabilities that will be used to rank trees in the
forest.

Supervised learning is based on the maximum likelihood principle as in many
other neural network models. The cost function has the form of a cross-entropy
(negative log-likelihood according to the multinomial model) and is written as
follows:

J(D) = −
P∑

p=1

|s(p)|−1∑
i=0

log yi,j∗ (7)

where D denotes the training set, the first sum ranges over sentences in the
training set, the second sum ranges over words within each sentence, and j? is the
index of the correct incremental tree in the candidate list (which is known in the
training set). Optimization is solved by gradient descent. In this case, gradients
are computed by a special form of backpropagation on the feedforward network
obtained by unrolling the state transition network according to the topology of
the input graph I [5].

4 Implementation and results

In this section, we illustrate the experiments we carried out to demonstrate
the viability of the method. We have carried on two experiments to evaluate
two different subcomponents of our systems. The first experiment has been the
verification that the network can generalize appropriately over incremental trees
in order to predict the correct connection path for the expansion. In the second
experiment we have combined neural network predictions with the simple search
strategy described above.



4.1 Dataset

The reference grammar is the data base of 5,348 connection paths extracted
from the sections 2-21 of the WSJ Collection of the Penn II Treebank (39,831
sentences, about 1 million words). For the training set section 2-21 was used
(about 40,000 sentences), for the validation set section 24 (about 3,500 sen-
tences), and for the test set section 23 (about 2,500 sentences). Each sentence of
the three sets was processed in the following manner. For each word wi, we have
examined a forest of candidate incremental trees F i, formed by identifying the
possible anchor nodes on the right frontier of Ti−1 and the foot category of wi,
and composing Ti−1 with all the connection paths in the universe U(B) that are
compatible with the anchor category and the foot category (see Figure 2b) 1.
we do not consider individual words and semantic affixes of non-terminal labels.
For example, both NP-PRD and NP-MNR have been collapsed to NP. The total
number of non-terminal symbols is 72.

In our runs, the average cardinality of a candidate set F i is 133, and the
maximum cardinality is 2542. This gives a precise idea of the amount of am-
biguity that occurs for the connection of each word. In the training set (40k
sentences), the total number of words is about 1 million and the total number
of candidates is 126 millions. In the test set (2416 sentences), the total number
of words is 51,433 and the total number of candidates is 7 millions.

The recursive network used for the experiments implements the model de-
scribed in Section 3.2, and has the following specifications: m = 15 (maximum
outdegree), N = 72 labels (one-hot encoded), and n = 20 state components,
yielding a total of 7,440 adjustable parameters. Each tree in the forest is pro-
cessed separately by a recursive network with one linear output unit. The result-
ing numbers are then normalized with the softmax function. All the trees (both
the correct and the incorrect ones) are grouped into 1 million forests and are
employed to train the network in each epoch.

In all the experiments, we estimated generalization (the average position R
of the correct candidate) by running the partially trained networks in recall
mode on the 3,676 validation sentences. Gradient descent was stopped when the
performance on the validation set was maximum. This early stopping is expected
to be useful in order to prevent overfitting. Due to the redundancy in our large
training set, 4 epochs were sufficient.

4.2 Results on learning first pass attachments

The output of the trained network is employed to rank candidate trees by increas-
ing probability of correctness. Hence, the performance measure of our approach
to parse decisions is based on the rank position assigned to the correct tree in
each forest F i.

A synthesis of results on the 2,416 test sentences is reported in Table 1. Each
time the parser tries to attach a word, it must select a connection path (actually
1 Notice that the model does not make use of lexical and semantic information, which

are considered very relevant in wide coverage parsing.



Table 1. Performance of the network in positioning the correct incremental tree.

Bin R 1 pos % Num

2 – 7 1.18 88% 2727
8 – 14 1.22 90% 2738

15 – 20 1.27 88% 2734
21 – 29 1.27 88% 2913
30 – 39 1.57 84% 2895
40 – 49 1.43 84% 2974
50 – 61 1.51 85% 2845
62 – 75 1.70 79% 2790
76 – 89 1.64 82% 2810

Bin R 1 pos % Num

90 – 103 1.56 84% 2885
104 – 123 1.69 83% 2974
124 – 145 1.61 83% 2909
146 – 176 1.68 82% 2995
177 – 207 1.93 79% 2984
208 – 255 1.82 81% 2969
256 – 330 1.86 82% 2998
331 – 476 2.26 77% 2989

477 – 2542 3.74 67% 2304

an incremental tree) out of a certain number that can range from 1 (unique
selection) to 2542. In order to rate the performance of the network in selection,
we have gathered the possible cases in bins: so, the first row includes the cases
which require the selection of one connection path out of two, three, four and
up to seven, respectively; the second row includes the cases which require the
selection of one connection path out of eight to fourteen, respectively; etc. The
actual bins originate from the effort of balancing their cardinality (around 3000,
see the last column). R is the average position of the correct incremental tree,
after having sorted candidates according to network predictions. R = 1 would
yield a perfect predictor that always ranks the correct tree in first position. The
third column reports the percentage of times that the correct incremental tree
was in the first position. The fourth column reports the cardinality of the bin.
Globally, 82.67% of the trees are correctly assigned in first position and the
global average position is 1.70.

4.3 Preliminary results on incremental parsing

We have run the parser on the 2,416 test sentences with a beam of 100. We are
perfectly aware that this number is very low compared with the base beam factor
(10,000) used by Roark and Johnson. 97% of the sentences were parsed (that
is, reached the end)2. The performance of the parser on the 2,416 test sentences
was 64.89% labeled precision and 57.84% labeled recall with an average crossing
of 2.76 (that becomes precision/recall 70.27/62.62 if we consider only sentences
shorter than 30 words). Of course these preliminary results still do not compete
against the level of performance of many current history-based parsing systems
(precision/recall 76%/76% and average crossing of 2.26 for parsers that operate
only with POS tags, without lexical information). However, we believe that the
results are encouraging, and we are currently investigating how to incorporate
lexical dependency information and grammatical transformations.
2 The fact that 3% were not parsed is to be accounted to the incapability of the

recursive neural network to process trees containing nodes with outdegree greater
than the maximum specified (in our case 15).



5 Conclusions
The paper has presented a novel methodology for parsing unrestricted text
based upon the incrementality hypothesis. The results are quite preliminary.
The method currently takes into account only the syntactic structure labeled
with non terminal categories. The insertion of a number of linguistic heuristics
should improve the performances presented here.
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