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Abstract

In Optimality Theory, a linguistic input is assigned a grammatical structural description by

selecting, from an infinite set of candidate structural descriptions, the description which best satisfies a

ranked set of universal constraints. Cross-linguistic variation is explained as different rankings of the same

universal constraints. Two questions are of primary interest concerning the computational tractibility of

Optimality Theory. The first concerns the ability to compute optimal structural descriptions. The second

concerns the learnability of the constraint rankings.  

Parsing algorithms are presented for the computation of optimal forms, using dynamic

programming. These algorithms work for grammars in Optimality Theory employing universal constraints

which may be evaluated on the basis of information local within the structural description. This approach

exploits optimal substructure to construct the optimal description, rather than searching for the solution

by moving from one entire description to another.  

A class of learning algorithms, the Constraint Demotion algorithms, are presented, which solve

the problem of learning constraint rankings based upon hypothesized structural descriptions (an important

subproblem of the general problem of language learning). Constraint Demotion exploits the implicit

negative evidence available in the form of the competing (suboptimal) structural descriptions of the input.

The data complexity of this algorithm is quadratic in the number of constraints.  
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Chapter 1.  Introduction

In Optimality Theory (Prince and Smolensky 1993), Universal Grammar provides a set of highly

general universal constraints which apply in parallel to assess the well-formedness of possible structural

descriptions of linguistic inputs. Grammar is described in terms of an optimization function: the possible

structural description of an input that optimally satisfies the constraints is the grammatical one.  Evidence

in favor of this characterization of Universal Grammar is provided elsewhere.  Much of the work to date

addresses phonology: see Prince and Smolensky (1993) and the several dozen works cited therein, notably

McCarthy and Prince (1993a).  Work addressing syntax includes Grimshaw (1993) and Legendre,

Raymond and Smolensky (1993), as well as the papers presented at the 1995 MIT Workshop on

Optimality in Syntax.

The grammars characterized by Optimality Theory are functions mapping inputs to outputs;  they

are not directly concerned with computation.  However, one can ask interesting computational questions

about Optimality Theoretic grammars.  There are two major problems of computational linguistics.  The

first concerns the processing of linguistic forms.  The second concerns the learning of grammars for

specific languages.  This dissertation examines how these two problem areas are characterized within

Optimality Theory, and will provide answers to some specific computational questions.

1.1  Optimality Theory

This section presents a self-contained presentation of the relevant principles of Optimality

Theory.  These principles are consistently exemplified using the Basic CV Syllable Theory of Prince and

Smolensky (1993, §6), which is developed concurrently.

1.1.1  Constraints and Their Violation

(1)  Grammars are functions.

A grammar is a specification of a function which assigns to each input a unique structural description or

output.  (A grammar does not provide an algorithm for computing this function, e.g., by sequential

derivation.)

In the Basic CV Syllable Theory, an input is a string of Cs and Vs, that is, a member of {C,V} ,+

e.g., /VCVC/.  An output is a parse of the string into syllables, which is notated as follows:
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(2) a. .V.CVC. = [  V] [  CVC]
�  �

b. �V�.CV.�C� = V [  CV] C
�

c. �V�.CV.C�. = V [  CV] [  C�]´       ´
�  �

d. .�V.CV.�C� = [  �V] [  CV] C
�  �

A syllable consists of a minimum of one and a maximum of three positions. The nucleus position is

mandatory, and may be filled by a vowel (V). The onset position, which appears before the nucleus, and

the coda position, which appears after the nucleus, are optional, and may be filled by consonants (C).

What (1) asserts is that the grammar assigns to the input /VCVC/ one structural description, such

as one of the possibilities listed under (2).  Which one gets assigned is determined by subsequent

principles.  The possibilities shown depict phenomena referred to as underparsing and overparsing.

Underparsing is represented in (2b) by the first V and the final C, both of which are not parsed into

syllable positions.  They are present in the overall structural description, but will not be pronounced in the

surface form.  Overparsing is represented in (2d) by the unfilled onset position in the first syllable

(denoted by �; an unfilled nucleus position is denoted �).  This position does not have an input segment´

parsed into it, but will be filled by phonetic interpretation, and so will be realized in the surface form (this

phenomenon is often referred to as epenthesis).

(3)  A linguistic input is mapped to a set of possible outputs by GEN.

Universal Grammar provides the set of possible inputs, the set of possible outputs, and a function GEN

which, given any input I, generates the set of candidate outputs GEN(I), for I.  The input I is a substructure

contained within each of its candidate outputs in GEN(I).

In the CV case, for any input I, the candidate outputs in GEN(I) consist in all possible parses of

the string into syllables, including the possible over- and underparsing structures exemplified above in (2).

The structural descriptions generated by GEN are strings of syllables with the following restrictions:

nuclei are mandatory, onsets and codas are optional, and positions are assumed to contain at most one

input segment.  The order of the input segments must be preserved, and each input segment must either

be placed in a syllabic position or marked as unparsed in the structural description.  Further, a C may only
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be parsed as an onset or a coda, while V may only be parsed as a nucleus.  Notice that this is a statement

of the universal set of structural descriptions to be considered, and not the inventory of optimal forms for

any particular language.

(4)  Well-formedness is assessed on the basis of universal constraints.

Universal Grammar provides a set of universal constraints which assess the well-formedness of candidate

outputs for a given input in parallel (i.e., simultaneously).  Given a candidate output, each constraint

assesses a set of MARKS each of which corresponds to one violation of the constraint; the collection of all

marks assessed a candidate c is denoted MARKS(c).

The Basic CV Syllable Structure constraints dealt with here are as follows:

(5)  ONS Syllables must have onsets.

   NOCODA Syllables must not have codas.

PARSE Input segments must be parsed (into syllabic positions).

FILL A nucleus position must be filled (with a V).Nuc

FILL An onset position must be filled (with a C).Ons

1.1.2  Optimality and Harmonic Ordering

The central notion of optimality now makes its appearance.  The idea is that by examining the

marks assigned by the universal constraints to all the candidate outputs for a given input, there is one

which is least marked, or optimal: this is the one and only well-formed description that may be assigned

to the input by the grammar.  The relevant notion of ‘least marked’ is not the simplistic one of just

counting numbers of violations.  Rather, in a given language, different constraints have different strengths

or priorities: they are not all equal in force.  When a choice must be made between satisfying one

constraint or another, the stronger must take priority.  The result is that the weaker will be violated in a

well-formed description.

(6)  The relative importance of constraints is determined by their ranking in a strict dominance hierarchy.
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The grammar of each language ranks the universal constraints in a dominance hierarchy; when

constraint �  dominates another �  in the hierarchy, it is denoted �  >> � .  The ranking is total: the1   2       1  2

hierarchy determines the relative dominance of every pair of constraints:

�  >> �  >> � >> �1  2    n

A grammar's constraint hierarchy induces on all the candidate outputs a Harmonic ordering as follows.

Let a and b be two candidate parses with sets of marks MARKS(a) and MARKS(b).  To compare a and b,

first cancel all the marks they have in common, getting lists of 'uncancelled' marks: MARKS�(a) and

MARKS�(b); now, no mark occurring in one list occurs in the other.  Then determine which list of

uncancelled marks contains the worst mark: a mark assessed by the highest-ranking constraint violated

in the two lists.  This candidate is less Harmonic or has lower Harmony than the other; if it is a, then this

relationship is denoted: a � b (MARKS(a) � MARKS(b) is also sometimes written).  For a given input, the

most Harmonic of the candidate outputs provided by GEN is the optimal candidate: it is the one assigned

to the input by the grammar.  Only this optimal candidate is well-formed; all less Harmonic candidates

are ill-formed.

Harmonic ordering in the CV case can be illustrated with a specific grammar, L .  1

(7) Constraint Hierarchy for L : ONS >> NOCODA >> FILL  >> PARSE >> FILL1
Nuc    Ons

In the following constraint tableau, the candidates of (2) are shown, along with their constraint violations.

The most dominant constraints in L  appear to the left:1
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Table 1

Constraint Tableau for L  = �1  ep,del
CV

Candidates ONS NOCODA FILL PARSE FILLNuc Ons

   /VCVC/ �

�   d. * *.�V.CV.�C�

b. �V�.CV.�C� * *

c. �V�.CV.C�.´ * *

a. .V.CVC. * *

The candidates in this tableau have been listed in Harmonic order, from highest to lowest

Harmony; the optimal candidate is marked manually (determining that this candidate is optimal requires

demonstrating that it is more Harmonic than any of the infinitely many competing candidates). Starting

at the bottom of the tableau, verify that a � c.  The first step is to cancel common marks: here, there are

none.  The next step is to determine which candidate has the worst mark, i.e., violates the most highly

ranked constraint: it is a, which violates ONS.  Therefore a is the less Harmonic.  In determining that c �

b, first cancel the common mark *PARSE; c then earns the worst remaining mark of the two, *FILL .  TheNuc

importance of retaining multiple marks can be seen in the comparison of b to d: one *PARSE mark cancels,

leaving MARKS�(b) = {*PARSE} and MARKS�(d) = {*F ILL }.  The worst mark is the uncancelled *PARSEOns

incurred by b: so b � d.

The final central principle of Optimality Theory is:

(8)  Language typology is explained by re-ranking the universal constraints.

Cross-linguistic variation is principally due to variation in language-specific rankings of the universal

constraints.  Analysis of the optimal forms arising from all possible rankings of the constraints provided

by Universal Grammar gives the typology of possible human languages. Universal Grammar may impose

restrictions on the possible rankings of its constraints.
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If in L 's constraint hierarchy we exchange the two FILL  constraints, we get L :1            2

(9)  Constraint Hierarchy for L : ONS >> NOCODA >> FILL  >> PARSE >> FILL2
Ons    Nuc

Now the tableau corresponding to Table 1 becomes Table 2; the columns have been re-ordered to reflect

the constraint re-ranking, and the candidates have been re-ordered to reflect the new Harmonic ordering:

Table 2

Constraint Tableau for L  =  �2   del,ep
CV

Candidates ONS NOCODA FILL PARSE FILLOns Nuc

   /VCVC/ �

�   c. * *�V�.CV.C�.´

b. �V�.CV.�C� * *

d. .�V.CV.�C� * *

a. .V.CVC. * *

Like L , all syllables in L  are CV; /VCVC/ gets syllabified differently, however.  In L , underparsing is1     2          2

used to avoid onsetless syllables, and overparsing to avoid codas (L  is Prince and Smolensky's (1993)2

language � ).CV
del,ep

In the CV theory, Universal Grammar imposes no restrictions on the ranking of the constraints

I have discussed here (5).  Analysis of all possible rankings of these constraints reveals that the resulting

typology of basic CV syllable structures is an instantiation of Jakobson's typological generalizations

(Jakobson 1962, Clements & Keyser 1983): see Prince and Smolensky (1993, §6).  In this typology,

syllable structures may have required or optional onsets, and, independently, forbidden or optional codas.

1.2  Computational Questions in Optimality Theory

Central to language processing is the assigning of structural descriptions to linguistic material

via algorithms.  Within the Optimality Theory framework, the most obvious such mapping is the assigning

of a structural description to a linguistic input.  The corresponding computational problem is the problem
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of computing the optimal description, or parse, of an input.  I will call this the parsing problem in

Optimality Theory.

(10)  The parsing problem:  computing the optimal parse of an input.

The exact correspondence of the competence input/output mapping to the performance processes

of comprehension and production remains an open issue, although the input/output mapping is more

naturally understood as a mapping from an underlying form to a description including the surface phonetic

form, and thus as corresponding to production.

The computability of optimal descriptions has been of real concern to people working in

Optimality Theory, because a grammar is described in terms of the simultaneous generation, evaluation,

and comparison of an infinite number of candidates.  This description can make the problem appear

intractable: how could an algorithm efficiently compute the optimal description if it must generate and

evaluate an infinite number of candidate descriptions?  This dissertation will show that it is not necessary

to generate and evaluate an infinite number of candidates in order to compute the optimal description.

Provably correct algorithms will be given which efficiently compute the optimal description for grammars

satisfying a few basic conditions.

Cross-linguistic variation is explained in Optimality Theory through the rankings of the universal

constraints.  Therefore, an important part of language learning in Optimality Theory is learning the correct

ranking of the universal constraints for a given language, from positive data.  I will call this the

learnability problem in Optimality Theory.

(11)  The learnability problem:  learning the correct constraint ranking from positive data.

One challenging aspect of this problem in Optimality Theory is imposed by the use of violable

constraints.  Given a grammatical description, a learner might observe that it violates some of the universal

constraints.  But if grammatical descriptions are allowed to violate constraints, how can anything be

learned from those observations?  There is also a combinatorial concern.  The number of distinct total

rankings is a factorial function of the number of constraints: 10 constraints have 10! = 3,628,800 distinct

rankings.  If the amount of data required to learn the correct ranking scales as the number of possible
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rankings, then a grammar with many constraints could require a prohibitively large amount of data to be

learned successfully.  This dissertation will show that a significant subproblem of the learnability problem,

that of inferring rankings from hypothesized structural descriptions, has an efficient solution.  Provably

correct algorithms will be given which compute the correct ranking from positive data in the form of

structural descriptions, and require an amount of data on the order of only the square of the number of

constraints.

To be precise about the goals of this work:  it is not claimed here that any of these algorithms are

psychologically "plausible", in the sense of being detailed models of human processing.  Developing

plausible psychological models of language processing and acquisition based upon Optimality Theory

proposals is a more ambitious project.  This work is more preliminary.  This work addresses the very

serious doubts that these problems can be solved by any algorithms whatsoever.  Nevertheless, I sincerely

hope that some of the principles and insights underlying these algorithms will eventually contribute to

psychological models.  

1.3  Overview

Chapter 2 and Chapter 3 address the parsing problem in Optimality Theory.  Chapter 2 discusses

parsing when the linguistic representational structures may be described by a regular formal grammar;

the Basic CV Syllable Theory is such as case, and is used as an example.  Chapter 3 discusses parsing

when the linguistic representational structures are described by context-free formal grammars.  The

parsing algorithm for the context-free case is a direct extension of the algorithm for the regular case.

Chapter 4 addresses the learnability problem in Optimality Theory.  Algorithms are there presented which

apply to any linguistic grammar within the framework of Optimality Theory.  Chapter 5 briefly

summarizes the main results, and discusses some possible directions for future research.



Chapter 2.  Parsing:  Regular Structures

In Optimality Theory, grammaticality  is defined in terms of optimization over a large (often

infinite) space of candidates.  This raises the question of how grammatical forms might be computed.  This

chapter and the next examine this question in detail.  It will be shown that parsing in Optimality Theory

is tractable, given reasonable restrictions on the universal constraints and on GEN.  An algorithm is

described which computes the optimal parse of the input in time that is linear in the length of the input.

As an illustration, the Basic CV Syllable Theory is discussed and a complete algorithm is detailed for

grammars defined within that theory.  The main ideas of the parsing algorithms will be presented in the

course of presenting that example.  A later section will explain how to create a complete parser for any

grammar with regular representational structures. 

2.1  The Parsing Problem in Optimality Theory

Recall from chapter 1 the parsing problem, repeated here for convenience:  

(10)  The parsing problem:  computing the optimal parse of an input.

Although Optimality Theory is easily understood mathematically in terms of the generation and

evalutation of all candidates in parallel, it is unnecessary, and in fact counterproductive, to consider

computing optimal forms in those terms.  Intuitively, the algorithm presented in this chapter works by

gradually constructing a few candidate parses as it works its way through the input.  When the end of the

input is reached, only a few complete parses have been constructed, one of which is guaranteed to be the

optimal structural description (relative to the entire candidate set).  This will be accomplished by making

some assumptions about the grammar being parsed.  This chapter discusses the case in which the core set

of �skeletal structures� employed by the grammar may be described by a formal regular grammar (the

notion of a core set of �skeletal structures� is formalized in section 2.2 by the concept of position

grammar).  The universal constraints of the grammar are assumed to be "local" in a sense to be made

precise below.  Under these assumptions, a grammar may be parsed in linear time.  The next chapter will
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Ellison (1994) has independently developed some work on computing optimal forms in1

Optimality Theory that is similar in principle to part of the work in this chapter, although expressed in the
formalism of finite state automata.  Among the additional ideas provided in this chapter are independent
characterizations of the formal description of the grammar, the input and the parser, as well as a method
for creating a parser from a description of the grammar.

discuss the case in which the position grammar is a general context-free grammar, and will provide an

algorithm for that case with a complexity that, while not linear, is still reasonable.1

2.1.1  The Technique:  Dynamic Programming

The challenge is to efficiently choose the optimal structural description from an infinite set of

candidates.  The solution is to avoid dealing with whole structural descriptions, and instead build up the

optimal one piece by piece.  The basic technique used to do this is dynamic programming (see, e.g.,

Corman, Leiserson, & Rivest 1990). The algorithm presented here is related to chart parsing (see, e.g.,

Kay 1980), an algorithm used in natural language parsing that employs dynamic programming.  Dynamic

programming has also been used for optimization in sequence comparison (Sankoff & Kruskal 1983) and

Hidden Markov models (see, e.g., Rabiner 1989).  The algorithm presented here combines the use of

dynamic programming for language structure processing with dynamic programming for optimization,

resulting in optimization-based language processing.

2.1.2  The Main Idea:  An Intuitive Explanation of Dynamic Programming

Due to the nature of the problem under consideration, the analysis presented in this paper will

at times involve considerable formal complexity. With that in mind, the fundamental idea underlying the

analysis,  dynamic programming, is here introduced via an intuitive analogy.   Suppose that there are two

towns, X and Y. In between these towns is a river, which must be crossed in order to travel from X to Y.

There are three bridges across the river: A, B, and C. Suppose that we wish to find the shortest - the

optimal - route from X to Y.  

We know that any path between X and Y must cross one of the three bridges. There are many

different ways to get from Town X to each of the three bridges, and many different ways to get from each

of the bridges to Town Y. However, we can simplify our problem by first only considering the best way



11

to get from X to A, the best way from X to B, and the best way from X to C. Having found each of these

"sub-routes", we could make a small chart for future reference: it would have three entries, each giving

the route and the distance of the route to one of the bridges. Next, we could consider the best way to get

to Y from each of the three bridges. Once we determine the shortest route from bridge A to town Y, we

can easily calculate the shortest route from X to Y which crosses bridge A, by adding the distance of the

shortest route from A to Y with the chart entry giving the distance from X to A. In the same fashion, we

can calculate the shortest route from X to Y crossing B, by combining the shortest route from B to Y and

using the already calculated shortest route from X to B. The same can be done for bridge C. At this point,

we need only choose the shortest of three routes: the shortest route of those for each of the three bridges.

Notice that there are many possible routes between X and Y: just considering bridge A, every

possible route from X to A may be combined with every possible route from A to Y. In fact, the problem

is best understood in that fashion, as the problem of searching the space of all possible routes between X

and Y to find the shortest one. But while the problem is most easily stated and understood in those terms,

it is not most easily solved in those terms. The above illustration gives the essence of dynamic

programming: break a large problem, like traveling from X to Y, into smaller sub-problems, like traveling

from X to A, and traveling from A to Y.

The value of this way of thinking is perhaps even more apparent if we change the problem so that

there are two rivers between X and Y: the second river having three bridges, D, E, and F. In this case, we

would first put into our chart the shortest route from X to the bridges A, B, and C. Next, for bridge D, we

would consider the shortest route from each of the bridges A, B, and C. We would then make another

chart entry giving the shortest route from town X to bridge D: this will be the shortest of three routes, the

shortest route from X to D via bridge A, via bridge B and via bridge C. Next, similar short entries would

be written down for bridges E and F. Finally, we could calculate the shortest route from town X to town

Y by considering the shortest route via bridge D, via E and via F. Again, at the end, we need only compare

three complete routes between X and Y.
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Strictly speaking, Prince and Smolensky (1993) describe these restrictions by universally fixing1

the constraints NUC, *COMPLEX, *M/V, and *P/C at the top of the hierarchy.  This insures that they are
unviolated in optimal forms, so I here treat them as part of GEN.

The algorithm presented in this paper will use dynamic programming to compute optimal forms.

Each segment of the input is something like a river in the above illustration. There are a limited number

of ways to deal with one input segment, and the best way to do each can be recorded in a table. Once all

of the input segments have been considered in order, only a very few entire parses of the input need be

compared in order to determine the optimal one.  

2.2  A Formal Characterization of The Basic CV Syllable Theory

Recall the Basic CV Syllable Theory, as laid out in Chapter 1.  An input to the grammar is a

sequence of segments categorized as consonants and vowels, that is, a member of {C,V} .  The structural+

descriptions generated by GEN are strings of syllables with the following restrictions:   nuclei are

mandatory, onsets and codas are optional, and positions are assumed to contain at most one input segment.

The order of the input segments must be preserved, and each input segment must either be placed in a

syllabic position or marked as unparsed in the structure.  Further, a C may only be parsed  as an onset or

a coda, while V may only be parsed as a nucleus.  Notice that  this is a statement of the universal set of

structural descriptions to be considered, and not the inventory for any particular language.  For a given

input, GEN generates all possible syllable structures that contain the input, and meet the restrictions just

given .  The constraints of the theory are given in (5) (repeated here for convenience):1

(5)  ONS Syllables must have onsets.

   NOCODA Syllables must not have codas.

PARSE Input segments must be parsed (into syllabic positions).

FILL A nucleus position must be filled (with a V).Nuc

FILL An onset position must be filled (with a C).Ons

These constraints are violable and may be ranked differently by different languages.
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Prince and Smolensky (1993) implicitly describe the space of possible structural descriptions.

Immediately below, I give a formal description of this space.  This description is used when explaining

the parser for the CV Theory.

For computational purposes, I will regard a structural description of an input as a string of

syllabic positions, referred to as a position structure, which are matched with the input segments. The

positions are represented by the symbols {o,n,d}, for onset, nucleus, and coda, respectively ('C' is reserved

for consonant). In a given structural description, each position may be filled with at most one input

segment, and each input segment may be parsed into at most one position. Any input segment not parsed

into a syllabic position is so marked in the structural description. For a given position structure, each

allowable way of matching the input with the structure counts as a candidate structural description. An

allowable matching is one in which the order of the input segments is preserved, and in which V segments

are only parsed into n positions, while C segments are only parsed into o and d positions.

Figure 1 shows some examples of candidate parses for the input /VC/ as expressed in these terms.

Figure 1  Parses for /VC/ expressed with position strings.

The lower case letters are syllable positions.  Syllable positions with vertical bars under them are filled

by the input segments immediately under the vertical bars.  Any syllable position without a vertical bar

underneath is unfilled in that parse.  An input segment (V or C) which is not underneath a vertical bar is

unparsed.
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I will use the following position grammar to describe the set of allowable position structures:

(12) S  	  e | oO | nN

O  	  nN

N  	  e | dD | oO | nN

D  	  e | oO | nN

The terminals in the position grammar are the syllabic positions and  the empty string (e). The non-

terminals {S, O, N, D} may be thought of as corresponding to states in the derivation of a position

structure. S is the starting state. O signifies that the last position generated was an onset (o), N that a

nucleus (n) was just generated, and D a coda (d). Those non-terminals which may evaluate to e correspond

to possible finishing states. O is not a finishing state, because a syllable with an onset must also have a

nucleus.  This position grammar guarantees that each syllable has a nucleus, that onsets precede nuclei,

that codas follow nuclei, and that there is at most one of each type of position per syllable.  

It should here be emphasized that the position grammar just discussed is a descriptive formalism

useful in understanding GEN; it is NOT a computational mechanism. The actual computational

mechanism understandable in terms of the position grammar is the set of operations contained in the

Operations  Set, described below.

2.3  Parsing the CV Syllable Theory

The algorithm proceeds by creating a table, called the Dynamic Programming  Table, and filling

in the cells of the table. Once all of the cells have been filled, the optimal form is quite easily determined.

Section 2.3.1 describes the table and explains how it contributes to computing the optimal form.  Section

2.3.2 describes the operations used to fill the cells of the table, discussing both how they relate to the table

and how they relate to CV Syllable Theory.

2.3.1  The Dynamic Programming Table

Table 3 shows the Dynamic Programming Table for the input /VC/, with the constraint ranking

ONS >> NOCODA >> FILL  >> PARSE >> FILL .Nuc    Ons
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Table 3

Dynamic Programming Table for /VC/

BOI i  = V i  = C1 2

S �V� �VC�

O � .�V.� .�V.C

N �� �V .�V.�C�´

D .���. .�V�. .�VC.´

Optimal Parse: .�V.�C� This parse is represented in cell [N,i ].2

Each cell in this table contains  a structure.  Each column of this table stands for a segment of the

input except the first column, BOI, which corresponds to the "beginning of the input".  Notice that each

cell in the column headed i  contains a V; further, every structure in the column headed i  contains both1           2

a V and a C, in the correct order.  The label on each row is a non-terminal of the position grammar, and

corresponds to a type of syllable position.  Notice that for each structure in the N row,  the last-generated

position in the structure is a nucleus.  The O row contains structures ending in an onset,  while the D row

contains structures ending in a coda.  The S row only contains structures in which no positions at all have

been generated (i.e., all of the input segments seen are unparsed).

Each cell contains a structure representing the best way of parsing the input up through the

segment for that column.  The last column (the column for the last input segment) includes the complete

parses to be considered.  The optimal parse is easily chosen from among this set of possibilities.

In general, a given input string I = i i ...i  is parsed by constructing a dynamic programming table.1 2 J

The table has one column for each segment of the input, plus a first column, BOI.   The BOI column is

present because positions may be generated at the beginning, before any of the input has been examined

(this would correspond to epenthesis at the beginning of the utterance). Each cell corresponds to a partial

description, which is a structural description of part of the input.  Ultimately, each cell contains the

optimal way of parsing the input up through the segment heading the column, with the last syllable
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position in the structure matching the row label.  The  table cell [N,i ] corresponds to the optimal way of2

parsing up through the second segment of the input, with a nucleus being the last structural position in the

partial description.  Each cell also contains the constraint violation marks assessed the partial description,

and representing the Harmony of that description (these marks are not depicted in Table 3).

The parsing algorithm proceeds by filling in the columns of the table one at a time, left to right.

After the best way of parsing the input through segment i  ending in each non-terminal has beenj-1

calculated (the entries of column i ), those values are then used to determine the best way (for eachj-1

possible final position) of parsing the input through segment i . Once all the values for the last column arej

determined, the Harmony values in the table cells of the last column in rows corresponding to possible

finishing states are compared (this is explained in greater detail below). The cell containing the highest

Harmony value thus also contains the optimal parse of the input.

2.3.2  The Operations Set

Operations are used to fill cells in the Dynamic Programming (DP) Table.  An operation works

by taking the partial description in a previously filled cell, adding an element of structure to it, and putting

the new description in the new cell.  A cell entry is determined by considering all of the operations that

might fill the cell, and selecting the one with the highest resulting Harmony to actually fill the cell.  This

is the essence of dynamic programming:  because the partial descriptions in later cells contain the partial

descriptions listed in earlier cells, the earlier cell entries may be used directly, rather than explicitly

recalculating all of the possibilities for later cells.

Each operation is based upon one of three primitive actions.  The three primitive actions are:

(13) (a) parsing a segment of input into a syllabic position;

(b) underparsing an input segment;

(c) overparsing a syllabic position.

Primitive actions (a) and (c) involve generating positions, so they must be coordinated with productions

in the position grammar of GEN; (b) does not involve position generation.  On the other hand, actions (a)

and (b) consume input, while (c) does not.  Operations are versions of the primitive actions coordinated
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with the specifics of the model (GEN and the universal constraints). An operation may be specified by

four things: the new cell (being filled), the previous cell containing the description being added to, the

structure added to the partial description, and the constraint violation marks incurred by the operation. A

candidate structural description of an input may thus be viewed as resulting from a sequence of operations.

It should be emphasized that an operation does not transform one entire structural description into another,

but merely adds to a partial description.

As an example, consider the actions that might fill cell [O,i ] of the DP Table.  Recall that the2

structure in this cell must contain input segments i  and i , and the last syllabic position in the structure1  2

must be an onset.  One possibility is the underparsing action: take the structure from the cell immediately

to the left in the same row, [O,i ], and add to it the input segment i marked as underparsed.  We don't need1         2 

to consider any other ways of filling this cell with i  underparsed, because we have already guaranteed that2

[O,i ] contains the best way of parsing through i  ending in an onset.  The resulting Harmony of the1         1

operation will be the Harmony listed in [O,i ], with the mark {*PARSE} added to it (indicating the1

constraint violated by underparsing).  If  i  is a consonant, then another possibility is to parse i  into a2          2

newly generated onset position.  This requires having a structure from the previous column to which an

onset position may be legally appended.  The position grammar shows that an onset position may be

generated directly from the non-terminals S, N, and D; this corresponds to the intuitive notions that an

onset must be at the beginning of a syllable, and may be the first position of a description (generated from

S), may immediately follow a nucleus position (generated from  N), or may immediately follow a coda

position (generated from D). An onset position may not immediately follow another onset position,

because then the first onset belongs to a syllable with no nucleus.  Fortunately, we have already

determined that the cells [S,i ], [N,i ], and [D,i ] do contain the optimal partial descriptions for these three1  1   1

cases.  Finally, the cell [O,i ] may be filled by an overparsing operation that would take a structure which2

already contains i  and append an unfilled onset position.  2

The set of possible operations is called the Operations Set, and is organized to indicate what

operations may fill each type of cell (the cells are here typed by row). Table 4 shows the Operations Set
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for the CV syllable theory.  Each row in the table corresponds to an operation.  The new cell column

shows the type of cell to be filled by the operation.  The condition column contains any additional

conditions that must be met in order for the operation to apply (in this case, the restriction of V to nuclei,

etc.).  The previous cell column indicates the relative position of the cell containing the partial description

being added to by the operation.  The structure column indicates the additional structure added by the

operation.  The violations column shows the constraint violation marks incurred by the added structure.

The final two columns are informational:  the production column lists the position grammar production

used by the operation if one is used, and the operation type column indicates the type of operation.  
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Table 4

The Operations Set

Information

New Condition Previous Struc Violations Production Operation

Cell Cell Type

[S,i ] [S,i ] �i � {*P ARSE} Underparsingj j-1 j

[O,i ] [O,i ] �i � {*P ARSE} Underparsingj j-1 j

[O,i ] IF i =C [S,i ] o/i {} S 	 oO Parsingj j j-1 j

[O,i ] IF i =C [N,i ] o/i {} N 	 oO Parsingj j j-1 j

[O,i ] IF i =C [D,i ] o/i {} D 	 oO Parsingj j j-1 j

[O,i ] [S,i ] o/� {*F ILL } S 	 oO Overparsingj j
Ons

[O,i ] [N,i ] o/� {*F ILL } N 	 oO Overparsingj j
Ons

[O,i ] [D,i ] o/� {*F ILL } D 	 oO Overparsingj j
Ons

[N,i ] [N,i ] �i � {*P ARSE} Underparsingj j-1 j

[N,i ] IF i = V [S,i ] n/i {*O NS} S 	 nN Parsingj j j-1 j

[N,i ] IF i = V [O,i ] n/i {} O 	 nN Parsingj j j-1 j

[N,i ] IF i = V [N,i ] n/i {*O NS} N 	 nN Parsingj j j-1 j

[N,i ] IF i = V [D,i ] n/i {*O NS} D 	 nN Parsingj j j-1 j

[N,i ] [S,i ] n/� {*O NS *FILL } S 	 nN Overparsingj j
´ Nuc

[N,i ] [O,i ] n/� {*F ILL } O 	 nN Overparsingj j
´ Nuc

[N,i ] [N,i ] n/ � {*O NS *FILL } N 	 nN Overparsingj j
´ Nuc

[N,i ] [D,i ] n/ � {*O NS *FILL } D 	 nN Overparsingj j
´ Nuc

[D,i ] [D,i ] �i � {*P ARSE} Underparsingj j-1 j

[D,i ] IF i = C [N,i ] d/i {*N OCODA} N 	 dD Parsingj j j-1 j

[D,i ] [N,i ] d/ � {*N OCODA} N 	 dD Overparsingj j
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The Operations Set relates to the DP Table as follows. The Operations Set gives all of the

possible operations that may fill a given cell in the Dynamic Programming Table. Each of the possible

operations "competes" to fill in the cell.  The product of each operation is a partial structure consisting of

two things: the partial structure contained in the operation's previous cell with the operation's additional

structure appended to it, and the Harmony of the new partial structure, which consists of the list of marks

in the operation's previous cell with the marks incurred by the operation added to it. The operation

producing the most harmonic partial description (that is, the one whose resulting list of marks is least

offensive with respect to the constraint ranking of the grammar) actually gets to fill the cell. Told from

the point of view of the algorithm, examine each of the operations which can fill the current cell, select

the one which produces the most harmonic partial structure, and place that operation's partial structure and

list of marks into the current cell.

The cell [S,BOI] is the starting cell: no input has yet been examined, and no positions have been

generated. So, [S,BOI] has a Harmony value of no constraint violations in it. The other cells in the BOI

column may be filled from there by overparsing operations. The cells in the BOI column may only be

filled by overparsing operations, as there are no input segments for other operations to work with.

One crucial aspect has not yet been explained about the application of this formula. The Parsing

and Underparsing operations have a previous state cell from the previous column in the DP Table, i .j-1

However, the Overparsing operations refer to other cells in the same column of the DP Table as the cell

being filled. How, in general, can these cells be filled, if the value for each cell in the column depends

upon the values in the other cells of the column? The answer involves some intricate details of the

algorithm, and is given in the next section.

Notice that, in the Operations Table, the Parsing operations contain IF conditions. These are used

to enforce constraints of the CV theory  that consonants (C) may only fill onsets and codas, and vowels

(V) only nuclei. These restrictions are assumed to be part of GEN, and so are included here as IFs.
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2.3.3  Limiting Structure: Position Grammar Cycles

The overparsing operations consume no input, and so they map between cells within a single

column. In principle, an unbounded number of such operations could apply, and in fact structures with

arbitrary numbers of unfilled positions are contained in the output space of GEN (as formally defined).

However, the algorithm need only explicitly consider a finite number of such operations within a column.

The position grammar has four non-terminals. Therefore, at most three overparsing operations can take

place consecutively without the repeating of a non-terminal. A set of consecutive overparsings that both

begins and ends with the same non-terminal can be considered a cycle. An example of a cycle of

overparsings is an entire epenthesized syllable.  The FILL  constraints serve to penalize overparsings by

penalizing any structural positions unfilled by input segments.

This fact is not specific to the Basic Syllable Theory.  For any theory within Optimality Theory,

the constraints must ban cycles of overparsings in order for the optimal value to be well-defined.   If the

constraints make a description containing such a cycle more Harmonic than a description differing only

by the removal of that cycle, then there is no optimal value, because one could always increase the

Harmony by adding more such cycles of overparsings. If such cycles have no Harmony consequences,

then there will be an infinite number of optimal descriptions, as any optimal description can have more

cycles of overparsings added. Thus, for the optimization with respect to the constraints to be well-defined

and reasonable, the constraints must strictly penalize overparsing cycles.  The number of non-terminals

in the position grammar bounds the number of consecutive overparsings that may occur without having

a cycle.

Operations are properly applied to the Dynamic Programming Table by first filling in all cells

of a column considering only underparsing and parsing operations (which only use values from the

previous column). Three passes are then made through the column cells, considering the overparsing

operations: if the resulting Harmony of an overparsing operation into a cell from another cell in the same

column is higher than the Harmony already listed in the cell, replace the Harmony in the cell with that

resulting from the considered overparsing operation.
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The ban on overparsing cycles is the crucial observation that allows the algorithm to complete

the search in a finite amount of time; although the space of structural descriptions to be searched is

infinite, there is a provably correct (input-dependent) bound on the space of descriptions that actually need

to be considered.

2.3.4  Selecting the Optimal Parse

Once the entire table has been completed, the optimal parse may be selected. In the position

grammar, certain non-terminals may evaluate to the empty string. This means that they can be the last

non-terminal in a derivation, and therefore that the syllable position to which each corresponds is a valid

end of syllable position. Therefore, the cells in the final column, in rows corresponding to these

non-terminals, contain valid complete parses of the input. For the Basic Syllable Theory, the non-terminals

are N and D, signifying that a syllable may end in a nucleus or a coda, and S, for the null parse. These

three entries are compared, and the entry with the highest Harmony is selected as the optimal parse of the

input.  

2.3.5  Overview of the Parser

NOTE:  OP(i ) stands for the result (structure and marks) of applying operation OP for column i .j               j

Set [S,BOI] to no structure and no violation marks

Fill each other cell in column BOI with the best overparsing operation that currently applies  

Repeat until no cell entries change  

For each row X in BOI 

For each overparsing operation OP for X  

If Harmony(OP(BOI)) > Harmony([X,BOI]), set [X,BOI] to OP(BOI)  
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For each column i , proceeding from left to right  j

For each row X  

Fill [X,i ] with the result of the underparsing operation for X  j

For each parsing operation OP for X  

If Harmony (OP(i )) > Harmony([X,i ]), set [X,i ] to OP(i )j   j   j   j

Repeat until no cell entries change  

For each row X  

For each overparsing operation OP for X  

If Harmony (OP(i )) > Harmony([X,i ]), set [X,i ] to OP(i )j   j   j   j

Select from the final column the most Harmonic of the entries in rows S, N, and D

2.3.6  A Sample Parse 

Table 5 is an example of the filled Dynamic Programming Table for the input /VC/, with the

constraint ranking ONS >> NOCODA >> FILL  >> PARSE >> FILL .Nuc    Ons
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Table 5   

The Completed Dynamic Programming Table for  /VC/.

BOI i  = "V" i  = "C"1 2

S START under from:[S,BOI] under from:[S,i ]

*PARSE *PARSE *PARSE

�V� �VC�

1

O over from:[S,BOI] over from:[N,i ] parse from:[N,i ]

*FILL *FILL  *FILL *FILLOns

.� .�V.� .�V.C

1

Ons Ons

1

Ons

N over from:[O,BOI] parse from:[O,BOI] under from:[N,i ]

*FILL  *FILL *FILL *FILL  *PARSEOns Nuc

.�� .�V .�V.�C�´

Ons

1

Ons
�

D over from:[N,BOI] over from:[N,i ] parse from:[N,i ]

*FILL  *FILL *NOCODA *FILL  *NOCODA *FILL  *NOCODAOns Nuc 

.���. .�V�. .�VC.´

1

Ons

1

Ons

Optimal Parse: .�V.�C� This parse is represented in cell [N,i ].2

The top line of each cell contains on the left an indication of the type of operation that filled the

cell, and on the right (after the 'from:' label) the row and column designation of the previous cell (the

already-filled cell whose structure was added onto by the operation to fill the current cell).  The

abbreviations indicate the kind of operation that filled the cell: 'over' for overparsing, 'under' for

underparsing, and 'parse' for parsing. The constraint violation marks assessed the partial description are

given on the middle line of each cell, and the bottom of each cell shows the partial description represented

by that cell.  The cell containing the optimal parse is indicated manually, and the cells which constitute

the steps in the construction of the optimal parse are double-lined.
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Parsing begins by filling the cells of the first column. The first cell, [S,BOI], is automatically

filled with no structure, which incurs no constraint violations. Next, the cell [O,BOI] is filled. For this,

the Operations Set is consulted. The Operations Set lists seven operations that can fill a cell in the O row.

However, the underparsing and parsing operations do not apply here because they make reference to

entries in an earlier column, which does not exist here. Of the three overparsing operations, two require

entries in cells not yet filled: [N,BOI] and [D,BOI]. The remaining operation uses the entry in [S,BOI]

as the previous cell and adds an unfilled onset position. This structure is placed in the cell, and the

incurred mark listed in the operation. Next, the cell [N,BOI] is filled. Of the nine operations listed for a

cell in the nucleus row, two may be considered here. The first is for previous cell [S,BOI], and results in

violations of ONS and FILL . The second is for previous cell [O,BOI], and results in violations of FILLNuc              Ons

and FILL . Because ONS  >> FILL , the result of the first operation has lower Harmony than the resultNuc      Ons

of the second; thus, the second operation gets to fill the cell. The cell [D,BOI] is filled similarly. That

completes the first pass through the column for the overparsing operations. Next, a second pass is

performed; now, for each cell, all of the overparsing operations may be considered, because each cell in

the column contains an entry. However, no further overparsing operations change any of the cell entries,

because none improve the Harmony of the entry.

Now, column i  must be filled. The cells are first filled via the underparsing and parsing1

operations.  We will focus in detail on how cell [O,i ] gets filled. First, the one underparsing operation fills1

the cell; this results in a structure which has an unfilled onset position, and in which the first input

segment, i  = V, is left unparsed. Next, the three parsing operations are considered. But none apply,1

because the input segment is a V, and an onset position may only have a C parsed into it. The

underparsing and parsing operations for the rest of the column are now performed.  The results of the steps

up to this point are shown in Table 6.
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Table 6

The DP Table with the Underparsing and Parsing Operations Completed for Column i1

BOI i  = V i  = C1 2

S START under [S,BOI]

*PARSE

�V�

O over [S,BOI] under [O,BOI]

*FILL *FILL  *PARSEOns

.� .��V�

Ons

N over [O,BOI] parse [O,BOI]

*FILL  *FILL *FILLOns Nuc

.�� .�V´

Ons

D over [N,BOI] under [N,BOI]

*FILL  *FILL  *NOCODA *FILL  *FILL  *NOCODA *PARSEOns Nuc

.���. .���.�V�´

Ons Nuc

´

Finally, we consider the overparsing operations that might fill the cell. It is important to

remember that each of the cells in the column have already been filled on the basis of underparsing and

parsing operations before any overparsing operations are considered. For [O,i ], there are three1

overparsing operations to be considered. The first adds an unfilled onset to the structure in [S,i ], yielding1

�V�.�, which incurs marks *PARSE and *FILL . The second adds an unfilled onset to the structure in cellOns

[N,i ], giving .�V.�, which incurs marks *FILL  and *FILL . The third one has previous cell [D,i ],1                1
Ons  Ons

giving .���.�V�.�, which incurs marks *FILL , *FILL , *NOCODA, *NOCODA, and *FILL . Of the´ Ons  Nuc     Ons

three, the second overparsing operation has the highest resulting Harmony. Importantly, it also has higher

Harmony than the entry already in cell [O,i ], because PARSE >> FILL . Therefore, the result of this1
Ons

overparsing operation replaces the earlier entry in the cell.  Overparsing also replaces the entry in [D,i ].1
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On the next pass through the column, no cell entries are replaced by further overparsing operations, so

the column is complete.

Once all of the columns have been filled, the optimal parse may be selected.  The final candidates

are the structures in the cells in the final column, and in rows S, N, and D.  These rows are considered

because these are the non-terminals that may evaluate to the empty string e in the position grammar.  In

the complete table above, the optimal parse is in cell [N,i ].  2

2.3.7  Ties

It is possible for two different operations to tie for optimality when attempting to fill a cell. To

illustrate, there are two ways to derive an essentially identical partial description: first insert and then

delete, or first delete and then insert. In this case, the tie might be seen as a kind of anomaly, having no

significance to the ultimate phonetic realization. However, if more than one  truly different partial

description for the same cell incurred identical marks, including all of them in the cell permits all of the

optimal descriptions to be recovered from the table, if that cell should happen to figure in the set of

descriptions ultimately found to be optimal.

2.4  Creating Parsers for Grammars

The previous section illustrated the parsing method with the Basic CV Syllable Theory. However,

the parsing method is not limited to this theory or to phonology. It is a general method for parsing in

Optimality Theory when the position grammar is regular. This section describes how to create a parser

for any Optimality-Theoretic grammar satisfying the appropriate conditions. The next section provides

a general definition and analysis of the parsing method.

For any given grammar with a regular position structure grammar, the Operations Set may be

constructed as follows. First, for any cell [X,i ] where X is a non-terminal (x is the correspondingj

structural position unless X is S), one allowable operation is to underparse the input segment. So,  include

the underparsing operation that takes the structure in [X,i ] and adds an underparsed i  to it.  For eachj-1      j

position  grammar production with the non-terminal X on the right-hand side, two operations are possible:

the generated position x has the next input segment parsed into it, or it is left unfilled. So,  for each



MATCH(P,I) � M[pK,iJ]

M[p0,i0] � { the null structure}

M[p0,i j] � { s��i j��s�M[p0,ij�1]}

M[pk,i0] � { s�pk/��s�M[pk�1,i0]}

M[pk,i j] � { s��i j��s�M[pk,ij�1]} � { s�pk/i j�s�M[pk�1,ij�1]} � { s�pk/��s�M[pk�1,i j]}
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production Y	xX generating X, create two operations: a parsing operation which takes the structure in

[Y,i ] and appends a position x with i  parsed into it, and an overparsing operation which takes thej-1        j

structure in [Y,i ] and appends an unfilled position x.  Add to each operation any conditions which restrictj

its application (such as the restriction of vowels to nucleus positions in the Basic Syllable Theory).

Finally, each operation must be supplied with marks indicating the constraint violations incurred by its

application.

The Dynamic Programming Table will have one row for each non-terminal in the position

grammar.  For any given input, it will have a first column, BOI, and one subsequent column for each input

segment.

2.5 Formal Analysis

2.5.1 Formal Definition of Optimality Theory Grammars

(14) Def.  The position structure grammar � is a formal regular grammar which generates position

structures.  Each terminal symbol of � is a structural position.  Each production should be of one

of two forms: X 	 yY, X 	 e.  The start symbol is S.

(15) Def.  A unit of structure is any of the following: (a) a single input segment marked as underparsed;

(b)  a single position filled with a input segment; (c) a single unfilled position.

(16) Def.  Suppose there are an input I = i  ... i , and a position structure P = p  ... p .  A matching µ is a1  J        1  K

string of units, where the set of possible matchings between P and I is MATCH(P,I), defined by

the following recurrence:



GEN(I) � �
P�L(�)

MATCH(P,I)

OPT(I) � maxH{�[X f,iJ] � X f�e � �}

�[S,i0] � { the null structure}

�[S,i j] � {�[S,ij�1]��i j�}

�[X k,i0] � maxH{�[X m,i0]�x k/� � Xm�x kX k � �}

�[X k,i j] � maxH

{�[X k,ij�1]��i j�} �

{�[X m,ij�1]�x k/i j � Xm�x kX k � �} �

{�[X m,ij]�x k/� � Xm�x kX k � �}

maxH{ GEN(I)}
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The ‘+’ operator here means concatenation.  The ‘/’ operator here means to fill the position to

the left of the operator with the material to the right of the operator.  The set {the null structure}

contains precisely one object, which consists of exactly no structure.  Asserting the existence of

this object at the base of the recurrence allows the rest of the recurrence to begin building

descriptions by concatenating structure to the null structure.  

This definition may be augmented by further restrictions for different specific instances of GEN (for

example, forbidding consonants from being parsed into nucleus positions).

(17) Def.  The set of candidate structural descriptions for input I is 

L(�) is the set of all position structures generated by �.

(18) Def.  The structural description(s) assigned to I by the grammar is .  The function

maxH{} returns the structural description(s) with maximum Harmony.  Implicit in the definition

of maxH is a set of universal constraints and the ranking of those constraints.

What has just been given is a definition of the optimal form, in terms of position structures and matchings.

Nothing has yet been said about algorithms.

2.5.2 The Computing Recurrence

(19) Def.  The function OPT(I) is defined by the computing recurrence
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where i  is the equivalent of BOI in the earlier description of the DP table.  For notational0

convenience, from this point forward, ‘+’ will be treated as a set operator, appending its second

argument to each member of the set which is its first argument.

The computing recurrence bears a resemblance to the matching recurrence, but the two are quite different

in important ways.  The first index of the computing recurrence is not a specific piece of a specific

position structure, but a non-terminal of �.

The computing recurrence also has a complexity not present in the matching recurrence.  There

is a circularity in the dependencies of each set of terms with an identical value for the second index (the

input segment).  Notice that each such set of terms corresponds precisely to a column of cells in the

dynamic programming table.  The value of each term is dependent upon the values of the other terms in

the set.  Thus, each set of terms is a set of interdependent equations.  We want to determine conditions

under which a solution to each set of equations exists and is efficiently computable.

(20) Def.  A partial description � is a contiguous substring (of units) of a structural description µ

(generated by GEN) which includes the first unit of µ.  A partial description is said to have a last

non-terminal, which corresponds to the last non-terminal in the derivation of the part of the

position structure contained in the partial description.

The set of partial descriptions for an input includes all complete structural descriptions, as they are those

partial descriptions where the contiguous substring is in fact the entire string of units making up the

description.  This observation is useful, as it is now possible to give one definition of Harmony for all

partial descriptions, which includes the definition of Harmony for all complete structural descriptions.

(21) Def.  A universal constraint is local if it may be evaluated solely on the basis of the internal

configuration  of a unit of structure, and the type of position which immediately precedes it.

(22) Def.  The Harmony of a partial description is the collection of the constraint violation marks assessed

each unit of the partial description.

(23) Lemma The value of each term �[X ,i ] of the computing recurrence, if one exists, is a set of partialk
j

descriptions containing input segments i ..i  and having last non-terminal X .1 j
k
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Proof

This result is established through correspondence between the computing recurrence and the

matching recurrence.  Observe that the matching recurrence defines matchings by the recursive

concatenation of units.  Therefore, every string of units which is the value of some term of the

matching recurrence for some position structure P is a partial description.

First, observe that both recurrences have the null structure as their base case.  Thus, �[S,i ] is a0

partial description containing no input segments, and with final non-terminal S.

Now, consider some term �[X ,i ] of the computing recurrence.  The possible structuresk
j

considered as values for this term are described by the three parts of the main computing

recurrence formula (the last equation in (19)).  Assume that all of {�[X ,i ]}  contain asm
j-1 m=1..K

values only partial descriptions which contain input segments i ..i .1 j-1

Consider the first part of the main computing recurrence formula.  This considers the structure

� formed by appending a unit with i  underparsed to the partial description in �[X ,i ].  Thisj       j-1
k

directly corresponds to the first part of the main matching recurrence formula.  By hypothesis,

�[X ,i ] is a valid partial description containing i ..i  with last non-terminal X .  Then � is alsok            k
j-1        1 j-1

a valid partial description containing i ..i  with last non-terminal X .  1 j
k

Consider the second part of the main computing recurrence formula.  This considers structures

{� } formed by appending a unit, with i  parsed into position x , to the partial descriptions inm            k
j

selected {�[X ,i ]}.  This directly corresponds to the second part of the main matchingm
j-1

recurrence formula, provided that the consecutive positions x  followed by x  are part of somem   k

valid position structure.  This is guaranteed by the condition on the terms in this part of the

computing recurrence formula; this condition only permits consideration of appending a position

x  if there is a derivation rule in � permitting the derivation of position x  from non-terminal X .k              k   m

By hypothesis, each �[X ,i ] is a valid partial description containing i ..i  and with last non-m
j-1        1 j-1

terminal X .  Thus, {� } are valid partial descriptions containing i ..i  with last non-terminal X .m    m           k
1 j
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Consider the third part of the main computing recurrence formula.  This part considers structures

{� } formed by appending an unfilled x  to the structures in selected {�[X ,i ]}.  This partm       k      m
j

directly corresponds to the third part of the main matching recurrence formula, provided that the

consecutive positions x  followed by x  are part of some valid position structure.  The provisionm   k

is guaranteed by the condition on the terms in this part of the computing recurrence formula; this

condition only permits consideration of appending a position x  if there is a derivation rule in �
k

permitting the derivation of position x  from non-terminal X .  Therefore, if {�[X ,i ]} containk   m     m
j

only valid partial descriptions containing i ..i  with last non-terminal X , then the structures1 j
k

obtained by appending the unfilled x  are also valid partial descriptions containing i ..i  with lastk
1 j

non-terminal X .k

Call the number of unfilled positions in a structure following the last unit containing an input

segment the final overparsing length of that structure.  The partial descriptions considered by the

first two parts of the main computing recurrence formula, discussed above, have final

overparsing length 0.  Because the third part of the computing recurrence formula only considers

structures of final overparsing length one or greater, the earlier results for the first two parts of

the computing recurrence formula establish that all structures of final overparsing length zero

that are considered  are valid partial descriptions.  Now, assume that all considered structures of

final overparsing length  N-1 are valid partial descriptions.  Any considered structure �  of finalm

overparsing length N is considered only through the third part of the computing recurrence

formula.  The structure being appended to, �[X ,i ], must be of final overparsing length N-1.m
j

By hypothesis, that structure is a valid partial description.  Therefore, �  is a valid partialm

description.  By mathematical induction, all structures considered by the third part of the main

computing recurrence formula are valid partial descriptions containing i ..i  with last non-terminal1 j

X .k
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This exhausts the main computing recurrence formula, as all three parts have now been shown

to consider only valid partial descriptions.  Thus, only partial descriptions containing i ..i  with1 j

last non-terminal X  may be values of the terms of the computing recurrence.k

(24) Def.  A cycle of overparsing units is a contiguous string of unfilled positions in which the first and

last units are the same type of position.

(25) Def.  A Harmony function is said to ban overparsing cycles if, for any partial description which

contains a cycle of overparsing units, removing all but the first unit of the cycle results in a new

partial description which is strictly more harmonic.

(26) Lemma Suppose that the Harmony function bans overparsing cycles.  Then for any X  and i , of allk
j

partial descriptions containing i  through i  and with last non-terminal X , there exist a subset that1  j
k

have maximum Harmony, and that subset is finite.

Proof

Let K be the number of types of non-terminals.  In any candidate partial description, there are

only a finite number of units containing input segments (j of them, to be precise).  By the

pigeonhole principle, between any two units containing consecutive input segments, there cannot

be more unfilled positions than there are types of positions without repeating a position, thus

creating an overparsing cycle.  Identical reasoning gives the same bound on the number of units

that may occur before the first input segment, or after the last input segment.  Thus, a partial

description cannot have more than (j+1)*K unfilled units without overparsing cycles.  Thus,

there are only a finite number of candidate partial descriptions which do not contain any

overparsing cycles.

By assumption, any candidate containing an overparsing cycle is strictly less harmonic than some

candidate without that overparsing cycle.  Thus, there are only a finite number of candidates,

those not containing overparsing cycles, which could possibly have maximum Harmony.

Because the set of optimal partial descriptions is contained in this finite set, and because there

is guaranteed to be at least one candidate that does not contain overparsing cycles, the set of
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candidate partial descriptions with maximum Harmony is finite, and contains at least one partial

description.

(27) Lemma Suppose that the Harmony function bans overparsing cycles, and that the universal

constraints are local.  Then for any set of computing recurrence terms {�[X ,i ]}  the solutionk
j k=1..K

values for these terms exist.  For each term �[X ,i ], the solution value is precisely the set ofk
j

partial descriptions of maximum Harmony containing i ..i  and with final non-terminal X .  1 j
k

Proof

By lemma (23), the computing recurrence only considers, as possible values for �[X ,i ], partialk
j

descriptions  containing i ..i  and with final non-terminal X .  By lemma (26), we know that for1 j
k

each recurrence term �[X ,i ], there exist a positive finite set of partial descriptions containingk
j

i ..i  and with final non-terminal X , that have maximum Harmony.  Assign to each term its1 j
k

corresponding set of optimal partial descriptions.  Consider some partial description � assigned

to �[X ,i ].k
j

Suppose that the last unit of � contains i  underparsed.  Then the partial description containingj

all but this last unit is an optimal partial description for �[X ,i ].  Suppose, to the contrary, thatk
j-1

it weren’t.  Then a better solution for �[X ,i ] could be constructed by appending the last unit ofk
j

� to an optimal value for �[X ,i ].  The locality of the universal constraints guarantees that thek
j-1

marks assessed the final unit will be the same when that unit is appended to any partial

description with last position X .  The Harmony of any partial description including the final unitk

is thus simply the collection of violation marks assessed the partial description without the final

unit, with the marks assessed the final unit added to it.  This contradicts the assumption that �

is an optimal solution.  Thus, � satisfies the recurrence, as it is considered by the first part of the

recurrence, and is of maximum Harmony out of all possible partial descriptions considered for

�[X ,i ].k
j

Suppose that the last unit of � contains i  parsed into x .  Then � with this last unit removed isj
k

an optimal partial description for the term �[X ,i ], where X  is the last non-terminal of thism   m
j-1
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partial description.  Suppose, to the contrary, that it weren’t.  Then a better partial description for

�[X ,i ] could be constructed by appending the last unit of � to an optimal value for �[X ,i ].k                 m
j                 j-1

This contradicts the assumption that � is an optimal solution.  Thus, � satisfies the recurrence,

as it is considered by the second part of the recurrence, and is of maximum Harmony out of all

partial descriptions considered for �[X ,i ].k
j

Suppose now that the last unit of � does not contain input segment i .  By containment, � mustj

include a unit containing i , so the last unit of � must be an unfilled x .  Then � with this last unitj
k

removed is an optimal partial description for  �[X ,i ], where X  is the last non-terminal of thism   m
j

partial description.  Suppose, to the contrary, that it weren’t.  Then a better partial description for

�[X ,i ] could be constructed by appending the last unit of � to an optimal value for �[X ,i ].k                 m
j                 j

This contradicts the assumption that � is an optimal solution.  Thus, � satisfies the recurrence,

as it is considered by the third part of the recurrence, and is of maximum Harmony out of all

partial descriptions considered for �[X ,i ].k
j

This demonstrates that assigning the optimal partial descriptions to each of the computing

recurrence terms solves the recurrence.  Finally, no other solutions exist, because the recurrence

only assigns to a term partial descriptions of maximum Harmony among those considered.  The

base case, �[S,i ], is fixed, so for each term considering descriptions of length one or greater, the0

optimal values are considered.  So any other partial descriptions are disallowed by the recurrence

in virtue of their sub-optimality.

(28) Theorem Suppose that the Harmony function bans overparsing cycles, and that the universal

constraints are local.  Then OPT(I) = maxH{GEN(I)}.

Proof

First, consider the set of descriptions selected by OPT(I).  By definition, OPT(I) only considers

recurrence terms �[X ,i ] where X  	 e is in �.  This ensures that each term has as values onlyk   k
J

descriptions with valid final positions, and thus that each term has as values only descriptions



IterSolve({�[X k,i j]} k)

{�[X k,ij�1]��i j�}

maxH{�[X k,i j], {�[X m,ij�1]�x k/i j � Xm�x kX k � �}}

maxH{�[X k,i j], {�[X m,i j]�x k/� � Xm�x kX k � �} }

({�[X k,i j]} k)

�[X k,i0]

�[X k,i0] maxH{�[X k,i0], {�[X m,i0]�x k/� � Xm�x kX k � �} }

�[X k,i0]

{�[X k,i j]} k IterSolve({�[X k,i j]} k)

maxH{�[X f,iJ] � X f�e � �}
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generated by GEN(I).  Thus, the set of candidates optimized over by OPT(I) is a subset of the

candidates optimized over by GEN(I).  Then OPT(I) 
 maxH{GEN(I)}.

Now, consider the set of descriptions selected by maxH{GEN(I)}.  Each such description � must

have a valid final non-terminal X .  Thus, such a description is one of the descriptions optimizedk

over by �[X ,i ].  Thus, for each �, � 
 �[X ,i ] 
 OPT(I).  Then maxH{GEN(I)} 
 OPT(I).k         k
J         J

It follows that OPT(I) = maxH{GEN(I)}.

2.5.3 The Dynamic Programming Algorithm

(29) Def.  The iterative solution procedure for a set of computing recurrence equations

 is:

For each X , set �[X ,i ] to k   k
j

For each X , set �[X ,i ] to k   k
j

Repeat

For each X , set �[X ,i ] to k   k
j

Until no �[X ,i ] has changed during a passk
j

Return 

(30) Def.  The dynamic programming algorithm DP(I) is:

Set �[S,i ] to {the null structure}0

For each X�S, set  to �k

Repeat

For each X , set  to k

Until no  has changed during a pass

For each i , set  to j

Set Answer to 

Return (Answer)

The symbol � represents the �worst possible Harmony� value.  This is used as a way of marking terms

that have not yet been assigned a partial description as a candidate value.
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This algorithm directly corresponds to the dynamic programming algorithm described in the

earlier sections.  Each recurrence term �[X ,i ] is the same as cell [X ,i ] of the Dynamic Programmingk       k
j       j

Table.  Index i  is the same as column heading BOI.  The Operations Set simply lists the pre-calculated0

consequences of each operation considered by IterSolve().

(31) Theorem Suppose that GEN is defined as above, the universal constraints are local, and the resulting

Harmony function bans overparsing cycles.  Then DP(I) computes the optimal structural

description of I.

Proof

By theorem (28), OPT(I) is the optimal structural description of I.  It remains to be shown that

DP(I) correctly computes it.

The nature of the algorithm is to consider certain candidate solutions, and keep any solution

considered unless another solution is explicitly considered which is more Harmonic.  Therefore,

it can be proven that all optimal solutions for a computing recurrence term are computed by

showing that all optimal solutions are explicitly considered by the algorithm.

Observe that �[S,i ] is assigned the optimal solution by the recurrence, because there is only one0

possible candidate.  The repeat loop in the main DP() is separate only because this first set of

terms may only consider partial descriptions with unfilled structure (no input segments have yet

been considered).  The logic proving this loop correct is the same as that for the other sets of

inter-related terms as given below.  However, in this first set the only solutions of final

overparsing length zero are the pre-assigned values of the null structure and �.

Consider the term �[X ,i ], assuming that {�[X ,i ]}  contain all of their optimal solutions.k    m
j    j-1 m=1..K

By the lemma (27), we know that the correct solutions for this term are those partial descriptions

containing i ..i  with final non-terminal X  that have maximum Harmony, and that a positive,1 j
k

finite number of such descriptions exist.  Consider some arbitrary optimal solution �.



maxH{�[X f,iJ] � X f�e � �}
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Suppose that the last unit of � contains i  underparsed.  Then it is explicitly considered by thej

first step of IterSolve().  Suppose that the last unit of � contains i  parsed into a position.  Thenj

it is explicitly considered by the second step of IterSolve().

Suppose now that the last unit of � does not contain i .  By containment, � must include a unitj

containing i , so there must be some finite substring of unfilled positions following the unitj

containing i .  Call the number of such unfilled positions the final overparsing length of �.  Thej

solutions considered in the first two steps, where the final unit did contain i , are thus solutionsj

with final overparsing length zero.  It will next be shown that if all optimal solutions of final

overparsing length N-1 have been considered, then all optimal solutions of length N will be

considered.

Suppose that � has final overparsing length N.  Then the partial description containing all but

this last unit is an optimal solution of length N-1.  By hypothesis, this solution of length N-1 has

already been considered.  Because it is an optimal solution, when it was considered, it was added

as an optimal value for �[X ,i ], thus changing the value of �[X ,i ].  This change ensures thatm       m
j       j

another pass of the third step of IterSolve() will take place after.  On this next pass, when �[X ,i ]k
j

is evaluated, � will be considered, because the third step explicitly considers solutions which

append an unfilled x  to all optimal solutions already determined for �[X ,i ].k        m
j

Therefore, IterSolve() finds the correct values for every term �[X ,i ].k
j

The only remaining step of the algorithm computes  just as

specified for OPT(I).  Therefore, DP(I) correctly computes OPT(I).  

(32) Corollary  The Basic CV Syllable Theory grammars may be correctly computed by DP(I).

Proof

First, observe that the set of position structures is defined by an appropriate formal grammar.

Next, observe that each of the universal constraints is local in the appropriate sense.  Next,

observe that the two FILL  constraints, along with the locality of the other constraints, guarantee

that descriptions with overparsing cycles are sub-optimal.  Removing all but the first member
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of an overparsing cycle eliminates the FILL  violations incurred by the removed units.  It cannot

incur any new violations, because the constraints are local to units, and no new units are added

when cycle units are removed.  Thus, the Harmony function bans overparsing cycles.

Finally, consider the hard conditions banning the parsing of V into an onset or coda position and

banning the parsing of C into a nucleus position.  Both of these conditions are entirely local (they

may be evaluated for individual units) and simply rule out certain operations considered in step

two of IterSolve().  In fact, they may be treated as superordinate (undominated) constraints for

the purposes of the algorithm.

Thus, all the conditions of the main theorem are satisfied, so the theorem applies.

2.5.4  Computational Complexity

Each column in the DP Table is processed in constant time for any fixed grammar:  the number

of cells in each column is the number of non-terminals in the position grammar, and the number of passes

through the column is bounded from above by the number of non-terminals, due to the fact that

overparsing cycles are sub-optimal.  There is one column for each input segment (plus the BOI column).

Therefore, the algorithm is linear in the size of the input.  

2.6  Conditions on and Extensions of the Algorithm

2.6.1  Parsing More Than One Segment into a Position

The algorithm as defined in section 2.5 inherits from the Basic Syllable Theory the simplifying

assumptions that each syllable position may have at most one input segment parsed into it. As stated in

a footnote above, this constraint actually comes from ranking the constraint *COMPLEX as superordinate.

More sophisticated syllable theories will need to have a space of candidate parses which permits violations

of this constraint. This may be accommodated by the current algorithmic scheme. What is required are

more complex versions of the parse operation. One parse operation could parse the new input segments

into the last syllable position in a partial structure (as opposed to adding a new position with the new

segment parsed into it). This operation would then incur a mark indicating the violation of *COMPLEX,

along with marks for any other constraints violated.  
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What the algorithm requires is that a new input segment may be parsed by a parse operation into

either the current last syllable position, or into a newly generated syllable position. What is not permissible

under the current form of the algorithm is the parsing of the current segment into a position preceding the

final position in the partial structure; this would violate the sense of locality required by the algorithm.

Notice that this does not require that two input segments sharing a syllable position be consecutive in the

input. What it requires is that, if two input segments are not consecutive but are sharing a single syllable

position, that all intervening input segments be either parsed into the same position or unparsed.

2.6.2  Locality

A property of the Basic CV Syllable Theory important to the success of the algorithm is the

"locality" of the constraints.  Each constraint may be evaluated on the basis of at most one input segment

and two consecutive syllable positions.  What really matters here is that the constraint violations incurred

by an operation can be determined solely on the basis of the operation itself.  The information used by the

constraints in the Basic Syllable Theory include the piece of structure added and the very end of the partial

description being added on to (the last syllabic position generated).  These restrictions on constraints are

sufficient conditions for the algorithm given.

An example of a constraint that would not be local in the context of the Basic Syllable Theory

is a constraint which requires that the number of syllables be at least two, as when a word must contain

a foot, and a foot must be binary at the level of syllables.  That constraints referring to feet are not easily

computed using the formal description given in this chaper should not be surprising, as there is no explicit

representation of feet in the structures.  To properly handle such theories, a more complex set of position

structures will probably be required, perhaps a context-free space of structures in which foot nodes may

dominate one or more syllable nodes, and so forth.  In that case, the binary foot constraint would be local

in the sense relevant to context-free position structures in Optimality Theory:  the constraint could be

evaluated solely on the basis of a foot node and the syllable nodes immediately dominated by it.  This

notion of locality will be formalized in the next chapter.
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Other examples of non-locality are alignment constraints (McCarthy & Prince 1993b).

Alignment constraints typically refer to the alignment of boundaries of constituents, where in principle

an arbitrary amount of structure may intervene between the two boundaries.  Alignment constraints can

be non-local in two ways.  One involves the relationship between constituent boundaries and context-free

structures, and will be discussed in the next chapter.  The other way occurs with a type of alignment

constraint which incurs multiple violations, one for each instance of a type of structure which intervenes

between the relevant boundaries.  This non-locality is of a restricted form, in the sense that a constraint

violation is incurred independently by each relevant unit of intervening structure.  Thus, the violation is

�local� to the unit of structure given the knowledge that it is between the two relevant boundaries, and

independent of how �far� the unit is from either of the boundaries.  This may well make many classes of

alignment constraints amenable to parsing with dynamic programming.  Efficient parsing in systems

which use alignment constraints is the subject of current research.

It is important to distinguish between locality of constraints and locality of effects.  Independent

of  computational concerns, Optimality Theory provides striking illustrations of how local constraints can

have very non-local effects.  This is reflected in the dynamic programming algorithm by the fact that more

than one partial description is maintained at each stage.  Each partial description in a column represents

a different set of decisions on what to do up to that point in the input.  The several partial descriptions are

maintained because those early decisions may interact with decisions about later parts of the input.  The

efficiency of the dynamic programming algorithm for regular structures stems from the fact that at each

stage, only a constant number of partial descriptions need to be maintained (in the case of Basic Syllable

Theory, four).



Chapter 3.  Parsing:  Context-Free Position Structures

Using a context-free position structure grammar increases the complexity of the parsing task.

Instead of a linear structure of non-terminals running parallel to the terminal positions, as in the regular

position grammar case, a string of positions may be dominated by a hierarchy of non-terminals.  The space

of possible structural descriptions will be in general richer, because in addition to a large space of possible

strings of positions, each string of positions may support several different descriptive structures.

However, while this may increase the complexity of parsing within Optimality Theory, it does not render

the problem intractable.

This chapter will present algorithms for parsing with context-free position structure grammars.

The special case of a context-free grammar in a restricted canonical form will be discussed in detail.

3.1  Context-Free Position Structure Grammars

Using a context-free position structure grammar does not greatly affect the conceptual

functioning of GEN.  The position structures still have positions as terminals, and GEN still generates all

allowable ways of matching the input string to the position string for each generated position structure.

Notice that we are here still assuming the input to be a linear string.  The increase in complexity is thus

confined entirely to the space of considered position structures.

3.2  An Algorithm for ��Revised�� Chomsky Normal Form Position Structure Grammars

Chomsky Normal Form (Chomsky 1959) is an often-studied canonical form for context-free

grammars.  Intuitively, it enforces binary branching in the derivation tree.

(33)  A formal grammar is in Chomsky Normal Form (CNF) if every production has for its right side

either two non-terminals or one terminal.  

CNF is of interest to computer scientists because, for any arbitrary context-free grammar, there is a

formally equivalent grammar in Chomsky Normal Form.  Branching which is at most binary is of interest

to linguists, because it is often considered a desirable constraint on linguistic structures, particularly in

syntax.  It is useful here because the productions are restricted to a couple of simple forms which are more

easily analyzed.  This chapter will discuss in detail a canonical form which is slightly less restrictive than



43

Chomsky Normal Form.  It enforces at most binary branching, and is here called �Revised� Chomsky

Normal Form (RCNF).

(34) A formal grammar is in �Revised� Chomsky Normal Form (RCNF) if every production has for its

right side one of the following forms: (a) two non-terminals; (b) one non-terminal; (c) one

terminal.  The production S	e is also permitted, where S is the start symbol, and e is the empty

string.

One nice property of the pure CNF is that structures cannot be generated with cycles of non-terminals

singly dominating other non-terminals (e.g., A dominates only B dominates only C dominates only A ...).

The RCNF by itself permits such structures.  This is relevant for analyses in Optimality Theory, because

excess structure is often penalized by constraints which are violated by extra material which is

phonetically realized (that is, unfilled terminal positions).  A well-defined grammar will have to ensure

that the faithfulness constraints are sufficient to restrict the amount of structure actually present in optimal

descriptions, either by ensuring that the specific position structure grammar does not permit cycles of

singly dominating non-terminals (as is the case in the example discussed below), or by having constraints

which penalize unwarranted higher structure such as non-terminals in a description, or by some other

means.

3.2.1  The Dynamic Programming Table

The Dynamic Programming Table is more complex for context-free position structures.  It is no

longer a simple two-dimensional grid.  The table now has three indices:  one indicating the identity of a

non-terminal (just like the row index in the regular grammar case), and two other indices indicating the

range of the substring of the input string covered by the non-terminal.  The cell [X,2,5] should contain the

structure of and the Harmony of the best way of parsing input segments i  through i  with a structure that2  5

has the non-terminal X at the root (that is, X dominates the rest of the structure).  The table has a cell for

every non-terminal, for every legitimate substring range of the input.  Thus, a cell for a substring of one

input segment is permitted, such as [X,3,3], but no  cells exist with  the starting index greater than the

ending index, like [X,3,2].  
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The DP Table is perhaps best envisioned as a set layers, one for each non-terminal.  A layer looks

like the following (the cells are labeled):

Table 7

Example Layer of the Dynamic Programming Table

[X,1,3]

[X,1,2] [X,2,3]

[X,1,1] [X,2,2] [X,3,3]

i i i1 2 3

It will help to visualize the table as follows.  For each non-terminal X, there is a row containing

one cell for every segment of the input:  [X,a,a] for each input segment i .  The next row will contain onea

fewer cell, and each cell corresponds to a pair of consecutive input segments:  [X,a,a+1].  The next row

has one less cell yet, with each cell covering a substring of three consecutive segments.  This pattern

continues up to the top row, which contains only one cell:  [X,1,J], where J is the length of the string.  For

each substring length, there is a collection of rows, one for each non-terminal, which will collectively be

referred to as a level.  The first level contains the cells which only cover one input segment;  the number

of cells in this level will be the number of input segments multiplied by the number of non-terminals.

Level two contains cells which cover input substrings of length two, and so on.  The top level contains

one cell for each non-terminal.

In the rest of this chapter, table cells will be denoted with square brackets, [], as above.  Tree

structures will be denoted with parentheses: a parent node X with child nodes Y and Z is denoted X(Y,Z).

3.2.2  The Operations Set 

As in the regular grammar case, the operations set contains operations corresponding to

underparsing, parsing, and overparsing actions.  Also, the parsing and overparsing operations are matched

with position structure grammar productions.  However, there is additional complexity introduced by the
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context-free position grammar.  The regular position grammar had only one type of production.  The CNF

position grammar has two main types of productions, one with a single terminal on the right hand side,

and one with two non-terminals on the right hand side.  We need parsing and overparsing operations to

correspond to each of these.  

The first type of parsing operation involves productions which generate a single terminal.

Because we are assuming that an input segment may only be parsed into at most one position, and that

a position may have at most one input segment parsed into it, this parsing operation may only fill a cell

which covers exactly one input segment.  The second kind of parsing operation is matched to a position

grammar production in which a parent non-terminal generates two child non-terminals. This kind of

operation fills the cell for the parent non-terminal by combining cell entries for the two child so that the

substrings covered by each of them combine  (concatenatively, with no overlap) to form the input

substring covered by the cell being filled. The resulting Harmony in the cell being filled will be the

combination of the marks assessed each of the substructures for the two child non-terminals, plus any

additional marks incurred as a result of the production itself.  This operation has to consider all possible

ways in which the child non-terminals, taken in order, may combine to cover the substring, and select the

way with the best resulting Harmony.  Because the child non-terminals must be contiguous and in order,

this amounts to considering each of the ways in which the substring can be divided into two pieces.  This

can be expressed as the formula shown in the Previous Cell column for this parsing operation, with b

ranging in value from a to (c-1).  

Underparsing operations are not matched with  position grammar productions, but they are more

complex for other reasons.  A DP Table cell which covers only one input segment may be filled by an

underparsing operation which marks the input segment as unparsed;  this is just as in the regular grammar

case.  In general, any partial description covering any substring of the input may be extended to cover an

adjacent input segment by marking that additional segment as unparsed.  Thus, a cell covering a given

substring of length greater than one may be filled in two mirror-image ways via underparsing:  by taking

a substructure which covers all but the leftmost input segment and adding that segment as unparsed, and
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by taking a substructure which covers all but the rightmost input segment and adding that segment as

unparsed.  

Overparsing operations are more complex in the context-free case. The reason is that more than

just one unfilled position needs to be considered. A single non-terminal may dominate an entire subtree,

in which none of the syllable positions at the leaves of the tree are filled. Thus, the optimal "unfilled

structure" for each non-terminal must be determined. We will denote the optimal overparsing structure

for non-terminal X with [X, 0], and we will refer to such an entity as a base overparsing structure. A set

of such structures must be computed, one for each non-terminal, before parsing may begin. Because these

values are not dependent upon the input, they may be "compiled" into the Operations Set. In fact, this is

exactly what was done in the regular grammar case, it was just less apparent because the possible

overparsing structures were less complex. The actual computation of these values will be discussed in

further detail below.  

The DP Table is filled as follows.  First, all of the cells covering input substrings of length 1 are

filled.  Then, all of the cells covering substrings of length 2 are filled, utilizing the entries in the cells of

the length 1 level.  The cells of the other levels are filled by order of increasing substring length.  The final

level to be filled has one cell for each non-terminal, including the start symbol.  When this level has been

completely filled, the cell [S,1,J] will contain the optimal parse of the input, and its Harmony.  

Table 8 shows templates for the kinds of operations.  
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Table 8

The Different Operation Forms

New Cell Previous Cell(s) Structure Production Operation

Type

[X,a,a] [X,0] �i � Underparsinga

/ Overparsing

[X,a,a] none X(x/i ) X	x Parsinga

[X,a,a] [X ,a,a] X(X ) X	X Overparsingk k k

[X,a,a] [X ,a,a] [X ,0] X(X ,X ) X	X X Overparsingk  m k m k m

[X,a,a] [X ,0] [X ,a,a] X(X ,X ) X	X X Overparsingk  m k m k m

[X,a,c] [X,a+1,c] �i � Underparsinga

[X,a,c] [X,a,c-1] �i � Underparsingc

[X,a,c] max {[X ,a,b] X(X ,X ) X	X X Parsingb
k

[X ,b+1,c]}m

k m k m

[X,a,c] [X ,a,c] X(X ) X	X Overparsingk k k

[X,a,c] [X ,a,c] [X ,0] X(X ,X ) X	X X Overparsingk  m k m k m

[X,a,c] [X ,0] [X ,a,c] X(X ,X ) X	X X Overparsingk  m k m k m

3.2.3  The Overparsing Operations

The overparsing operations must be considered after the underparsing and parsing operations.

This is for the same reasons as in the regular grammar case: the overparsing operations may make use of

cell entries in the same level. Further, the application of overparsing operations must go through several

cycles, again just as in the regular grammar case. In the regular grammar case, a successive sequence of

overparsing operations resulted in a sequence of unfilled positions. In the context-free grammar case,

overparsing operations add entirely unfilled subtrees. The unfilled subtree may contain several unfilled

positions, and the terminals of several consecutive overparsing operations will not necessarily be in
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succession in the terminal position string. For example, if [X ,0] and [X ,0] are base overparsingk   m

structures, and we start with a structure in which the non-terminal Z dominates a substring of the input,

the first overparsing operation might put [X ,0] to the left of Z, all dominated by X , while the secondk          p

overparsing operation might put [X ,0] to the right, resulting in the structure X (X ([X ,0],Z), [X ,0]).k         q p k  m

Notice that in this structure dominated by non-terminal X , the unfilled positions of [X ,0] precede theq      k

positions dominated by Z, while the unfilled positions of [X ,0] follow.  m

The same principle that guaranteed a limit on the number of successive overparsing operations

in an optimal form in the regular grammar case must be in force here. The faithfulness constraints must

penalize overparsing. In particular, the constraints should prevent overparsing from adding an entire

overparsed non-terminal more than once. That is, cycles of overparsing must be suboptimal. Given that

the universal constraints meet this criterion, the overparsing operations may be repeatedly considered for

a given level until none of them increase the Harmony of the entries in any of the cells.

3.2.4  Calculating the Base Overparsing Structures

The base overparsing structures, denoted above as [X,0], represent the optimal structures

dominated by each non-terminal that contain none of the input segments.  These are best calculated using

a dynamic programming algorithm quite similar to the main parsing algorithm.  First, for each non-

terminal X which has a production rule permitting it to dominate a terminal x, set [X,0] to contain the

structure with the corresponding terminal x left unfilled.  Next, for each value [X,0], for each production

X	X X , consider the Harmony of the structure with root X dominating [X ,0] and [X ,0], and choosek m            k   m

the more Harmonic of that structure and the prior value of [X,0].  

This procedure amounts to iterating overparsing operations over cells for each non-terminal. The

same conditions which guarantee that a cycle of overparsing operations will not occur in the general case

also apply to this case. A "pure" implementation of the general algorithm might not pre-compute these

base overparsing structures; it might instead compute from scratch the optimal unfilled structure for a

non-terminal for each location in which an overparsing operation for that non-terminal is considered. But,

the locality assumptions being employed here require that there not be any interaction between the
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structure dominated by a non-terminal and structure above that non-terminal. So, we are guaranteed that

the optimal unfilled structure dominated by a given non-terminal will be the same in any location where

the overparsing is considered. Thus, it is efficient to pre-compute these base overparsing structures, and

simply recall them every time an overparsing operation is considered. This strategy was employed in the

regular grammar case as well, but it is not apparent because there is only one way to overparse for a given

non-terminal, given the assumption that a non-terminal may only dominate one specific terminal.  

Notice that if a grammar is developed within Optimality Theory which does not meet the locality

assumptions in their entirety such that the optimal unfilled structure for a non-terminal is different in

different locations, but sufficiently restricts the interactions so that parsing may be conducted efficiently,

the above "pure" version will quite straightforwardly handle the case.  

3.2.5  Computational Complexity

The algorithm has a computational complexity of N  in the size of the input.3

3.3  An Example: Context-Free Pseudo-Syllable Structure

This section will illustrate the context-free case with a simple artificial grammar (artificial in that

it does not correspond to any proposed linguistic analysis).  The set of structures considered here are based

upon the �pseudo-syllable�: a peak (p) surrounded by one or more pairs of margin positions (m).  These

structures exhibit context-free behavior, in that margin positions to the left of a peak should be balanced

with margin positions to the right.

The set of inputs is {C,V} .  The position grammar is:+

(35) S 	 F | e

F 	 Y | YF

Y 	 MR

R 	 PM | YM

M 	 m

P 	 p
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The constraints are:

(36) *m/V Do not parse a V into a margin position.

*p/C Do not parse a C into a peak position.

PARSE Input segments must be parsed (into positions).

FILL A margin position must be filled.m

FILL A peak position must be filled.p

In this grammar, GEN generates candidates with a V parsed into a margin position, and with a C parsed

into a peak position, as well as vice-versa.  The conditions on parsing segment types into positions are

now contained in the violable constraints, rather than in the definition of GEN, as was the case with the

Basic CV Syllable Theory.

The non-terminal Y dominates a pseudo-syllable, which consists of a left margin position and

a rhyme (R) which in turn consists of a center constituent and a right margin.  The center constituent may

either be a single peak position or an entire pseudo-syllable.  The non-terminal F is a pseudo-foot, and

permits hierarchical grouping of a sequence of pseudo-syllables.

Consider the case of the following ranking: {*m/V, *p/C, PARSE} >> {F ILL } >> {F ILL }.  Thisp   m

ranking ensures that in optimal descriptions the balancing of margin positions around a peak is perfect,

and that a V will only be parsed as a peak, while a C will only be parsed as a margin.  Further, all input

segments will be parsed, and unfilled positions will be included only as necessary to produce a sequence

of balanced pseudo-syllables.

For example, the input /VC/ receives the description S(F(Y(M(��),R(P(V),M(C))))).  The surface

string for this description is ��VC: the first �� was �epenthesized� to balance with the one following the peak

V.  Balanced inputs like /CCVCC/ and /CVCCCVCC/ will receive completely faithful descriptions which

incur no constraint violations.

Table 9 shows the operations of the Operations Set for cells headed by the non-terminals M, Y,

and S.  Other dynamic programming table cell entries are denoted with square brackets [].
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Table 9

The Operations Set for M, Y, and S

New Cell Structure Violations Production Operation Type

[M,a,a] [M,0] �i � {*F ILL Underparsing /a
m

*PARSE} Overparsing

[M,a,a] M(m/i ) if i =V {*m/ V} M 	 m Parsinga a

[M,a,c] �i � [M,a+1,c] {*PARSE} Underparsinga

[M,a,c] [M,a,c-1] �i � {*P ARSE} Underparsingc

[Y,a,a] Y([M,0], [R,0]) �i � {*P ARSE *FILL Underparsing /a
p

*FILL  *FILL } Overparsingm m

[Y,a,c] �i � [Y,a+1,c] {*PARSE} Underparsinga

[Y,a,c] [Y,a,c-1] �i � {*P ARSE} Underparsingc

[Y,a,c] max {Y([M,a,b], [R,b+1,c])} {} Y 	 MR Parsingb

[Y,a,c] Y([M,0], [R,a,c]) {*FILL } Y 	 MR Overparsingm

[Y,a,c] Y([M,a,c], [R,0]) {*FILL  *FILL } Y 	 MR Overparsingm p

[S,a,a] [S,0] �i � {*P ARSE} Underparsing /a

Overparsing

[S,a,c] [S,a,c-1] �i � {*P ARSE} Underparsingc

[S,a,c] S([F,a,c]) {} S 	 F Overparsing
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The base overparsing structures are shown in Table 10.

Table 10

The Base Overparsing Structures

Root Structure Violations

[M,0] {*F ILL }M(m/��) m

[P,0] {*F ILL }P(p/��) p

[R,0] R([P,0], [M,0]) {*FILL  *FILL }m p

[Y,0] Y([M,0], [R,0]) {*F ILL  *FILL  *FILL }m p m

[F,0] F([Y,0]) {*F ILL  *FILL  *FILL }m p m

[S,0] the null structure {}

Now, the dynamic programming table for the input /VC/ will be shown.  Because the table is

three-dimensional, it will be shown as several �slices�, one for each non-terminal.

Table 11

Cells for Non-Terminal M

*PARSE

�V� M(m/C)

*PARSE *FILL m

M(m/��) �V� M(m/C)

V C
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Table 12

Cells for Non-Terminal P

*PARSE

�C� P(p/V)

P(p/V)

*PARSE *FILL p

P(p/��) �C�

V C

Table 13

Cells for Non-Terminal R

R(P(p/V), M(m/C))

*FILL *FILLm

R(P(p/V), M(m/��)) R(P(p/��), M(m/C))

p

V C

Table 14

Cells for Non-Terminal Y

*FILL m

Y(M(m/��), R(P(p/V), M(m/C)))

*FILL  *FILL *FILL  *FILLm m

Y(M(m/��), R(P(p/V), M(m/��))) Y(M(m/��), R(P(p/��), M(m/C)))

p m

V C
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Table 15

Cells for Non-Terminal F

*FILL m

F(Y(M(m/��), R(P(p/V), M(m/C))))

*FILL  *FILL *FILL  *FILLm m

F(Y(M(m/��), R(P(p/V), M(m/��)))) F(Y(M(m/��), R(P(p/��), M(m/C))))

p m

V C

Table 16

Cells for Non-Terminal S

*FILL m

S(F(Y(M(m/��), R(P(p/V), M(m/C)))))

*FILL  *FILL *FILL  *FILLm m

S(F(Y(M(m/��), R(P(p/V), M(m/��))))) S(F(Y(M(m/��), R(P(p/��), M(m/C)))))

p m

V C

The optimal description is the one contained in cell [S,1,2].

3.4 Formal Analysis of the ��Revised�� Chomsky Normal Form Case

3.4.1 Formal Definition of Optimality Theory Grammars

(37) Def.  The position structure grammar � is a formal context-free grammar in �Revised� Chomsky

Normal Form which generates position structures.  Each terminal symbol of � is a structural

position.  The start symbol is S.

(38) Def.  A local region is any of the following: (a) a non-terminal and the child non-terminals that it

immediately dominates; (b) a non-terminal which dominates a terminal symbol, along with the

terminal and the segment filling the terminal position.



MATCH(P,I) � M[S,1,J]

M[Nt,0] � { Nt(pk/g)�Nt(pk)�P, g�G} �

{ Nt(sk)�sk�M[Nk,0], Nt(Nk)�P} �

{ Nt(sk,sm)�sk�M[Nk,0], sm�M[Nm,0], Nt(Nk,Nm)�P} �

{ the null structure� P�S()}

M[Nt,a,a] � { st��ia��st�M[Nt,0]} �

{ Nt(pk/ia)�Nt(pk)�P} �

{ Nt(sk)�sk�M[Nk,a,a], Nt(Nk)�P} �

{ Nt(sk,sm)�sk�M[Nk,a,a], sm�M[Nm,0], Nt(Nk,Nm)�P} �

{ Nt(sk,sm)�sk�M[Nk,0], sm�M[Nm,a,a], Nt(Nk,Nm)�P}

M[Nt,a,c] � { st��ia��st�M[Nt,a�1,c]} �

{ st��ic��st�M[Nt,a,c�1]} �

{ Nt(sk,sm)�a�b�c, sk�M[Nk,a,b], sm�M[Nm,b�1,c], Nt(Nk,Nm)�P} �

{ Nt(sk)�sk�M[Nk,a,c], Nt(Nk)�P} �

{ Nt(sk,sm)�sk�M[Nk,a,c], sm�M[Nm,0], Nt(Nk,Nm)�P} �

{ Nt(sk,sm)�sk�M[Nk,0], sm�M[Nm,a,c], Nt(Nk,Nm)�P}

GEN(I) � �
P�L(�)

MATCH(P,I)
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(39) Def.  Suppose there are an input I = i  ... i  composed of segments from the segment alphabet G, and1  J

a position structure P, which is a tree consisting of terminals p  ... p  and non-terminals N  ... N .1  K   1  T

A matching µ is a string of units, where the set of possible matchings between P and I is

MATCH(P,I), defined by the following recurrence:

The ‘/’ operator here means to fill the position to the left of the operator with the material to the

right of the operator.  The set {the null structure} contains precisely one object, which consists

of exactly no structure.

This definition may be augmented by further restrictions for different specific instances of GEN (for

example, forbidding consonants from being parsed into nucleus positions).

(40) Def.  The set of candidate structural descriptions for input I is 

L(�) is the set of all position structures generated by �.



OPT(I) � �[S,1,J]

�[X t,0] � maxH

{ X t(x k/g) � X t�x k � �, g�G} �

{ X t(�[X k,0]) � X t�X k � �} �

{ X t(�[X k,0],�[X m,0]) � X t�X kX m � �} �

{ the null structure� X t
�S, S�e � �}

�[X t,a,a] � maxH

{�[X t,0]��ia�} �

{ X t(x k/ia) � X t�x k � �} �

{ X t(�[X k,a,a]) � X t�X k � �} �

{ X t(�[X k,0],�[X m,a,a]) � X t�X kX m � �} �

{ X t(�[X k,a,a],�[X m,0]) � X t�X kX m � �}

�[X t,a,c] � maxH

{�[X t,a�1,c]��ia�} �

{�[X t,a,c�1]��ic�} �

{ X t(�[X k,a,b],�[X m,b�1,c]) � a�b�c, X t�X kX m � �} �

{ X t(�[X k,a,c]) � X t�X k � �} �

{ X t(�[X k,0],�[X m,a,c]) � X t�X kX m � �} �

{ X t(�[X k,a,c],�[X m,0]) � X t�X kX m � �}

maxH{ GEN(I)}
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(41) Def.  The structural description assigned to I by the grammar is .  The function

maxH{} returns the structural description with maximum Harmony.  Implicit in the definition

of maxH is a set of universal constraints and the ranking of those constraints.

3.4.2 The Computing Recurrence

(42) Def.  The function OPT(I) is defined by the following computing recurrence (where G is the segment

alphabet):

(43) Def.  A partial description � is a tree which is a subtree of a structural description µ (generated by

GEN).  A partial description is classified by its root non-terminal.  Each leaf of a partial

description consists of a position (a terminal of the position grammar) which either contains an

input segment or an overparsed segment.

(44) Def.  A universal constraint is local if it may be evaluated solely on the basis of the internal

configuration of a local region.
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(45) Def.  The Harmony of a partial description is the collection of the constraint violation marks assessed

each local region of the partial description.

(46) Def.  An overparsing region is a local region where one child non-terminal dominates all of the  input

segments dominated by the root non-terminal.  A local region with no child non-terminals is not

an overparsing region.

(47) Lemma The value of each term �[X ,0] of the computing recurrence, if one exists, is a set of partialt

descriptions containing no input segments and having root non-terminal X .t

Proof

This result is established through correspondence between the computing recurrence for �[X ,0]t

and the matching recurrence for M[N ,0].t

Consider some term �[X ,0] of the computing recurrence.  The possible structures consideredt

as values for this term are described by the four parts of the recurrence.

Consider the first part of the computing recurrence.  This considers structures {� } formed byk

creating a non-terminal dominating a terminal with a non-input segment parsed into the terminal

position.  This directly corresponds to the first part of the matching recurrence, provided that the

parent-child relation X (x ) is part of some position structure, which is guaranteed by the firstt k

condition on this part of the computing recurrence.  The root non-terminal is X , and it covers not

input segments.  Thus, {� } are valid partial descriptions containing no input segments and withk

root non-terminal X .t

Consider the last part of the computing recurrence.  This considers the null parse, where the start

symbol (S) dominates no other structure.  This directly corresponds to the last part of the

matching recurrence.  The root non-terminal is S, and it covers no input segments.  Thus, this is

a valid partial description containing no input segments and with root non-terminal S.

The second and third parts of the computing recurrence are analogous to the fourth and fifth parts

of the computing recurrence for terms �[X ,a,c] discussed in lemma (49), and the proof ist

similarly analogous.
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(48) Lemma The value of each term �[X ,a,a] of the computing recurrence, if one exists, is a set of partialt

descriptions containing the input segment i  and having root non-terminal X .a
t

Proof

This result is established through correspondence between the computing recurrence for

�[X ,a,a] and the matching recurrence for M[N ,a,a].t
t

Consider some term �[X ,a,a] of the computing recurrence.  The possible structures consideredt

as values for this term are described by the five parts of the recurrence.  By lemma (47) all terms

�[X ,0] contain as values only valid partial descriptions covering no input segments and witht

root non-terminal X .t

Consider the second part of the computing recurrence.  This considers structures {� } formedk

by setting X  to dominate the terminal position x  with i  parsed into it.  This directly correspondst      k
a

to the second part of the matching recurrence, provided that the parent-child relation X (x ) is partt k

of some valid position structure, which is guaranteed by the condition on this part of the

computing recurrence.  This structure has root non-terminal X , and covers only input segmentt

i .  Thus, {� } are valid partial descriptions containing i  with root non-terminal X .a          a
k           t

The first part of the computing recurrence is analogous to the first part of the computing

recurrence for terms �[X ,a,c], discussed in lemma (49).  The proof for this part is similarlyt

analogous.

The third, fourth, and fifth parts of the computing recurrence are analogous to the fourth, fifth,

and sixth parts of the computing recurrence for terms �[X ,a,c], discussed in lemma (49).  Thet

proof for these parts is similarly analogous.

(49) Lemma The value of each term �[X ,a,c] of the computing recurrence, if one exists, is a set of partialt

descriptions containing input segments i  through i  and having root non-terminal X .a  c
t

Proof

This result is established through correspondence between the computing recurrence and the

matching recurrence, for terms [X ,a,c].t
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Consider some term �[X ,a,c] of the computing recurrence.  The possible structures consideredt

as values for this term are described by the six parts of the recurrence.  Assume that all of the

computing recurrence terms covering strict subsequences of i  through i  contain as values onlya  c

valid partial descriptions containing input segments i  through i  with root non-terminal X .a  c
t

Consider the first part of the computing recurrence.  This considers the structure � formed by

adding the input segment i  underparsed to the partial description �[X ,a+1,c].  This directlya
t

corresponds to the first part of the matching recurrence formula.  By hypothesis, �[X ,a+1,c] ist

a valid partial description containing i  through i  with root non-terminal X .  Then � is also aa+1  c
t

valid partial description, and it contains i  through i  with root non-terminal X .  Directlya  c
t

analogous reasoning applies to the second part of the computing recurrence.

Consider the third part of the computing recurrence.  This considers structures {� } formed byb

setting the non-terminal X  to immediately dominate the partial descriptions in terms �[X ,a,b]t         k

and �[X ,b+1,c].  This directly corresponds to the third part of the matching recurrence,m

provided that the parent-child relation X (X ,X ) is part of some valid position structure, whicht k m

is guaranteed by the second condition on this part of the computing recurrence.  By hypothesis,

the terms �[X ,a,b] and �[X ,b+1,c] are valid partial descriptions meeting the terms of thisk   m

lemma.  The first condition on this part of the computing recurrence ensures that each of the

segments of the subsequence is covered by precisely one of the child non-terminals.  Thus, {� }b

are valid partial descriptions containing input segments i  through i  with root non-terminal X .a  c
t

Consider the last part of the computing recurrence.  This considers structures {� } formed byk

setting non-terminal X  to immediately dominate the structures in �[X ,a,c] and �[X ,0].  Thist       k   m

part directly corresponds to the last part of the matching recurrence, provided that the parent-

child relation X (X ,X ) is part of some valid position structure, which is guaranteed by thet k m

condition on this part of the computing recurrence.  By lemma (47), �[X ,0] may only containm

a valid partial description covering no input segments with root X .  Thus, if �[X ,a,c] containsm     k

a valid partial description containing input segments i  through i  with root non-terminal X , thena  c
t
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the resulting structure created by this computing recurrence term for �[X ,a,c] is also a validt

partial description containing input segments i  through i  with root non-terminal X .  Analogousa  c
t

reasoning applies to the fourth and fifth parts of the computing recurrence.  

Call the number of overparsing regions in a structure which are not dominated by any non-

overparsing local region the final overparsing length of that structure.  The partial descriptions

considered by the last three parts of the computing recurrence formula add an overparsing region

to the root, and thus only consider structures of final overparsing length one or greater.  The first

three parts of the computing recurrence, as discussed above, only consider valid partial

descriptions.  Because these first three parts are the only parts that can consider structures of final

overparsing length zero, it follows that all structures of final overparsing length zero that are

considered are valid partial descriptions.  Now, assume that all considered structures of final

overparsing length N-1 are valid partial descriptions.  Any considered structure �  of finalk

overparsing length N is considered only through the last three parts of the computing recurrence.

The structure being added to, �[X ,a,c], must be of final overparsing length N-1.  By hypothesis,k

that structure is a valid partial description.  Therefore, �  is a valid partial description.  Byk

mathematical induction, all structures considered by the last three parts of the main computing

recurrence formula are valid partial descriptions.

This exhausts the computing recurrence, as all parts have been shown to consider only valid

partial descriptions.  Thus, only partial descriptions containing input segments i  through i  witha  c

root non-terminal X  may be values of the terms of the computing recurrence.t

(50) Def.  A cycle of overparsing regions is a sequence of overparsing regions where each successive

region includes as a child non-terminal the root non-terminal of the preceding region in the

sequence, where each region dominates all of the input segments dominated by the region

following it in the sequence, and where the root non-terminals of the first and last regions of the

sequence are the same non-terminal.
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(51) Def.  A Harmony function is said to ban overparsing cycles if, for any partial description which

contains a cycle of overparsing regions, removing all but the first region of the cycle results in

a new partial description which is strictly more Harmonic.

(52) Lemma Suppose that the Harmony function bans overparsing cycles.  Then for any X , a, and c, oft

all the partial descriptions containing i  through i  and with root non-terminal X , there exist aa  c
t

subset that have maximum Harmony, and that subset is finite.

Proof

Let T be the number of types of non-terminals, and L be the length of the input subsequence

covered  by the candidate partial descriptions (that is, L=c-a+1).  First, observe that any non-

terminal in a candidate partial description must cover a contiguous subsequence (of length zero

or greater) of the input.  There are only a finite number of such contiguous subsequences (1 +

L*(L+1)/2 of them).

A subtree which covers no input segments cannot have depth greater than the number of types

of non-terminals without some non-terminal dominating another non-terminal of the same type,

thus creating an overparsing cycle.  Thus, the subtree cannot contain more than 2  non-terminalsT

without overparsing cycles.

By the pigeonhole principle, for any subsequence of length one or greater, there cannot be more

non-terminals covering precisely that subsequence than there are types of non-terminals without

repeating a non-terminal type, thus creating an overparsing cycle.  Thus, a partial description

which contains no overparsing cycles will contain at most T non-terminals covering any given

input subsequence, for L*(L+1)/2 such subsequences, and therefore will contain not more than

T*L*(L+1)/2 non-terminals which cover at least one input segment.

Because the root of any candidate partial description must cover all of the input segments, any

non-terminal covering no input segments must be dominated by some non-terminal which does

cover an input segment.  Therefore, the number of maximal subtrees containing no input

segments cannot be greater than the number of non-terminals which do cover input segments.
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A maximal subtree is one which covers no input segments, with a root whose parent does cover

an input segment.  As argued above, those maximal subtrees contain not more than 2  non-T

terminals.  Therefore, there cannot be more than 2 *(TL(L+1)/2) non-terminals covering no inputT

segments in any partial description not containing overparsing cycles.

Therefore, for a partial description to not contain overparsing cycles: (a) the number of non-

terminals which cover at least one input segment cannot exceed TL(L+1)/2; (b) the number of

non-terminals which cover no input segments cannot exceed 2 *(TL(L+1)/2).  Thus, there areT

only a finite number of candidate partial descriptions which do not contain any overparsing

cycles.

By assumption, any candidate containing an overparsing cycle is strictly less Harmonic than

some candidate without that overparsing cycle.  Thus, there are only a finite number of

candidates, those not containing overparsing cycles, which could possibly have maximum

Harmony.  Because the set of optimal partial descriptions is contained in this finite set, and

because there is guaranteed to be at least one candidate that does not contain overparsing cycles,

the set of candidate partial descriptions with maximum Harmony is finite, and contains at least

one partial description.

(53) Lemma Suppose that the Harmony function bans overparsing cycles, and that the universal

constraints are local.  Then for any set of computing recurrence terms {�[X ,a,c]}  thet
t=1..T

solution values for these terms exist.  For each term �[X ,a,c], the solution value is precisely thet

set of partial descriptions of maximum Harmony containing i  through i  and with root non-a  c

terminal X .t

Proof

By lemmas (47), (48), and (49), the computing recurrence only considers, as possible values for

�[X ,a,c], partial descriptions covering i  through i  with root non-terminal X .  By lemma (52),t           t
a  c

for each term �[X ,a,c], there exists a finite set of such partial descriptions that have maximumt
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Harmony.  Assign to each term its corresponding set of optimal partial descriptions.  Consider

some partial description � assigned to �[X ,a,c].t

Suppose that � contains i  underparsed.  Then the partial description containing all but thea

underparsed i  is an optimal partial description for �[X ,a+1,c].  Suppose, to the contrary, thata
t

it weren’t.  Then a better solution for �[X ,a,c] could be constructed by adding underparsed i  tot
a

an optimal value for �[X ,a+1,c].  The locality of the universal constraints guarantees that thet

marks assessed the underparsed segment will be the same when added to any partial description

with root X .  This contradicts the assumption that � is an optimal solution.  Thus, � satisfies thet

recurrence,  as it is considered by the first term of the computing recurrence, and is of maximum

Harmony out of all possible partial description considered for �[X ,a,c].  Analogous reasoningt

applies if � contains i  underparsed.c

Suppose that � has root non-terminal X  dominating �[X ,a,b] and �[X ,b+1,c].  Then removingt  k   m

the root non-terminal leaves two partial descriptions which are optimal partial descriptions for

terms �[X ,a,b] and �[X ,b+1,c].  Suppose, to the contrary, that one of them weren’t, say termk   m

�[X ,a,b] (without loss of generality).  Then a better solution for �[X ,a,c] could be constructedk            t

by using an optimal value of �[X ,a,b] as a child.  The locality of the universal constraintsk

guarantees that the marks assessed the top local region will be the same when any partial

description with root non-terminal X  is used as a child.  This contradicts the assumption that �
k

is an optimal solution.  Thus, � satisfies the recurrence, as it is considered by the third part of the

computing recurrence, and is of  maximum Harmony out of all possible partial descriptions

considered for �[X ,a,c].t

The other cases involving partial descriptions with the root non-terminal dominating other non-

terminals may be proved in analogous fashion to the case just proved.

Suppose that � has root non-terminal X  directly dominating a terminal.  This directly satisfiest

parts of the computing recurrences for �[X ,a,a] and �[X ,0] without reference to other termt   t

values.
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This demonstrates that assigning the optimal partial descriptions to each of the computing

recurrence terms solves the recurrence.  Finally, no other solutions exist, because the recurrence

only assigns to a term partial descriptions of maximum Harmony among those considered.  So,

any other partial descriptions are disallowed by the recurrence in virtue of their sub-optimality.

(54) Theorem Suppose that the Harmony function bans overparsing cycles and that the universal

constraints are local.  Then OPT(I) = maxH{GEN(I)}.

Proof

First, consider the set of descriptions selected by OPT(I).  By definition, it only considers the

recurrence term �[S,1,J].  This ensures that only descriptions generated by GEN(I) are

considered.  Thus, the set of candidates optimized over by OPT(I) is a subset of the candidates

optimized over by GEN(I).  Then OPT(I) 
 maxH{GEN(I)}.

Now, consider the set of descriptions selected by maxH{GEN(I)}.  Each such description � must

have root non-terminal S.  Thus, such a description is one of the descriptions optimized over by

�[S,1,J].  Thus, for each �, � 
 �[S,1,J] = OPT(I).  Then maxH{GEN(I)} 
 OPT(I).

It follows that OPT(I) = maxH{GEN(I)}.



BaseCalc({�[X t,0]} t)

maxH{�[X t,0], {X t(x t/g) � X t�x t � �, g�G} }

maxH{�[X t,0], {X t([X k,0]) � X t�X k � �} }

maxH{�[X t,0], {X t([X k,0],[X m,0]) � X t�X kX m � �} }

({�[X t,0]} t)

IterSolve1({�[X t,a,a]} t)

{�[X t,0]��ia�}

maxH{�[X t,a,a], { X t(x t/ia) � X t�x t � �} }

maxH{�[X t,a,a], { X t(�[X k,a,a]) � X t�X k � �} }

maxH{�[X t,a,a], { X t(�[X k,0],�[X m,a,a]) � X t�X kX m � �} }

maxH{�[X t,a,a], { X t(�[X k,a,a],�[X m,0]) � X t�X kX m � �} }

({�[X t,a,a]} t)
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The Dynamic Programming Algorithm

(55) Def.  The base overparsing calculation procedure, , is:

For each X , set �[X ,0] to �t   t

If S	e is in �, set �[S,0] to {the null structure}

For each X , set �[X ,0] to t   t

Repeat

For each Xt

Set �[X ,0] to t

Set �[X ,0] to t

Until no �[X ,0] has changed during a passt

Return 

(56) Def.  The iterative solution procedure for input sequences of length one, ,

is:

For each X , set �[X ,a,a] to t   t

For each X , set �[X ,a,a] to t   t

Repeat

For each X , set �[X ,a,a] tot   t

For each X , set �[X ,a,a] tot   t

 

For each X , set �[X ,a,a] tot   t

Until no �[X ,a,a] has changed during a passt

Return 



IterSolve({�[X t,a,c]} t)

{�[X t,a�1,c]��ia�}

{�[X t,a,c�1]��ic�}

maxH{�[X t,a,c], { X t([X k,a,b],[X m,b�1,c]) � X t�X kX m � �} }

maxH{�[X t,a,c], { X t(�[X k,a,c]) � X t�X k � �} }

maxH{�[X t,a,c], { X t(�[X k,0],�[X m,a,c]) � X t�X kX m � �} }

maxH{�[X t,a,c], { X t(�[X k,a,c],�[X m,0]) � X t�X kX m � �} }

({�[X t,a,c]} t)
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(57) Def.  The iterative solution procedure for input sequences of length greater than one,

 , is:

For each X , set �[X ,a,c] to t   t

For each X , set �[X ,a,c] to t   t

For each Xt

For b=a to c

set �[X ,a,c] to t

 

Repeat

For each X , set �[X ,a,c] tot   t

For each X , set �[X ,a,c] tot   t

 

For each X , set �[X ,a,c] tot   t

Until no �[X ,a,c] has changed during a passt

Return 



({�[X t,0]} t) BaseCalc({�[X t,0]} t)

({�[X t,a,a]} t) IterSolve1({�[X t,a,a]} t)

({�[X t,a,a�d]} t) IterSolve({�[X t,a,a�d]} t)
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(58) Def.  The dynamic programming algorithm DP(I) (where J is the input length) is:

Set  to 

For a=1 to J, set  to 

For d=1 to (J-1)

For a=1 to (J-d)

Set  to 

Return (�[S,1,J])

(59) Theorem Suppose that GEN is defined as above, the universal constraints are local, and the resulting

Harmony function bans overparsing cycles.  Then DP(I) computes the optimal structural

description of I.

Proof

By theorem (54), OPT(I) is the optimal structural description of I.  It remains to be shown that

DP(I) correctly computes it.

The nature of the algorithm is to consider certain candidate solutions, and keep any solution

considered unless another solution is explicitly considered which is more Harmonic.  Therefore,

it can be proven that all optimal solutions for a computing recurrence term are computed by

showing  that all optimal solutions are explicitly considered by the algorithm.

Consider the term �[X ,a,c].  Assume that all terms of � covering strict subsequences of iak

through ic contain all of their optimal solutions.  By lemma (53), we know that the correct

solutions for this term are those partial descriptions containing input i  through i  with root non-a  c

terminal X  that have maximum Harmony, and that a finite number of such descriptions exist.t

Consider some arbitrary optimal solution �.

Suppose � contains i  underparsed.  Then it is explicitly considered by the first step ofa

IterSolve().  Suppose that the root non-terminal of � immediately dominates a terminal.  Then

it is explicitly considered by step three of BaseCalc(), and step two of IterSolve1().
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Suppose that the root non-terminal of � immediately dominates two non-terminals, each of

which covers a strict subsequence of i  through i .  Then it is explicitly considered by step six ofa  c

IterSolve().

Suppose that the root non-terminal of � immediately dominates another non-terminal which

covers all of i  through i .  Then it is explicitly considered by the steps in the repeat loop ofa  c

IterSolve().  That all such solutions are considered within this loop can be proven by

mathematical induction over the final overparsing length of the solutions, in a manner analogous

to the final part of the proof for lemma (49).

3.4.3 Computational Complexity

Each block of cells for a subsequence of the input (the block has one cell for each non-terminal)

is processed in time linear in the length of the input subsequence.  This is a consequence of the fact that

in general operations filling a cell must consider all ways of dividing the subsequence into two pieces (see

step four of IterSolve()).  For any fixed grammar, the number of passes through the block is bounded from

above by the number of non-terminals, due to the fact that overparsing cycles are sub-optimal.  The

number of such blocks is the number of input subsequences (equivalently, the number of cells in a layer),

which is on the order of the square of the length of the input.  If N is the length of the input, the algorithm

has computational complexity O(N ).3

3.5  The General Case:  Position Structure Grammar Productions of Arbitrary Form

Handling grammars with position structure grammars that are not in "Revised" Chomsky Normal

Form requires making the relationship to chart parsing more explicit. This is done by expanding the

dynamic programming table in the following way. Consider the block of cells for some subsequence of

the input.  The dynamic programming table described previously contained blocks with one cell for each

non-terminal of the position structure grammar. In the general case, there will also be one cell for each

left-aligned substring of the righthand side of each production.  

Here is an illustration. Consider the production N 	 WXYZ. The left-aligned substrings of the

righthand side of this production are W, WX, and WXY. The dynamic programming table will contain
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a cell for each of these. These left-aligned substrings directly correspond to uncompleted edges in

traditional chart parsing. There is no separate cell for the entire righthand side, WXYZ, because that is a

completed edge, and the result is stored in the cell for the non-terminal on the lefthand side of the

production, N.  

A cell corresponding to a left-aligned substring is filled by considering all ways of combining

entries for the last non-terminal of the substring with complementary entries for the substring with that

non-terminal removed. The parsing operations for filling cell WXY will consider combinations of entries

in cells for WX with entries in cells for Y. This corresponds to "extending an edge" in traditional chart

parsing. Notice that the algorithm in the RCNF case can now be understood in terms of extending edges.

With at most binary branching, any left-aligned substring only consists of one non-terminal, so that the

uncompleted edge may be identified with a subtree dominated by the single non-terminal.  

The complexity of the parsing algorithm in the general case is exactly the same as the RCNF

case: cubic in the length of the input. The expansion of the dynamic programming table is sensitive only

to the position structure grammar; the table still has, for a fixed position structure grammar, a constant

number of cells for each subsequence of the input.

3.6 Discussion

3.6.1 Locality

As discussed in the previous chapter, alignment constraints are examples of proposed non-local

constraints.  There is a kind of non-locality which does not arise when regular position structures are

employed, but can arise when context-free structures are employed.  This kind of non-locality violates the

�vertical� locality implicit in the definition of a local region.  Consider an alignment constraint that

requires the alignment of the left boundary of each constituent X with the boundary of some constituent

Y.  If X must immediately dominate Y, or vice-versa, then the constraint is local in the relevant sense,

because the constraint can be evaluated based on whether Y is the leftmost constituent immediately

dominated by X, or vice-versa.  However, if some other non-terminal (call it Z) may dominate Y and in

turn be dominated by X, then the location of Y with respect to the left boundary is �hidden� by Z.  The
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restricted form of this non-locality may permit the following resolution.  The dynamic programming table

could be expanded so that every cell for a partial description with root non-terminal Z is expanded into

two cells: one in which there is a Y as the leftmost constituent, and one in which there isn’t.  This would

make the information relevant to the alignment constraint available in the local region with parent non-

terminal X.  Both partial descriptions with root Z could be considered, with the resulting Harmony

(including the alignment violation) of each correctly determined.



Chapter 4.  The Learnability of Optimality Theory

4.1  The Learning Problem in Optimality Theory

4.1.1  Optimality Theory and Language Acquisition in General

Substantive knowledge of language in Optimality Theory consists in knowledge of the universal

set of possible inputs, outputs and GEN (3); of the universal constraints (4); of the ranking of those

constraints particular to the language (6); and of the lexicon providing the particular underlying forms in

the language-particular inputs.  Under the assumption that what is universal in this knowledge is not

learned but innate, what remains then to be learned is the lexicon and the constraint ranking.

The general problem of language acquisition has many challenges.  Among the questions to be

answered are:  what kind of information is accessible to the learner from the environment, what kinds of

language-specific principles must be learned, what is the structure of the lexicon, and so forth.  There are

some famous problems which must be faced ultimately no matter what linguistic framework is employed.

For example, given an observed utterance, how can the learner segment it into morphemes, and how can

the learner determine which morpheme corresponds to which linguistic element (syntactic element,

semantic meaning, etc.).  This chapter will not answer all of these questions.

It is commonly proposed in the literature on language acquisition that the learner needs lexical

knowledge to learn the grammar, and grammatical knowledge to learn the lexicon (see, for example,

Pinker 1987, Gleitman 1990, Grimshaw 1994).  This suggests that the learner maintains both a

hypothesized lexicon and a hypothesized grammar during learning, and is repeatedly evaluating possible

lexical entries with respect to its active hypothesized grammar, and then evaluating possible grammars

with respect to its active hypothesized lexicon.  The learner iterates in this fashion until a stable

configuration, the target language, is reached.  Clearly, this high-level account raises many important

questions, questions for which no one has all of the answers.  It is nevertheless quite worthwhile to

investigate the implications of Optimality Theory for this overall view.  In particular, one can ask what

procedures could be used by the learner to acquire the lexicon given a hypothesized grammar, and what

procedures could learn the constraint ranking given a hypothesized lexicon.  The first question is discussed



72

very briefly in the next section, and little more will be said about it.  The second question, the learning of

the constraint rankings, is the subject of the rest of this chapter.

In fact, the work in this chapter addresses a subproblem of the problem of learning constraint

rankings.  The subproblem is that of learning rankings based upon (hypothesized) descriptions.  This is

not trivial, due to the highly interactive nature of the constraints in Optimality Theory.  The early

experience of many linguists working in Optimality Theory has been that deducing a ranking consistent

with a set of analyzed data can be very difficult.  This raises the question of how a child could learn the

correct constraint ranking, given that the child has much more impoverished data sources.  In response,

the problem of learning constraint rankings is here divided into two parts.  The first part is the

hypothesizing of a structural description of an utterance, given the actual information (phonetic, semantic,

etc.) available to the child.  The second part, the part addressed by the present work, is that of inferring

a constraint ranking given hypothesized descriptions.

This division is not a frequent one in work on formal language learnability.  Much current work

in formal learnability is done within the Principles and Parameters Framework (Chomsky 1981).  The

parameter settings constitute language-specific knowledge of the core grammar.  A parameter setting

determines an inviolable constraint on grammatical descriptions.  Thus, at the level of entire descriptions,

the parameters are entirely independent: a single parameter setting can rule a description ungrammatical,

regardless of the settings of the other parameters.  As a consequence, the problem of inferring parameter

settings (and thus, of inferring the grammar) from entire structural descriptions is often perceived to be

a trivial one.  The only challenge, on this view, lies in contending with the underdetermination of the

complete description by the actual information available to the child.

This challenge, however, is rather severe, because the parameter settings, while being

independent with respect to entire descriptions, can interact in their relationship to surface phonetic forms.

One response to this has been to try and restrict the parameters so as to guarantee identifiable

consequences of each parameter setting individually, at the level of surface forms.  Unfortunately, this

results in a conflict between the goals of learnability and the goals of linguistic explanation: learnability
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favors parameters which do not interact, while linguistic explanation favors parameters which do interact

(this is discussed below in the section on Learnability and Linguistic Theory).

In Optimality Theory, even the problem of inferring rankings from entire descriptions is not

trivial, because constraint interaction is pervasive to all levels.  Constraint interaction is the primary

explanatory mechanism; it is entirely unavoidable.  Thus, constraint interaction must be faced and dealt

with by any attempt to address learning in Optimality Theory.  This makes the problem of learning

constraint rankings from descriptions a relevant and important one.  The following situation will be

assumed by the work in this chapter: the learner has access to positive data in the form of grammatical

structural descriptions, including the underlying form.  The goal is to find a solution to the problem of

learning constraint rankings, given this information.  The hope is that the solution to this problem will play

an important role in a solution to the more general problem of learning constraint rankings given the kinds

of information available to children.

One advantage afforded this part of the learning problem is that any results will be entirely

general to the framework of Optimality Theory.  Nothing specific to syllable structure or syntactic binding

or any other specific phenomenon is assumed.  This work is an investigation of what contributions to

language learning are made by the formal structure of the framework.

4.1.2  Learning the Lexicon

Prince and Smolensky (1993, §9) give a proposal for the acquisition of the lexicon.  They

propose a principle of lexicon optimization.  This involves having an observed phonetic form, and also

several hypothesized underlying forms, each of which is mapped to a description with the observed

phonetic form by the grammar.  Notice that this is not the problem of choosing from among several

candidate outputs for one input, but of choosing from among several inputs, each of which supports the

same output.  Lexicon optimization states that the underlying form with the most Harmonic description

should be selected for the lexicon.  The relative Harmony of the several descriptions is determined with

respect to the constraint ranking of the grammar, just as when comparing candidate descriptions for a
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given input.  In this way, the same principles of optimization which underlie the functioning of the

grammar also explain the structure of the lexicon.  

4.1.3  The Learning Problem:  Learning Constraint Rankings

Two major concerns are perhaps most apparent.  The first is that of trying to learn anything from

positive data in a framework that employs violable constraints.  Given a grammatical description, you may

observe that it violates some of the universal constraints.  But if grammatical descriptions are allowed to

violate constraints, how can anything be learned from those observations?  The second concern is a

combinatorial one.  The number of distinct total rankings is a factorial function of the number of

constraints.  For example, a set of 10 constraints has 10! = 3,628,800 distinct rankings.  If the amount of

data required to determine the correct ranking scales as the number of possible rankings, then a grammar

with many constraints could require a prohibitively large amount of data to be learned successfully.

The initial data for the learning problem are pairs consisting of an input and its well-formed

(optimal) description.  For example, the learner of the CV language L  might have as an initial datum the1

input /VCVC/ together with its well-formed description .�V.CV.�C� (2.d).  Because GEN and the

universal constraints are part of Universal Grammar, it is assumed that the learner is able to generate

candidate structural descriptions of an input, and is also able to determine what constraint violations are

assessed any description.  

Together with any single piece of explicit positive evidence comes a large mass of implicit

negative evidence.  Every alternative description of this input is known to be ungrammatical; for example,

if the description .�V.CV.�C� (2.d) is observed, then the faithful description of the input /VCVC/,

* .V.CVC. (2.a), is ungrammatical.  Thus the learner knows that, with respect to the unknown constraint

hierarchy,

(60) .V.CVC. � .�V.CV.�C�

Furthermore, corresponding Harmonic comparisons must hold for every sub-optimal description.
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Thus each single piece of positive initial data conveys a large amount of inferred comparative

data of the form:

(61) [sub-optimal description sub-opt of input I] � [optimal description opt of input I]

Such pairs are what feed the learning algorithms presented below.  Each pair carries the information that

the constraints violated by the sub-optimal description sub-opt must out-rank those violated by the optimal

description opt, that, in some sense, it must be the case that marks(sub-opt) >> marks(opt), or more

informally, loser-marks >> winner-marks.  The algorithm  now presented is nothing but a means of

making this observation precise, and deducing its consequences.

4.2  The Recursive Constraint Demotion (RCD) Algorithm

Before giving a general description of the algorithm, its use is first  illustrated by showing how

the algorithm learns the language L  from the single positive example which we have discussed, /VCVC/1

� .�V.CV.�C�, as shown in Table 1.  It is then shown how the algorithm learns the different language L2

from its (different) description of the same input.

4.2.1  An Example:  Learning CV Syllable Structure

In the first language we consider, L , the correct description of /VCVC/ is .�V.CV.�C�.  This fact1

forms our starting point, one initial datum.  Table 1 gives the marks incurred by the well-formed

description (labeled d) and by three ill-formed descriptions.  From this table we form the table of mark-

data pairs, shown as Table 17.

Table 17

Mark-data Pairs (L )1

sub-opt � opt marks(sub-opt) marks(opt)

a � d .V.CVC. �   .�V.CV.�C� {*O NS *NOCODA} {*P ARSE *FILL }Ons

b � d �V�.CV.�C� �   .�V.CV.�C� {*P ARSE *PARSE} {*P ARSE *FILL }Ons

c � d �V�.CV.C�. �   .�V.CV.�C�´ {*P ARSE *FILL } {*P ARSE *FILL }Nuc Ons
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In order that each sub-optimal description sub-opt be less harmonic than the optimal description

opt, the marks incurred by the former, marks(sub-opt) must collectively be worse than marks(opt).  What

this means more precisely is that sub-opt must incur the worst uncancelled mark, compared to opt.  So the

first step in the learning algorithm is to cancel the common marks in Table 17, as shown in Table 18:

Table 18

Mark-data Pairs after Cancellation (L )1

sub-opt � opt marks�(sub-opt) marks�(opt)

loser-marks = winner-marks =

a � d .V.CVC. �   .�V.CV.�C� {*O NS *NOCODA} {*P ARSE *FILL }Ons

b � d �V�.CV.�C� �   .�V.CV.�C� { *PARSE *PARSE} { *PARSE *FILL }Ons

c � d �V�.CV.C�. �   .�V.CV.�C�´ { *PARSE *FILL } { *PARSE *FILL }Nuc Ons

The canceled marks have been struck out.  Note that the cancellation operation which transforms

marks to marks� is only well-defined on pairs of sets of marks; e.g., *PARSE is canceled in the pairs b �

d and c � d, but not in the pair a � d.  Note also that cancellation of marks is done token-by-token: in the

row b � d, one but not the other mark *PARSE in marks(b) is canceled.  As we will see, the algorithm is

sensitive not to absolute numbers of marks, but only to whether sub-opt or opt incurs more marks of a

given type (Optimality Theory recognizes a relative distinction between more- or less-violation of a

constraint, but not an absolute quantitative measure of degree of constraint violation.).  The Mark-data

Pairs after cancellation are the data on which the rest of the algorithm operates.

The second part of the algorithm proceeds recursively, finding first the constraints that may be

ranked highest while being consistent with the mark-data pairs, then eliminating those constraints from

the problem and starting over again to rank the remaining, lower, constraints.  Conceived as a sequence

of passes, the first pass through the data determines the highest-ranking constraints, the next pass the next-

highest ranking constraints, and so forth down the hierarchy.  If the data provide enough information to
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completely determine the total ranking, then only one constraint will be returned by each pass.  In general,

however, the result of the algorithm will be a stratified hierarchy of the form:

(62)  Stratified Domination Hierarchy

{� , � , ..., � } >> {� , � , ..., � } >> ... >> {� , � , ..., � }1  2   3   4  5   6     7  8   9

The constraints � , � , ..., �  comprise the first stratum in the hierarchy:  they are not ranked with respect1  2   3

to one another, but they each dominate all the remaining constraints.  A stratified hierarchy may not totally

Harmonically order all candidate descriptions for a given input, since it fails to specify the relative ranking

of constraints which may conflict.  This has the consequence, discussed below, that the output of the

algorithm may fail to decide between candidates for which relevant training data is unavailable.  Note:

Henceforth, 'hierarchy' will mean 'stratified hierarchy';  when appropriate, hierarchies will be explicitly

qualified as 'totally ranked.'

The initial state of the learner can be taken to be the completely degenerate stratified hierarchy

in which all the constraints are lumped together in a single stratum.  Learning proceeds to refine this

hierarchy into a sequence of smaller strata.  Each pass of the algorithm begins with a set of not-yet-ranked

constraints, and ends by selecting some of them to constitute the next-lower stratum in the hierarchy.   At

each step, mark-data pairs which are accounted for by the already-ranked constraints are eliminated so that

only not-yet-ranked constraints are left.

The key observation is this:  for any given pair, if an uncancelled mark is incurred by the winner,

then it must be dominated by a mark incurred by the loser:  otherwise, the winner wouldn't win (this is

the Cancellation/Domination Lemma of Prince and Smolensky (1993, 130, 148, 221)).  Therefore, any

constraint assessing an uncancelled mark to the winner cannot be among the highest ranked constraints

in the set, and cannot be output as part of the next stratum.  Conversely, any constraint that does not assess

a mark to any winner can enter the next stratum, since no evidence exists that it is dominated by any of

the remaining constraints.

We illustrate how this process deduces the hierarchy for L  from the data in Table 18.1
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When the algorithm begins, the not-yet-ranked constraints comprise the entire universal set:

(63) not-yet-ranked-constraints = {ONS, NOCODA, PARSE, FILL , FILL }Nuc  Ons

Examining the rightmost column of the mark-data table (Table 18) we see that two marks, *PARSE and

*FILL , appear in the list of uncancelled winner marks.  So the two constraints PARSE and FILL  mustOns                Ons

be dominated by other constraints (those violated by the corresponding losers); they cannot be the highest-

ranked of the not-yet-ranked-constraints.  This leaves:

(64) highest-ranked-constraints = {ONS, NOCODA, FILL }Nuc

which constitutes the output of the first pass:  these three constraints form the highest stratum in the

hierarchy.  The data do not support any distinctions in ranking among the three, so none are made.  Now

(65) not-yet-ranked-constraints = {PARSE, FILL }Ons

Now that the highest ranked constraints have been determined, the list of mark-data pairs can be trimmed

down by removing any mark-data pairs that are completely accounted for by the constraints selected as

highest.  This is the case if at least one of the marks incurred by the loser of a pair is among the highest

ranked constraints.  Such a mark is guaranteed to dominate all of the corresponding winner's marks,

because all of the winner's marks were disqualified from being ranked highest.

So we eliminate from the mark-data table every row in which any of the highest-ranked

constraints appear.  In the current example, we eliminate the pair a � d because *ONS appears (or,

alternatively, because *NOCODA appears), and also the pair c � d, because *FILL  appears.  The newNuc

mark-data table is thus:

Table 19

Mark-data Pairs (L , After First Pass)1

sub-opt � opt loser-marks winner-marks

b � d �V�.CV.�C� �   .�V.CV.�C� { *PARSE *PARSE} { *PARSE *FILL }Ons

At the end of the first pass, we now have the first (highest) stratum (64), a reduced list of not-yet-

ranked constraints (65), and a reduced mark-data table (Table 19).  Crucially, the reduced mark-data table



79

involves only the not-yet-ranked-constraints, so we can now recursively invoke the same algorithm, using

the remaining data to rank the remaining constraints.  This initiates the next pass.

Repeating this process with the reduced mark-data table (Table 19), we examine the rightmost

column of the table, and observe that of the two not-yet-ranked-constraints (65), only one, FILL ,Ons

appears.  The remaining constraint, then, is output as the next stratum of highest-ranked constraints:

(66) highest-ranked-constraints = {PARSE}

This leaves

(67) not-yet-ranked-constraints = {FILL }Ons

The final step of the second pass is to trim the mark-data table, eliminating rows in which the highest-

ranked-constraints appear.  This eliminates the only row in the table, so that the new mark-data table is

empty.

Table 20

Mark-data Pairs (L , After Second Pass): none1

The result of the first two passes is the highest segment of the stratified hierarchy:

(68) {ONS, NOCODA, FILL } >> {PARSE}Nuc

The third pass operates on an empty mark-data table.  Since there are no marks in the rightmost

column of such a table, no remaining constraints must be dominated: all the not-yet-ranked constraints

are output as the highest-ranked.  In this case, that is the one remaining constraint FILL .Ons

(69) highest-ranked-constraints = {FILL }Ons

This leaves

(70) not-yet-ranked-constraints = {}

so the algorithm terminates, with the final result:

(71) Learned Stratified Hierarchy for L :1

 {ONS, NOCODA, FILL } >> {PARSE} >> {F ILL }Nuc     Ons

This result represents a class of totally-ranked constraint hierarchies which give rise to the target

language L :  the same optimal outputs arise regardless of the ranking of the three highest constraints.  One1
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of these refinements of the learned stratified hierarchy (71) is the particular total ranking given in (7): this

is but one of the correct hierarchies for the target language.

It is easy to see how the course of learning L  differs from that of L , assuming the learner's initial2     1

datum is the description of the same input, /VCVC/, which is now �V�.CV.C�.  (candidate 2.c).  The´

mark-data table used by the algorithm, after cancellation, is now:

Table 21

Mark-data Pairs after Cancellation (L )2

sub-opt � opt loser-marks winner-marks

a � c .V.CVC. �   �V�.CV.C�.´ {*O NS *NOCODA} {*P ARSE *FILL }Nuc

b � c �V�.CV.�C� �   �V�.CV.C�.´ { *PARSE *PARSE} { *PARSE *FILL }Nuc

d � c .�V.CV.�C� �   �V�.CV.C�.´ { *PARSE *FILL } { *PARSE *FILL }Ons Nuc

This table is identical to its L  counterpart (Table 18) except that the marks *FILL  and *FILL  are1
Nuc  Ons

interchanged.  The result of the algorithm is therefore the same as before, (71), with this exchange made.

(72) Learned Stratified Hierarchy for L :2

 {ONS, NOCODA, FILL } >> {PARSE} >> {F ILL }Ons     Nuc

Again, this stratified hierarchy is correct: its further refinements into totally-ranked hierarchies, including

the one we singled out in (7), all give rise to L .2

That these CV languages can each be learned completely from a single positive example attests

to the power of the implicit negative data which comes with each positive example in Optimality Theory.

4.2.2  General Statement of the Recursive Constraint Demotion Algorithm

The RCD algorithm operates on pairs of constraint violation marks.  It is here assumed that the

learner has already collected all of the observed (optimal) descriptions, selected one or more suboptimal

competitors for each optimal description, and determined the constraint violation marks assessed to each
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description.  How the learner might select appropriate suboptimal competitors for an optimal description

will be discussed at length below, in the section on the error-driven learning algorithm.  

Given:

universal-constraints = a set of universal constraints 

mark-data = a table of pairs of mark lists (loser-marks, winner-marks)

To Find:

A stratified hierarchy with respect to which each of the loser-marks is less Harmonic than its

corresponding winner-marks.

RCD Algorithm:

Set not-yet-ranked-constraints = universal-constraints

I. Mark Cancellation

For each pair (loser-marks, winner-marks) in mark-data:

a. For each occurrence of a mark *� in both loser-marks and winner-marks in the same

pair, remove that occurrence of *� from both.

b. If, as a result, no winner-marks remain, remove the pair from mark-data.

II. Recursive Ranking

a. Output highest-ranked-constraints = all the constraints in not-yet-ranked-constraints which

do not have a mark in the column winner-marks of mark-data; these form the highest-

ranked stratum of the not-yet-ranked constraints.

b. Remove the highest-ranked-constraints from the not-yet-ranked-constraints.

c. Remove all rows from mark-data which contain any marks assessed by the highest-ranked-

constraints.

d. Call Recursive Ranking again, with the remaining mark-data and the remaining not-yet-

ranked-constraints.

Note that in step c of Recursive Ranking, the relevant marks (those assessed by the highest-ranked-

constraints) can only appear in the column loser-marks; for any constraint contributing a mark to the
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column winner-marks is not, by step a, among the relevant constraints (those in highest-ranked-

constraints).

4.2.3  Informal Analysis of the Algorithm

Observe first that multiple uncancelled tokens of the same type of mark in the mark-data table,

either for winner or loser, have the same effect as a single token.  For in Recursive Ranking step a, we

simply determine which constraints assess no marks at all in the winner-marks column: whether a single

or multiple tokens of a mark appear makes no difference.  Then in Recursive Ranking step b, a row is

removed from mark-data if it contains any marks at all assessed by the highest-ranked-constraints;

multiple tokens of a mark type have the same effect as a single token.  Thus, for efficiency considerations

below, we can assume that in Mark Cancellation step a, if a row of the mark-data table contains multiple

tokens of the same type of mark after cancellation, duplicates are eliminated, leaving at most one token

of each type.  In other words, in the initial mark-data table prior to cancellation, what really matters is, for

each constraint, which of sub-opt or opt incurs more violations of the constraint �; if it is sub-opt, then

a token of the mark *� appears in the column loser-marks; if it is opt, then the token of *� appears instead

in the column winner-marks.  What matters in the assessment of optimality is only which of two

candidates more seriously violates each constraint, not any absolute magnitude of violation.

The correctness of the algorithm should be clear.  The highest-ranked-constraints output at each

pass of the algorithm are exactly the constraints which need not be dominated in order to explain the

available data; the remaining not-yet-ranked-constraints, by contrast, must be dominated and so cannot

be highest-ranked.  We now show that the algorithm must terminate.

On each pass of the algorithm, at least one constraint must be output.  For suppose not.  That

would mean that every one of the not-yet-ranked-constraints appears in the column winner-marks, i.e.,

as an uncancelled mark of an optimal description.  But that would mean that every one of the not-yet-

ranked-constraints must be dominated by one of the other not-yet-ranked-constraints: which means there

is no ranking of these constraints which is consistent with the mark-data, in contradiction to the basic

assumption that the mark-data derive from some ranking of the given constraints.  Notice that RCD
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indicates when the data are inconsistent, by failing to output any constraints at the end of a pass while

some constraints have not yet been ranked.

So on each pass, at least one constraint is eliminated from the not-yet-ranked-constraints.  Thus

the number of passes required cannot be more than the number of universal constraints: call this N .constr

The number of steps required for each pass cannot exceed the number of uncancelled marks in the mark-

data table: each mark in the column winner-marks is examined in Recursive Ranking step a to ensure that

its corresponding constraint will not be output as a highest-ranked-constraint, and, in the worst case, each

mark in the column loser-marks must be examined in Recursive Ranking step c to determine which rows

must be eliminated from data.  The number of uncancelled marks per row of the table can't exceed the

number of constraints N , so the total number of steps per pass can't exceed N N , where N  isconstr           constr pairs  pairs

the number of mark-data pairs used.  Therefore, the number of steps required for all the passes can't

exceed (N ) N .  In the worst case, the RCD algorithm is quadratic in the number of constraints, andconstr pairs
2

linear in the number of mark-data pairs.

4.3  General Constraint Demotion

In this section, we pull out the core part of the RCD algorithm, which we call the Core CD

Algorithm, and show how it can be used in a number of ways to yield a family of CD Algorithms which

differ primarily in how much data they process at one time.

4.3.1  The Core CD Algorithm

Given:

� = a stratified hierarchy of constraints 

mark-data = a table of pairs of mark lists (loser-marks, winner-marks)

To Find:

A stratified hierarchy with respect to which each of the loser-marks is less harmonic than its

corresponding winner-marks.
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Core CD Algorithm

I. Mark Cancellation

For each pair (loser-marks, winner-marks) in mark-data:

a. For each occurrence of a mark *� in both loser-marks and winner-marks in the same

pair, remove that occurrence of *� from both.

b. If, as a result, no winner-marks remain, remove the pair from mark-data.

II. Constraint Demotion 

Repeat the following until no demotions occur:

For each pair (loser-marks, winner-marks) in mark-data

a. find the mark *�  in loser-marks which is highest-ranked in �loser

b. for each *�  in winner-markswinner

if �  does not dominate �  in �loser    winner

�  to the stratum immediately below �winner      loser

(creating such a stratum if it does not already exist)

Output �

4.3.2  Versions of the CD Algorithm

Now we present several ways of using the Core CD Algorithm to learn a language.  All start, like

RCD, with the stratified hierarchy in which all the universal constraints are in the top stratum: we call this

� .  The constraints in this stratified hierarchy are then demoted as demanded by the data.0

(73)  Batch CD

a. Compile all available description pairs (subopt, opt).

b. Set mark-data to {(marks(subopt), marks(opt))}

c. Set � = �0

d. Execute Core CD on mark-data and � (once).

Batch CD is closely related to RCD (see discussion below): all the data are processed simultaneously by

Core CD.
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(74)  On-line CD

a. Set � = �0

   Execute repeatedly:

b. Select one pair (subopt, opt).

c. Set mark-data = {(marks(subopt), marks(opt))}.

d. Execute Core CD on mark-data and current �.

On-line CD operates by applying Core CD separately to each (subopt, opt) pair.

(75)  I/O CD

a. Set � = �0

   Execute repeatedly:

b. Select several pairs (subopt, opt) for one optimal description opt.

c. Set mark-data =  {(marks(subopt), marks(opt))}

d. Execute Core CD on mark-data and current �.

I/O CD is one way of using Core CD in between the extremes of Batch CD (all data processed at once)

and On-Line CD (one mark-data pair processed at a time).  One description opt from the language is

processed at a time, but a number of competitors subopt to opt may be processed at once.

4.3.3  Example

We exemplify On-Line CD using the language L  above.  Recall that On-Line CD operates on1

one (loser-marks, winner-marks) pair at a time.  

Step a of On-Line CD has us set the initial stratified hierarchy to

(76) � = �  = {PARSE, FILL , FILL , ONS, NOCODA}0
Nuc  Ons

Step b has us pick a (subopt, opt) pair; suppose we pick b � d of (2).  Step c has us generate the

corresponding pair of mark lists, as shown in the second row of Table 17.  Step d has us execute Core CD.

Step I of Core CD is Mark Cancellation; the result is:
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Table 22

Mark-pair for On-Line CD, Step 1 (L )1

sub-opt � opt loser-marks winner-marks

b � d �V�.CV.�C� �   .�V.CV.�C� { *PARSE *PARSE} { *PARSE *FILL }Ons

Step II of Core CD is Constraint Demotion.  We first find the highest-ranked (uncancelled) mark *�loser

in �; this is *PARSE.  We next check to see whether the winner-marks are dominated by *PARSE.  The

only winner mark is *�  = *FILL , which is not so dominated.  So Core CD requires the demotionwinner
Ons

of �  = FILL  to the stratum immediately below �  = PARSE.  Since no such stratum currentlywinner        loser
Ons

exists, we create it.  The hierarchy is now

(77) � = {PARSE, FILL , ONS, NOCODA} >> {F ILL }Nuc     Ons

This completes the execution of Core CD, so we return to step b of the On-Line CD procedure:

picking another (subopt, opt) pair.  Suppose this is a � d of (2):

Table 23

Mark-pair for On-Line CD, Step 2 (L )1

sub-opt � opt loser-marks winner-marks

a � d .V.CVC. �   .�V.CV.�C� {*O NS *NOCODA} {*P ARSE *FILL }Ons

We proceed to the Constraint Demotion step of CD, which calls first for finding the highest-ranked of the

loser-marks; since ONS and NOCODA are both top ranked, either will do: choose, say, ONS.  We next

check whether each of winner-marks is dominated by ONS.  FILL  is so dominated, so no demotionOns

results.  PARSE is not, however, so it is demoted to the stratum immediately below that of ONS; the

hierarchy is now:

(77) � = {FILL , ONS, NOCODA} >> {PARSE, FILL }Nuc      Ons

Suppose now that the next sub-opt � opt pair is:
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Table 24

Mark-pair for On-Line CD, Step 3 (L )1

sub-opt � opt loser-marks winner-marks

c � d �V�.CV.C�. �   .�V.CV.�C�´ { *PARSE *FILL } { *PARSE *FILL }Nuc Ons

Since the uncancelled loser mark, *FILL  already dominates the uncancelled winner mark, *FILL , noNuc       Ons

demotion results, and � is unchanged.  This is an example of an uninformative pair, given its location in

the sequence of training pairs, since no demotions result.

Suppose the next sub-opt � opt pair results from a new input, /VC/:

Table 25

Mark-pair for On-Line CD, Step 4 (L )1

sub-opt � opt loser-marks winner-marks

�VC� �   .�V.�C� { *PARSE *PARSE} { *PARSE *FILL }Ons

Since the loser mark *PARSE does not dominate the winner mark *FILL , we must demote FILL  to theOns     Ons

stratum immediately below PARSE, resulting in the hierarchy:

(79) � = {FILL , ONS, NOCODA} >> {PARSE} >> {F ILL }Nuc       Ons

This stratified hierarchy actually gives rise exactly to L , so no further data will be informative.  It is the1

same hierarchy as that learned by RCD, (71).

4.3.4  Restrictions on Rankings

Some analyses within Optimality Theory have proposed further restrictions on the rankings of

the universal constraints, as a part of Universal Grammar. An example is the Universal Syllable Theory

in Prince and Smolensky (1993, §8). The question of how to incorporate restrictions into CD algorithms,

and what kinds of restrictions can be accommodated, is open.

The Universal Syllable Theory in Prince and Smolensky (1993, §8) uses a particular type of

ranking restriction: a universal markedness scale.  A subset of the universal constraints have their relative
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 Formally, the crucial concept is that of h-domination, defined in section 4.4; this proposed1

initial hierarchy h-dominates all possible target hierarchies.

rankings fixed by universal grammar.  The absolute location of these constraints is not fixed, and the

ranking of other constraints not in the markedness scale is entirely free.  Thus, as long as the relations of

the markedness are preserved in the final learned hierarchy, the restriction is met.  One possibility for

learning such grammars is to use, as the starting hierarchy, one with all constraints in the top stratum

except for those in a markedness scale.  The constraints in the markedness scale start with their relative

rankings set, with the top constraint in the top stratum, the second constraint of the scale in the second

stratum, and so forth.  Because the relative rankings of the scale must be respected in any target hierarchy,

the position of each constraint in this initial hierarchy is at or above its position in all possible target

hierarchies .  What remains is to ensure that constraint demotion does not result in a hierarchy with the1

constraints out of order relative to the markedness scale.  This could be accomplished by observing when

a constraint being demoted belongs to a markedness scale, and ensuring that after demotion it still

dominates all constraints below it in the scale (demoting the other constraints if necessary).  Correctness

would then follow, by the analysis presented in section 4.4.

4.3.5  Input Errors

The CD algorithms assume that the input data contain no errors. It remains to be explored what

kinds of errors the CD algorithms might be resistant to, and what reasonable modifications might increase

the ability to overcome input errors. RCD is capable of detecting when inconsistencies exist in the input;

it is less clear how On-Line CD will behave when given inconsistent input.  The issue for the on-line case

is h-domination (see section 4.4): if a constraint is accidentally demoted below the stratum it occupies in

the target hierarchy, then the resulting hierarchy does not h-dominate the target hierarchy, and the formal

proof no longer applies.
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4.4  Formal Analysis of Constraint Demotion

4.4.1 Stratified Hierarchies

(80)  Def. A stratum is a set of constraints.  A stratified hierarchy is a linearly ordered set of strata which

partition the universal constraints. A hierarchy distinguishes one stratum as the top stratum. Each

stratum other than the top stratum is immediately dominated by exactly one other stratum.  The

top stratum immediately dominates the second stratum, which immediately dominates the third

stratum, and so forth.  

(81)  Def.  A total ranking is a stratified hierarchy where each stratum contains precisely one constraint.

(82)  Def.  A constraint �  is said to dominate constraint � , denoted �  >> � , in hierarchy � if the1      2   1  2

stratum containing �  dominates the stratum containing �  in hierarchy �.1     2

(83)  Def.  The offset of a constraint � in a hierarchy � is the number of strata that dominate the stratum

containing �.  � is in a lower stratum in �  than in �  if the offset of � in �  is greater than in1   2       1

� .  � is in the same stratum in �  and �  if it has the same offset in both.2          1  2

(84)  Def.  A constraint hierarchy �  h-dominates �  if every constraint is in the same or a lower stratum1  2

in �  than in � .2   1

(85)  Def.  A constraint hierarchy �  is called a refinement of �  if every domination relation � >> �� of2      1

�  is preserved in � .1    2

(86)  Def.  �  denotes the stratified hierarchy with all of the constraints in the top stratum.0

(87) Lemma  �  h-dominates all hierarchies.0

Proof

�  h-dominates itself, because h-domination is reflexive (h-domination is satisfied by constraints0

that are in the same stratum in both hierarchies).  Consider some constraint � in some hierarchy

�.  � is either in the top stratum of �, and thus in the same stratum as in � , or it is in some0

lower stratum of �, and thus in a lower stratum than in � .  Therefore, �  h-dominates all0    0

hierarchies.
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4.4.2 The Target Stratified Hierarchy

(88)  Def. The h-dominant target stratified hierarchy, or simply the ‘target,’ for a language L generated

by a total ranking, is denoted � , and is defined as follows.  The top stratum of the targetL

contains precisely those constraints which never assess uncancelled marks to any optimal

description in L.  The second stratum consists of precisely those constraints which assess

uncancelled marks only to optimal descriptions relative to competitors which are assessed at least

one uncancelled mark by a constraint in the top stratum.  Each stratum consists of precisely those

constraints which (a) cannot occur higher in the target, and (b) only assess uncancelled marks

to optimal descriptions relative to competitors assessed an uncancelled mark by at least one

constraint ranked higher in the target.

(89) Lemma  For any L generated by a total ranking, �  exists and is unique.L

Proof

Existence follows from the definition, and the assumption that L is generated by at least one total

ranking of the constraints. The top stratum of �  is guaranteed to contain at least the constraintL

ranked highest in the total ranking. Among the constraints not placed in the top stratum of � ,L

one dominates all the remaining others in the total ranking, and is thus guaranteed to meet the

requirements for placement in the second stratum. The same logic, applied to subsequent strata,

shows that all of the constraints will be placed in a stratum in � .L

Uniqueness is guaranteed because a constraint cannot meet the requirements for placement in

more than one stratum in the hierarchy, because meeting the requirements for one stratum

automatically disqualifies it for any lower strata.

(90) Lemma Each constraint � with offset n>0 in �  for a language generated by a total ranking has theL

following property.  There must exist an optimal description opt with a competing suboptimal

description subopt such that � assesses an uncancelled mark to opt, subopt is assessed an

uncancelled mark by a constraint �  with offset precisely n-1, and subopt is not assessed anyn-1

uncancelled marks by any constraints with offset less than n-1.
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Proof

Consider some constraint �  with offset n>0 in target � .  Suppose, to the contrary, that no suchn L

pair (subopt, opt) exists for � .  Recall that if �  assesses an uncancelled mark to an optimaln      n

description relative to some suboptimal competitor, it must be dominated by some other

constraint which assesses an uncancelled mark to the suboptimal competitor, for otherwise the

optimal description would not be more Harmonic, and the correct language would not be

generated.

One possibility is that �  never assesses an uncancelled mark to any optimal description.  Butn

then it would have offset 0 in � , contradicting the assumption that it has offset greater than 0.L

The other possibility is that for any opt assessed an uncancelled mark by �  relative to somen

subopt, subopt is assessed an uncancelled mark by a constraint with offset smaller than n-1.  But

then �  could be placed one stratum higher in � , with resulting offset n-1, and the resultingn L

hierarchy would generate the same language, contradicting the fact that by definition every

constraint is ranked as high as possible in � .L

Therefore, the supposition must be false, and an appropriate pair must exist.

(91) Theorem  For any language L generated by a total ranking, �  has the property that each constraintL

is ranked as high as possible; that is, �  h-dominates every hierarchy �� which generates L.L

Proof

Consider a (stratified) hierarchy �� which generates L.

Consider a constraint � with offset 0 in ��.  � must not assess an uncancelled mark to any

optimal description in the language; otherwise, �� would not generate the language.  Therefore,

� must have offset 0 in � .  It follows that � has offset in �  <= �’s offset in ��, as both areL          L

0.

Assume that each constraint with offset <= n in �� is in the same or higher stratum in � .L

Consider a constraint �  with offset n+1 in ��.  For any pair of an optimal description opt withn+1

a suboptimal competitor subopt, if �  assesses an uncancelled mark to opt, subopt must ben+1
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assessed an uncancelled mark by a constraint � with offset <= n in �� (that is, � >> �  in ��);n+1

otherwise, �� would not generate the language.  By hypothesis, any constraint with offset <=

n in �� has offset <= n in � .  Therefore, �  has offset <= n+1 in � .L          Ln+1

By mathematical induction, every constraint in �� is in the same or higher stratum in � .  ItL

follows directly that every constraint is in the same or lower stratum in �� than in � .L

Therefore, target �  h-dominates ��.L

(92)  Corollary   �  h-dominates every total constraint ranking which generates L.L

4.4.3 The Constraint Demotion Algorithm

(93) Def.  The mark cancellation procedure, MarkCancel({(loser-marks, winner-marks)}), is:

For each pair (loser-marks, winner-marks)

For each occurrence of *� in both loser-marks and winner-marks

Remove that occurrence of *� from both lists

If winner-marks is empty, delete the pair

Return ({loser-marks, winner-marks})
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(94) Def.  The constraint demotion procedure, CD({(loser-marks, winner-marks)},�), is:

Set �� to �

Set mark-data to MarkCancel({(loser-marks, winner-marks)})

Repeat

For each pair (loser-marks, winner-marks) in mark-data

Find the constraint �  with a mark in loser-marks ranked highest in ��l

For each �  with a mark in winner-marksw

If �  does not dominate �  in ��l    w

Demote �  to the stratum immediately below �w      l

Until no demotions occur during a pass

Return (��)

(95) Lemma  The hierarchy output by CD is h-dominated by the input hierarchy.

Proof

Because constraint demotion only demotes constraints, each constraint is in either the same or

lower stratum in the output hierarchy than it was in the input hierarchy.

(96) Lemma  If the input hierarchy h-dominates � , so does the output hierarchy.L

Proof

This holds because CD will never demote a constraint lower than necessary.  Let �  be somew

constraint demoted by CD.  Then there is a mark-data pair (subopt, opt) requiring that �  bew

dominated by one of the constraints assessing uncancelled marks to subopt.  Let �  be the onel

with the smallest offset (highest ranked) in �, the input hierarchy, and let n denote its offset.  By

assumption, � h-dominates � , so �  in �  has offset >= n.  Thus, every constraint assessingL     Ll

an uncancelled mark to subopt must have offset >=n.  Therefore, �  must have offset at least n+1w

in � .  CD demotes �  to the stratum immediately below the one containing � , so �  has offsetL w         l   w

n+1 in the resulting hierarchy.  Thus, �  has offset in the output hierarchy less than or equal tow

its offset in � , guaranteeing that the output hierarchy h-dominates � .L        L
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(97) Def.  An informative pair for a hierarchy �� is a mark-data pair that, when given as input to CD

along with ��, causes at least one demotion to occur.  The property of being informative is

jointly determined by the mark-data pair and the hierarchy being evaluated.  

(98)  Def.    The h-distance between a hierarchy �  and a hierarchy �  h-dominated by �  is the sum,1    2   1

over all constraints �, of the difference between the offset of � in �  and in � .1   2

(99)  Lemma  Suppose the input hierarchy h-dominates � .  The h-distance between the output hierarchyL

and �  is decreased by at least one (from the h-distance between the input hierarchy and � ) forL               L

each demotion.

Proof

By lemma (95), the input hierarchy h-dominates the output hierarchy.  Let � be a constraint that

is demoted, with offset n in the input hierarchy, offset m in the output hierarchy,  and offset t in

� .  � is demoted, so m>n.  By lemma (96), the output hierarchy h-dominates � , so t>m>n.L                L

Therefore, (t-m)<(t-n), so the contribution of � to h-distance is smaller for the output hierarchy.

Thus, the output hierarchy h-distance is at least one less for each constraint demoted.

(100)  Lemma  The h-distance from �  to �  cannot exceed 0 L

½(N 
1)N .constr constr

Proof

By lemma (87), �  h-dominates every hierarchy, and therefore must h-dominate � .  The0 L

greatest h-distance will be when �  is a totally ranked hierarchy. The furthest constraint fromL

the top stratum will be the one in the bottom stratum, which has offset (N -1). The next lowestconstr

constraint has offset (N -2), and so forth. Thus, the h-distance will be:constr

(N -1)+(N -2)+...+1+0 which is precisely ½(N 
1)N .constr constr     constr constr

(101)  Theorem  Starting with �  and repeatedly presenting the CD algorithm with sets of mark-data0

pairs, the procedure converges on the target hierarchy �  after at most ½(N 
1)NL    constr constr

informative pairs.
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Proof

By lemma (99), each informative pair reduces the h-distance by at least one. Therefore the target

hierarchy is converged upon after a number of informative pairs that is at most the h-distance

between �  and the target.  Lemma (100) guarantees that this distance is at most0

½(N 
1)N .constr constr

4.4.4 The Relation of RCD to Batch CD

The first iteration of Batch CD runs once through all the data, demoting a certain number of constraints.

The constraints which remain in the top stratum at the end of this first iteration can never be demoted in

subsequent iterations through the data; and other constraints can never be promoted into this stratum.  So

after the first iteration, the top stratum has its final form.  All mark-data pairs containing these constraints

can be removed and ignored in subsequent iterations; if not, they will not cause further demotions.  This

same property then holds recursively for subsequent iterations.  In general, the n  iteration of Batch CDth

definitively determines the n  stratum from the top.  This is the same as the corresponding stratum outputth

by RCD on the n  call to RCD (a recursive call for n > 1).th

4.5  Error-Driven Constraint Demotion

Several versions of the Constraint Demotion algorithm have been presented.  All of these

versions require that one or more suboptimal competitors be �picked� to form mark-data pairs with the

observed  optimal description.  Given that GEN provides an infinite number of suboptimal competitors,

it is not immediately clear how to algorithmically select suboptimal descriptions.  This is particularly

significant in light of the fact that some suboptimal competitors will be much more informative than

others; if uninformative competitors are consistently selected, no learning will take place.  Can informative

competitors be efficiently selected?

4.5.1 Using Parsing to Generate Suboptimal Competitors

It is here that the work on the parsing problem in Optimality Theory becomes relevant to

learning.   In the learning problem, it is assumed that the learner has access to the input form.  If the

learner has a current hypothesized ranking of the constraints (in general, a stratified hierarchy), then they
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can compute the optimal parse of that input with respect to the current hypothesized ranking.  It is this

capacity that is exploited to determine suboptimal competitors.

The algorithm, Error-Driven Constraint Demotion, makes use of Constraint Demotion, and works

as follows.  The learner has in hand a hypothesized ranking; at the beginning, the initial hierarchy � .0

The learner receives as input a single complete parse along with its underlying form.  The learner then

computes the optimal parse of the underlying form according to its current ranking.  If this parse matches

the observed one, then nothing may be learned (no suboptimal candidate could be informative), so the

learner does nothing further with that input.  If, on the other hand, the computed optimal parse differs from

the observed parse, then the CD algorithm is applied, using the observed parse as the winner and the

computed parse as the loser.  Because the current ranking held the computed parse as optimal, that parse

is guaranteed to be informative.  At least one constraint demotion must  take place in order to modify the

ranking so that the observed parse is more Harmonic than the computed parse.  Thus, the application of

CD will result in a new hypothesized ranking.

For this scheme to be feasible, the learner must be capable of evaluating the relative Harmony

of candidate structural descriptions with respect to hierarchies which are not total rankings.  The Harmonic

ordering of forms defined by Prince and Smolensky (1993, §5) presumes total rankings.  However, there

is a quite straightforward extension of Harmonic ordering of forms to stratified hierarchies.  This

extension treats constraints in the same stratum as having equivalent Harmonic value.  When comparing

two descriptions, a mark assessed by one constraint may cancel with a mark assessed by a different

constraint in the same stratum.  Harmonic ordering of forms is here defined stratum by stratum, starting

at the top of the hierarchy.  Two descriptions are ordered relative to a single stratum by listing for each

description the marks assessed by all the constraints in the stratum.  The description with fewer marks is

the more Harmonic relative to that stratum.  If they have the same number of marks, the two descriptions

are not Harmonically distinguished relative to that stratum.
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Consider the following simple illustration:

Table 26

Evaluation with equivalent constraints:  �  >> � , �  >> �1  2  3  4

� � � �1 2 3 4

F *!1

F * *!2

� F3
*

F **!4

In this illustration, descriptions F  and F  violate different constraints which are in the same stratum of the2  3

hierarchy.  Therefore, the marks cancel, and it is left to the lower-ranked constraint to decide in favor of

F .  Notice that candidate F  is still eliminated by the middle stratum because it incurs more than the3      4

minimal number of marks to constraints in the middle stratum.  

In this way, Harmonic ordering of forms is well-defined over all stratified hierarchies.  Because

the extensions are entirely internal to the comparison of different lists of marks, the parsing algorithms

may be applied to this extension without difficulty.  A consequence of this extension is that descriptions

with non-identical lists of marks can now have equal Harmony, including the possibility of having ties

for optimality.

Given this extension, for each observed piece of positive data, parsing may be used to determine

if an informative competitor exists, and if so, to provide such a candidate.  This results in an error-driven

learning algorithm (Wexler & Culicover 1980).  Each observed description is compared with a computed

description of the underlying form.  If the two descriptions match, no error occurs, and so no learning

takes place.  If the two descriptions differ, this is treated as an error on the part of the current hypothesized

ranking, and so constraint demotion is used to adjust the hypothesized ranking consistent with the

observed description.
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It is important to note that applying CD to a single mark-data pair does not in general guarantee

that the observed description (the winner) is now the optimal description of its underlying form.  All that

is guaranteed is that the observed description is more Harmonic than the particular competitor used.  It

may well be that the resulting constraint ranking determines a third description to be the optimal one for

the underlying form.

This algorithm demonstrates that using the familiar strategy of error-driven learning does not

require hard constraints or independently evaluatable parameters.  Because Optimality Theory is defined

in terms of  optimization, errors are defined with respect to the relative Harmony of several entire

descriptions, rather than in terms of applying particular criteria to a single description.  Constraint

demotion accomplishes learning precisely on the basis of the comparison of entire descriptions.  

4.5.2 A Family of Error-Driven Learning Algorithms

As with Constraint Demotion, Error-Driven Constraint Demotion is actually a family of related

algorithms, all based upon the same basic principle.  There are two facts which result in possible variations

in this approach.  The first is that for a single input, there may be several candidates which tie for

optimality.  Such ties are more likely to occur early in learning, when many constraints do not have

established relative rankings.  The second fact is that, when the CD algorithm is applied to a single mark-

data pair, the resulting ranking does not necessarily have the winner as optimal.  Applying the CD

algorithm to a single pair guarantees that the loser will be less harmonic than the winner, but does not rule

out the possibility that some other candidate is optimal by the resulting ranking.  

As a result, two decisions need to be made about error-driven learning.  First, if parsing reveals

that several descriptions tie for optimality, the learner may either use each of them to create separate mark-

data pairs to learn on, or the learner can simply choose one of them, learning on only the single resulting

pair.  Creating several mark-data pairs provides more potential information, at the cost of additional

processing.  If several mark-data pairs are chosen, it would be reasonable to apply the I/O version of CD;

parsing is used to select the suboptimal candidates for creating the mark-data pairs.  If only one competing

candidate is selected for learning, On-Line CD will be employed by default.  
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The second decision involves what, if any, steps to take after constraint demotion.  Because

applying constraint demotion on a single mark-data pair (or the set of pairs corresponding to the set of

descriptions which tied for optimality) does not ensure that the observed description (the winner) is

optimal, the learner could re-parse the input according to the new constraint ranking.  If the resulting

optimal description(s) is different from the winner,  the new optimal description may be used to create a

new mark-data pair, to which constraint demotion would be applied.  Again, this allows the learner to

extract more information out of a single observed description, at the cost of greater processing dedicated

to a single observed description.  The decision here is whether or not to repeatedly iterate the parse/CD

cycle.  

4.5.3 The Time-Course of Learning

Some facts about the time-course of learning will be illustrated with an example, again of the

learning of L .  This example employs the input /VC/, and applies error-driven learning by selecting a1

single candidate from a set of tied optimal descriptions.  After constraint demotion is applied to a single

mark-data pair, the input is re-parsed according to the new ranking, and this learning cycle is repeated

until the observed description becomes the optimal one for the input.

The algorithm starts with the ranking � , that is, all constraints tied at the top of the hierarchy,0

as in (76).  The observed optimal description is .�V.�C�; this is the winner.  Applying the parsing

algorithm to the input reveals that eight candidates tie for optimality:
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(102) �V��C� {*P ARSE *PARSE}

.V.�C� {*O NS *PARSE}

.�V.�C� {*F ILL  *PARSE}Ons

.V.C�. {*O NS *FILL }´  Nuc

.�V.C�. {*F ILL  *FILL }´ Ons Nuc

.VC. {*O NS *NOCODA}

.�VC. {*F ILL  *NOCODA}Ons

�V�.C�. {*P ARSE *FILL }´  Nuc

Although in this case the observed description is one of the eight that tie for optimality, it will not

generally be the case that the observed description will be optimal at the start.  At the beginning, all

constraint violations have equal importance (because no distinctions in ranking have yet been made).

Optimality here reduces to having the fewest total number of marks.  The eight candidates listed above

are precisely those candidates which incur two violation marks (there are no candidates for this input with

fewer than two marks).

The suboptimal description chosen for learning on the first application of CD is .V.�C�.  This

gives us the following mark-data pair:

Table 27

Mark-data pair for error-driven learning step 1.

loser-marks winner-marks

.V.�C� � .�V.�C� {*O NS *PARSE} {*F ILL  *PARSE}Ons

Applying On-Line CD to this mark-data pair results in the demotion of FILL , so the resulting hierarchyOns

is 

(103) � = {PARSE, FILL , ONS, NOCODA} >> {F ILL }Nuc     Ons
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Step 2 repeats the procedure on the same input with the same observed description, using the new

hierarchy.  Applying the parsing algorithm reveals that with the current hierarchy, three candidates tie for

optimality:

(104) .�V.�C� {*F ILL  *PARSE}Ons

.�V.C�. {*F ILL  *FILL }´ Ons Nuc

.�VC. {*F ILL  *NOCODA}Ons

As it turns out, the observed description is one of the three which tie for optimality.  Thus, one of the other

two will be selected as the losing candidate.  Here, the chosen losing candidate is .�V.C�.  The´

corresponding mark-data pair is:

Table 28

Mark-data pair for error-driven learning step 2.

loser-marks winner-marks

.�V.C�. � .�V.�C� {*F ILL  *FILL } {*P ARSE *FILL }´ Nuc Ons Ons

Applying On-Line CD to this mark-data pair results in the demotion of PARSE down to the second stratum

(crucially, below FILL ):Nuc

(105) � = {FILL , ONS, NOCODA} >> {PARSE, FILL }Nuc      Ons

Step 3 repeats the procedure on this new hierarchy.  Applying the parsing algorithm reveals that

there are now two candidates which tie for optimality:

(106) .�V.�C� {*F ILL  *PARSE}Ons

�V��C� {*P ARSE *PARSE}

Applying On-Line CD to this final pair results in the correct stratified hierarchy for the language, the one

which gives rise to L :1

(107) � = {FILL , ONS, NOCODA} >> {PARSE} >> {F ILL }Nuc       Ons

That this is the correct hierarchy is recognized by Error-Driven Constraint Demotion when the input is

once more parsed and only one candidate, the observed one, is optimal.  
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Notice that, even though the On-Line version of CD was employed, its repeated use by the error-

driven learning scheme allows the entire hierarchy to be learned from one piece of positive data, just as

Recursive Constraint Demotion was able to do.

It is instructive to examine carefully the set of candidates which tie for optimality at each step.

At first glance, the algorithm appears to have a straightforward monotonic character: each step eliminates

some candidates, until only one remains.  But, this is not true.  In particular, notice that the candidate

�V��C� is one of the optimal candidates in step 1 and step 3, but not in step 2.  This candidate was not

simply eliminated permanently from contention by some particular operation; it moves into and out of

optimal status as the hierarchy changes.  Thus, even this simple two segment example hints at the kinds

of complex dynamics this algorithm is capable of.

It is certainly not being claimed here that no predictions can be made about the time course of

learning if this algorithm is used.  It is possible that a particular set of constraints, along with a particular

definition of GEN, would result in restrictive patterns of language development.  The point is that such

patterns would not be the result of constraint demotion by itself; such patterns would depend on

interactions between the algorithm and the specific grammars being acquired.

4.5.4 The Data Complexity of Error-Driven Constraint Demotion

Because Error-Driven Constraint Demotion repeatedly invokes On-Line CD, the data complexity

results for On-Line CD apply directly.  Each error is precisely an informative example.  Thus, the worst

case number of errors required to learn the hierarchy for a grammar is

½(N -1)Nconstr constr

In a grammar with 10 constraints, there are 3,628,800 distinct total rankings of the constraints, but Error-

Driven Constraint Demotion will require at most 45 errors to learn the correct hierarchy.

4.6 Principles of Universal Grammar and Principles of Learning

4.6.1 Ties

Error-Driven Constraint Demotion assumes that all competitors to an observed output are

suboptimal.  This might fail to be the case in two different ways.  First, a single input may give rise to
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multiple optimal outputs which all earn the same set of marks (i.e., the constraints fail to distinguish

them).  In this case, while it is not actually correct that all competitors of a given observed output are sub-

optimal, no errors in the learning result.  Recall that the first step in the  CD algorithm is the cancellation

of common marks.  Thus if the ‘sub-optimal’ description selected is in fact a second optimal description,

then all marks cancel and this pair is discarded.

Two descriptions which do not incur identical marks can only tie for optimality if the underlying

constraint hierarchy is not consistent with any totally ranked hierarchy, since it must be the case that

marks for different constraints are canceling.  However, Constraint Demotion will not correctly learn such

hierarchies: observing one of the optimal descriptions and assuming that all others are sub-optimal

prevents the tie from being learned.  This is easily illustrated with two constraints, and two candidates,

each of which violates one of the constraints.  If the target hierarchy ranks the two constraints in the same

stratum, the two descriptions will tie for optimality (assuming every alternative candidate receives at least

two marks).  Both descriptions will therefore be observed as positive evidence.  But when one description

is observed, CD will automatically assume the other to be suboptimal, and will demote the constraint

violated by the observed description below the other.  But, when the other description is observed, CD

will reverse the rankings of the constraints.  This will continue endlessly, and learning will fail to

converge.  Notice that this instability will be observed even if the algorithm starts with a hierarchy with

the constraints in the same stratum.  Not only will the algorithm not converge on the tied hierarchy, but

when given the hierarchy it will in time reject it.  

It is currently unknown whether it is possible to extend CD to learn languages in which some

inputs have multiple optimal outputs which do not earn identical sets of marks.  One might, for example,

suppose that the target language derives from an underlying stratified hierarchy inconsistent with any

totally ranked hierarchy.  One might also assume that the learner's initial data consists in a set of inputs,

and for each input, all its optimal outputs, should there be more than one.  The Core CD Algorithm would

need to be extended to handle pairs opt  � opt  of tying optima.  In this extension, each mark in1  2

marks�(opt ) must be placed in the same stratum as a corresponding mark in marks�(opt ): a somewhat1              2
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delicate business.  This perhaps is more apparent once the possibility of multiple strata, each containing

more than one constraint, is considered, requiring the learner to sort out which constraints cancel with

which.  Indeed, achieving ties for optimality between descriptions which incur different marks is a delicate

matter.

However, the inability of CD to learn such hierarchies is actually a desirable property.

Typological prediction in Optimality Theory presumes that all attested languages correspond to total

rankings of the constraints.  It is commonly assumed within Optimality Theory that universal grammar

rules out grammars inconsistent with at least one total ranking.  The relation of Constraint Demotion to

typological prediction is further discussed below, in the section on Principles and Explanatory Adequacy.

The inability of EDCD to learn hierarchies inconsistent with any total ranking would be easily

proven if the only consequence of such hierarchies was the possibility of descriptions with non-identical

marks tying for optimality.  However, that is not the case.  Another possible consequence was illustrated

above in Table 26.  In that case, marks assessed to two different descriptions by two different constraints

in the same stratum cancel, but a constraint in a lower stratum then selects one of the candidates.  The

cancellation of marks from different constraints plays a role, but only one candidate is optimal.  It is

unknown whether EDCD could possibly learn a hierarchy which is (a) inconsistent with any total ranking;

(b) does not have multiple descriptions with non-identical marks tying for optimality, for any input.

4.6.2 Optionality

The structure of Optimality Theory endows considerable power to the implicit negative evidence

which the CD algorithm exploits.  This has interesting consequences for the Subset Principle for language

acquisition (Angluin 1978, Berwick 1986, Pinker 1986, Wexler & Manzini 1987).  The Subset Principle

states that if one possible language is a subset of another, the subset language must be hypothesized first,

to avoid unrecoverable overgeneralization.  The error-driven algorithm does not make strong predictions

about any superset relations between earlier and later hypothesized hierarchies; that is, it does not predict

that the languages generated by later hierarchies are contained in languages generated by earlier

hierarchies.  It should be readily apparent, however, that it also does not predict subset relations.
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In linguistic analyses, subset relations have often been connected with optionality.  An example

is the analysis of some languages as optionally permitting null subjects (Rizzi 1982).  This kind of analysis

presumes that sentences which permit null subjects contain pairs of otherwise identical sentences which

differ only in that the subject is lexically realized in one and not the other, and further that there is no other

information distinguishing the structural description of the two sentences.  Languages which do not permit

null subjects  only contain the member of each pair with the subject realized (hence the subset relation).

Samek-Lodovici and Grimshaw, in recent work (Samek-Lodovici 1995, Grimshaw & Samek-

Lodovici in prep.), argue that null subjects are not optional, but are in fact related to the focus and the

topic-referring status of the subject.  Languages which permit null subjects only permit them when the

subject is topic-referring, while languages which do not permit null subjects require a lexically realized

subject when the subject is topic-referring.  They provide an analysis within Optimality Theory in which

the focus and topic-referring status of the subject is included in the input, and therefore by containment

in the structural description.  As a result, there is no subset relation between the two types of languages.

The same input which is described as having a null subject in one language will receive a description with

an overt subject in the other type of language.  Neither description is present in both languages; neither

language is a subset of the other.

This difference on optionality is symptomatic of a more general difference between Optimality

Theory and the principles and parameters framework.  The latter posits a universal set of possible

structures, and specific grammars accept or reject possible structures, the resulting language being the set

of accepted structures.  Optimality Theory posits a universal set of possible inputs, and specific grammars

determine what the optimal description is of each input.  Grammars in Optimality Theory do not reject

inputs, they only assign descriptions.  Thus, at the level of complete structural descriptions, no two

languages can be in a strict subset relation: each language has the same inputs, and assigns a description

to each input.  Optimality Theory denies the possibility of optionality, at least with respect to complete

structural descriptions.
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The possible structures in a language are those that occur in the optimal description of at least

one input.  Arguing that a grammar does not permit some particular structure is not done by showing that

the grammar rejects descriptions containing that structure, but instead by showing that the structure cannot

occur in any optimal description.  An example is Basic Syllable Theory: in some languages, onsets are

required, while in others they are optional.  If the grammar is defined with a parameter that determines

acceptance or rejection of syllables without onsets, a subset relation results.  In Basic Syllable Theory,

every input is assigned a description, and grammars which require onsets assign descriptions which only

contain syllables with onsets.

4.6.3 Principles and Explanatory Adequacy

The learning algorithm operates in the space of stratified hierarchies of constraints.  However,

the typological predictions made in Optimality Theory are based on the presumption that well formed

grammars must correspond to total rankings of the constraints.  The discussion of ties above demonstrates

that many possible constraint hierarchies which are not consistent with any total ranking are not learnable.

Furthermore, the proof of correctness for Constraint Demotion only applies if all of the data are consistent

with some total ranking.  Because ties in a constraint hierarchy can have effects other than multiple

descriptions with non-identical constraint violations tying for optimality, it is not known for certain if all

hierarchies inconsistent with any total ranking are unlearnable by Constraint Demotion.  What is known

is that for such a hierarchy to possibly be learnable, it must be the case that there is not a single input

which has multiple descriptions with non-identical constraint violations which tie for optimality.

This property is a consequence of a principle implicit in the learning algorithm.  This principle

states that the learner should assume that the observed description is optimal for the corresponding input,

and that it is the only optimal description.  This principle resembles other proposed learning principles,

such as Clark’s Principle of Contrast (E. Clark 1987) and Wexler’s Uniqueness Principle (Wexler 1981).

Optimality Theory permits a particularly rigorous formal statement of this kind of principle with respect

to the acquisition of core grammar.
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This suggests the following account of cross-linguistic variation.  Optimality Theory provides

the following two principles of universal grammar:

(108) Grammaticality is defined in terms of optimization over a large space of candidates, with respect

to violable universal constraints.

(109) When universal constraints conflict, that conflict is resolved via strict domination.

The learning algorithm contributes the following principle of learning:

(110) Presume that any observed description is the only optimal description of its underlying form.

It then is in large part a consequence of these principles that the only well-formed adult grammars will be

those that are consistent with at least one total ranking of the universal constraints.

Even though the set of target languages is generated from the set of totally ranked hierarchies of

the universal constraints, the hypothesis space employed by the CD learning algorithm is the larger space

of stratified hierarchies.  It is worth emphasizing that the learning algorithm is not merely tolerant of a

hypothesis space of stratified hierarchies; the larger hypothesis space is important to the functioning of

the algorithm.  That learning can be much less difficult when the hypothesis space is larger than the target

space is a theme of work in Computational Learning Theory (Pitt & Valiant 1988, Kearns & Vazirani

1994).

This draws into focus an important but occasionally overlooked fact: the set of learnable

grammars is a property of a learning system, not of a hypothesis space.  Limiting the hypothesis space to

the space of observed grammars does make it a trivial matter to prove that unobserved grammars are not

learnable by the system, but it is not the only way to achieve such a result.  The fact that hypotheses in

a hypothesis space can be unlearnable has been the subject of much work in learnability (subset relations,

local maxima).  However, most work in the principles and parameters framework assumes a hypothesis

space equivalent to the set of observed grammars, and then attempts to construct learning systems which

guarantee that all the hypotheses are learnable.  By contrast, the account of cross-linguistic variation given

above assumes a larger hypothesis space, and then attempts to guarantee that all and only those hypotheses

which correspond to observed grammars are learnable.  
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Under the normal definitions of a trigger, a single datum can be a trigger for more than one1

parameter, but is such independently.  In such a case, the datum would not be interpreted as expressing
any relationship between the values of the two parameters.

4.7 Learnability and Linguistic Theory

In the principles and parameters framework, cross-linguistic variation is accounted for by a set

of parameters, where a specific grammar is determined by fixing each parameter to one of its possible

values. Every possible combination of parameter settings is a possible grammar.  Work on learnability in

this framework focuses on the relationship between data and the parameter values. This relationship is

usually discussed in terms of "triggers". A trigger is a datum (for example, a sentence for syntax) which

indicates the appropriate value for a specific parameter (see, for example, the definitions of trigger in

Gibson & Wexler 1994). It is significant that a trigger provides information about the value of a single

parameter, rather than relationships between the values of several parameters . This property is further1

reinforced by a proposed constraint on learning, the Single Value Constraint (R. Clark 1990, Gibson &

Wexler 1994): successive hypotheses considered by a learner may differ by the value of at most one

parameter. The result is that learnability concerns in this framework favor parameters which are

independent: they interact with each other as little as possible, so that the effects of each parameter setting

can be distinguished from the effects of the other parameters.  In fact, this property of independence has

been proposed as a principle for grammars (Wexler & Manzini 1987). Unfortunately, this results in a

conflict between the goals of learnability, which favor independent parameters with restricted effects, and

the goals of linguistic theory, which favor parameters with wide-ranging effects and greater explanatory

power (see (Safir 1987) for a discussion of this conflict).

Optimality Theory may provide the opportunity for this conflict to be avoided. In Optimality

Theory, interaction between constraints is not only possible but mandatory. Cross-linguistic variation is

explained not by variation in the structure of individual constraints, but by variation in the relative ranking

of the same constraints. Cross-linguistic variation is only possible to the extent that constraints interact.

The Constraint Demotion learning algorithm not only tolerates constraint interaction, but is based upon
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it. Informative data provide information not about one constraint in isolation, but about the results of

interaction between constraints. Constraints which have wide-ranging effects benefit learnability.  If these

properties are successfully preserved in a more general account of language learning within Optimality

Theory, explanation and learnability will work together; they will both favor interacting constraints with

wide-ranging effects and explanatory power.  

This possibility comes in virtue of the fact that Optimality Theory defines grammaticality in

terms of optimization over violable constraints. This central principle makes constraint interaction the

main explanatory mechanism. It provides the implicit negative data used by Constraint Demotion precisely

because it defines grammaticality in terms of the comparison of candidate descriptions, rather than in

terms of the structure of each candidate description in isolation. Constraint Demotion proceeds by

comparing the constraint violations assessed candidate descriptions. This makes constraint interaction the

basis for learning.  

By making constraint interaction the basis for both linguistic explanation and learning, Optimality

Theory creates the opportunity for the full alignment of these two goals. The discovery of sets of

constraints which interact strongly in ways that participate in diverse linguistic phenomena represents

progress for both explanation and learning. Clearly, this is a desirable property for a theoretical

framework.

4.8 Other Work on Learnability in Optimality Theory

An alternative approach to learning constraint rankings has been explored recently by

Pulleyblank and Turkel (1995a, 1995b).  Their work applies a general approach to global optimization,

genetic algorithms, to the problem.

In recent work on syntax and sentence pronunciation, Pesetsky (1993) has used a modification

of the standard Optimality Theory framework.  In his modification, adult grammars can have tied

constraints.  Further, ties between constraints are not interpreted in the way that Error-Driven Constraint

Demotion does.  Instead, when a set of constraints are tied, all possible total rankings of that set are

considered, and the most harmonic description for each ranking of the set is treated as equal with respect
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to that set of constraints.  Broihier (1995) has investigated some attempts to extend Constraint Demotion

to learn grammars with ties of this sort.



Chapter 5.  Conclusions

This dissertation has investigated two major computational issues within the framework of

Optimality Theory. The results indicate how the computational challenges presented by the framework

can be addressed. This chapter summarizes the results presented in this dissertation, and suggests what

issues need to be investigated next.  

5.1  Parsing

5.1.1  What Has Been Accomplished  

The parsing algorithms presented in this dissertation efficiently compute the optimal structural

description of an input, for grammars which select the optimal description from an infinite set of candidate

descriptions. These algorithms are provably correct for grammars in which the input is a strictly ordered

sequence of elements, and the universal constraints are appropriately local. Chapter 2 presented an

algorithm for grammars in which GEN employs structures properly described by a formal regular

grammar; the parser has a time complexity linear in the length of the input. Chapter 3 presented an

algorithm for grammars in which GEN employs structures properly described by a formal context-free

grammar; the parser has a time complexity cubic in the length of the input.  

Perhaps the most important lesson of this work for people working in Optimality Theory is that

the prospect of an infinite candidate set generated by GEN need not be feared. A grammar is a function,

not an algorithm. An algorithm need not mimic every aspect of the normal description of a grammar in

order to compute the function defined by that grammar.  

Further, given a grammar satisfying the stated conditions, the algorithms do not succeed by

imposing limitations on the set of descriptions considered which are extrinsic to the grammar. The

algorithms have the entire infinite set of candidate descriptions available to them. The algorithms rely on

the same universal constraints which guarantee the existence of optimal descriptions in the first place. For

example, if the FILL  constraints were removed from the Basic CV Syllable Theory, so that descriptions

of arbitrary size tied for optimality, then the parsing algorithms would never halt; they would keep

building and considering larger and larger partial descriptions without limit. The properties which

guarantee convergence of the algorithms are properties internal to the grammar.  
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A related point is the modular role of the language-specific constraint ranking in the operation

of the parser. The constraint ranking is consulted whenever several partial descriptions are compared. This

is the only way in which the ranking is used in the course of parsing. The rest of the operation of the

algorithm is independent of the particular ranking being used. Therefore, the structure of the parsing

algorithm does not need to be changed in response to cross-linguistic variation. Variation is restricted to

the constraint ranking, as it is in the linguistic theory itself.  

5.1.2  The Next Steps  

The most important formal issues needing further investigation are the restrictions on the input

ordering and the locality of the constraints. Both of these restrictions are sufficient conditions for the

computability of Optimality Theoretic grammars; necessary conditions are not known. Nevertheless, these

restrictions play a significant role in the algorithms described in this dissertation. Just how crucial each

restriction is to the general dynamic programming approach needs to be better understood.

A more general issue is the relationship between the competence input/output mappings and the

performance processes of production and comprehension. The competence grammars of Optimality

Theory are typically described as taking underlying forms as inputs, and thus are more naturally related

to production processes. But it is premature to assume any kind of strict identity between competence

input/output mappings and production. Further, the computability of mappings from surface forms to

structural descriptions (the much more commonly investigated direction in natural language processing)

deserves much further investigation.  In fact, in syntax the dynamic programming algorithms presented

here may extend more naturally when surface forms are used as input, because the input is then strictly

ordered.

5.2  Learnability  

5.2.1  What Has Been Accomplished  

The learnability work presented in this dissertation has solved a significant subproblem of the

general problem of language learning. That is the subproblem of inferring the grammar (here, the

constraint ranking) from hypothesized descriptions in Optimality Theory, a framework employing violable
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constraints which interact strongly. The Constraint Demotion algorithms efficiently determine the ranking

given structural descriptions corresponding to positive data.  

The Constraint Demotion algorithms work solely on the basis of the formal structure of the

framework. They apply to any grammar in Optimality Theory. They demonstrate that the challenge of

learning grammars which employ violable constraints can be solved in Optimality Theory by using the

implicit negative evidence inherent in the framework. The algorithms have a worst case data complexity

quadratic in the number of constraints, beating the factorial growth of the number of possible total

rankings.  

5.2.2  The Next Steps  

The obvious next step is to work on the other parts of the learning problem, and try to connect

them with Constraint Demotion. Other subproblems include hypothesizing structural descriptions from

information realistically available to the learner, and hypothesizing underlying forms from paradigmatic

sets of descriptions. This will likely require moving down from the level of the formal structure of the

framework, and working with specific Optimality Theoretic proposals for linguistic phenomena.  

5.2.3  Theoretical Implications  

Optimality Theory may provide the opportunity to avoid the conflict between learnability and

linguistic explanation faced by much work in the Principles and Parameters framework. The search for

triggers which indicate appropriate values for specific parameters favors parameters that interact with each

other as little as possible, so that the effects of each parameter setting can be distinguished from the effects

of the other parameters. In Optimality Theory, interaction between constraints is not only possible but

mandatory: cross-linguistic variation is only possible to the extent that constraints interact. With

Constraint Demotion, informative data provide information not about one constraint in isolation, but about

the results of interaction between constraints: constraint interaction is the basis for learning. If these

properties are successfully preserved in a complete account of language learning within Optimality

Theory, explanation and learnability will work together; they will both favor interacting constraints with

wide-ranging effects and explanatory power.  
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5.3  Other Future Work  

Optimality Theory shares several underlying principles with connectionist theory, in particular

the use of violable constraints and the defining of grammaticality in terms of optimization. Many

interesting questions remain open about the possible relationships between the algorithms presented here

for Optimality Theory, and connectionist algorithms. The possibilities for embedding Optimality Theoretic

grammars within connectionist architectures are worthy of much future investigation.  
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