COMPUTATIONAL OPTIMALITY THEORY
by
BRUCE BENSON TESAR
B.S., Western Michigan University, 1990

M.S., University of Colorado, 1992

A thesis submitted to the
Faculty of the Graduate School of the
University of Colorado in partial fulfillment
of the requirement for the degree of
Doctor of Philosophy
Department of Computer Science

1995

This thesis for the Doctor of Philosophy degree by
Bruce Benson Tesar
has been approved for the

Department of Computer Science

by

Paul Smolensky

James Martin

Michael Mozer

Clayton Lewis

Geraldine Legendre

Date

iii
Tesar, Bruce Benson (Ph.D., Computer Science)
Computational Optimality Theory

Thesis directed by Professor Paul Smolensky

Abstract

In Optimality Theory, a linguistic input is assigned a grammatical structural description by
selecting, from an infinite set of candidate structural descriptions, the description which best satisfies a
ranked set of universal constraints. Cross-linguistic variation is explained as different rankings of the same
universal constraints. Two questions are of primary interest concerning the computational tractibility of
Optimality Theory. The first concerns thbility to compute optimal structural descriptions. The second
concerns the learnability of the constraint rankings.

Parsing algorithms are presented for the computation of optimal forms, using dynamic
programming. These algorithms work for grammars in Optimality Theory employing universal constraints
which may be evaluated on the basis of information local within the strudas@diption. This approach
exploits optimal substructure to construct the optimal description, rather than searching for the solution
by moving from one entire description to another.

A class of learning algorithms, the Caastit Demotion algorithms, are presented, which solve
the problem of learning constraint rankings based upon hypothesized structural descriptions (an important
subproblem of the general problem of language learning). Constraint Demotion exploits the implicit
negative evidence available in the form of the competing (suboptimal) structural descriptienmptit.

The data complexity of this algorithm is quadratic in the number of constraints.

Acknowledgments

First, I would like to thank the National Science Foundation, for the NSF Graduate Fellowship
that supported me for three of my five years of graduate study, and for the research assistangeship sup
| received through NSF grant IRI1-9213894 to Paul Smolensky and Geraldine Legendre. Thanks also to
the Computer Science Department of the University of Colorado, for a teaching assistanceship my first
year of graduate study.

| would like to thank the members of my committee, James Martin, Michael Mozer, Clayton
Lewis, and Geraldine Legendre, for their support and for reading my dissertation.

Many thanks are due to the members of the Boulder Connectionist Research Group, for
encouragement, intelle@l and moral support, and for generally being a good bunch of people. Thanks
go to Mike Mozer for his help and support, especially during my first two years. Thanks also to Kevin
Markey, for convincing me that | did not want to do a disdiemn based upon lots of simulations of a
complex system (while simultaneously demonstrating that it could in fact be done, and well). Gratitude
is also due Brian Bonnlander and Sreerupa Das, my fellow connectionist classmates who started the
program in Boulder at the same time | did: to Rupa for her enthusiasm in exchanging cultural activities,
and to Brian for being just about my only friend out west who appreciates good jazz music.

I wish to thank the Cognitive Science Department of The Johns Hopkins University, for
graciously hosting me during my final year of graduate study. | also wish to thank the Linguistics
Department and the Center for Cdye Science at Rutgers University, for hosting me during a very
stimulating and valuable two week visit. Special thanks go to my primary hosts at Rutgers, Jane Grimshaw
and Alan Prince, for valuable discussions, support, and other important things.

| unfortunately cannot list all of the other people with whom | have had valuable interaction over
the past several years. | would like to thank Bruce Hayes, David Haussler, and Mark Liberman for
particularly useful discussions. | would also like to offer collective thanks to the many people | met and
talked with at the 1993 Connectionist Models Summer School and the 1994 First International Summer

Institute for Cognitive Science.

v

The writing of this dissertation was made considerably more difficult by tendonitis and arm nerve
irritation, leaving me unable to type or manually write for any significant extent. | wisartk éveryone
who assisted me over the past year and a half with typing and writingtragdled to transmit my ideas
from my head onto paper. The list is long, but | want to be sure and recognize Geraldine Legendre, Phyllis
Bellver, Bill Raymond, Syed Waqar Hasib, and my typist at Johns Hopkins, Lauren Kim, who actually
typed the majority of this dissertation. Thanks also to IBM for developing the VoiceType Dictation
system. It really works!

| have received a great deal of support from my friends and relatives back at "the home front",
in Kalamazoo, MI. Thanks to all my friends, especially Fred James and Mario Pena, for tolerating my
occasional disjointed descriptions of my research. Thanks to Tom Lawson, the first true cognitive scientist
| ever met, for emaining a good friend and colleague. Special thanks to my mother and my father, for
everything that they've done for me.

The person who had the largest impact upon my work in this dissertation is my adviser, Paul
Smolensky. | owe him tremendous thanks for many things, despite the fact that he deviously lured me into
linguistics after | had strategically decided to avoid language as a research area. Thanks for everything
from being a truly wonderful adviser to doing most of the typing on the papers we co-authored. Thanks
also for being a good friend.

My final and deepest thanks go to Esther Tesar, for all dbherand support, and for agreeing

to marry me.

1.1

111

1.1.2

1.2

1.3

2.1

211

212

2.2

2.3

231

23.2

2.3.3

234

2.3.5

2.3.6

2.3.7

2.4

2.5

251

252

253

254

Contents

1] e o [8{o111o] o FHUR PP PP PP 1
OPtMANITY TREOIY ...ttt e e e e b bbbt et e e e e e e e e e s cmmmmmmmmnne 1
Constraints and Their VIOIatioN.eeeiioiiiiiie e 1.
Optimality and Harmonic OFAeING........coooi oottt ettt e e 3
Computational Questions in Optimality TREOIY..........cooiiiiiiiii e 6
OVBIVIBW . ..ttt ettt e ekttt e e e e ek et e e e e e s bbb e e e e e e e ab b e et e e e s e anb b et eeeeeeannnneeas 8
Parsing: RegUIAr SITUCTUIES.........ouiiiiiiiiiiee ettt eeeeas 9.......
The Parsing Problem in Optimality THEOIY........oooiiiii i 9
The Technique: Dynamic Programming..........cccccuuuueeiiiiiiieieeeieeiee e e sieeees 10............
The Main Idea: An Intuitive Explanation of Dynamic Programming..............ccccceeuuee. 10.........
A Formal Characterization of the Basic CV Syllable Theory............ooccoiiiiiiiiis 12
Parsing the CV Syllable TReOIY..........uuuiiiiiiiiiiieiiiee e 4.
The Dynamic Programming Table....... ... 14
THE OPEIAtIONS SEL....eiiiiiiiiiiiiii ettt e e e e e e e e e e e e e s e e s e e eeeeeeean 16
Limiting Structure: Position Grammar CYCIES.........cooouuiiiiiiiiiiiiii e 21
Selecting the OPtiMal Parse........cccuuuiiiiiiiiiiieeiie et e e 22.
OVEIVIEW OF the ParSEI.....cciiiiiiiiiiiie e ne e e e 22.

A SAMPIE PAISE. ...ttt e e e e e e e e e e s o 23

L= TP TP PP PRSPPI 27
Creating Parsers fOr GrammMArS. et e e e e e e e e e e e e e as 27 ..
FOrMal ANAIYSIS. ...ttt et e e e e e e e e eeee e nan 28

Formal Definition of Optimality Theory Grammars.eeeeeiiiiaaianniiiniiiiiiieeeeeee e 28
The CompPULiNg RECUITENCE........cooiiiiiiei ittt e e e e e e e e e e e e eneeee 29.......
The Dynamic Programming AlQOrithm.........ooi i 36

Computational COMPIEXILY.........coiiiiiiii e e

2.6

26.1

2.6.2

3.1

3.2

3.21

3.2.2

3.2.3

3.24

3.25

3.3

3.4

34.1

3.4.2

3.4.3

3.4.4

3.5

3.6

3.6.1

4.1

411

41.2

Vi

Conditions on and Extensions of the Algorithm............cccco i 39
Parsing More Than One Segment into @ POSITION.ccvviiieeiiiiiiiiee e 39
(1o Tox 111 Y2 RO 40
Parsing: Context-Free POSItION SITUCLUIES.cuuviiiiei ittt e e e e 42
Context-Free PoSition StruCtUre GrammMarS.oocuueieiirieeiiieeeaiieeesieeessreeeesreeeeseeeessneeeans 42
An Algorithm for‘Revised Chomsky Normal Form Position Structure Grammars............. 42
The Dynamic Programming Table........ccuuuiiieiiiiiiie e r e e e 43
The OPEratioNS Sel........ccuviiiiieiiiiiiiie e e e s srrnree e e s ssnsssees cmmmeeeeen B4

The OVverparsing OPEIatiONS.ceiiuuierireeiiiieeeeeessirreeeesssnirrereeessnnereeeeesannsrreeesd Aai.......
Calculating the Base OVerparsing StrUCIUIES...........uiiiiiiiiiiireeeiiiiiiieeeesssiiieeeessssnreeeeesesnnneees 48
Computational COMPIEXILY.......ciuriiiiee et e e e e srrr e e e e e ssrareeeeeeenss s 49.....

An Example: Context-Free Pseudo-Syllable StruCture.............cccvvveeiiiiiiiiee e 49
Formal Analysis of theRevised Chomsky Normal FOrm Case.........cccccoovcvvvveeeeeiiiiiieeeeennns 54
Formal Definition of Optimality Theory Grammars..........ccoccuviieeiiiiiieieesniiiee e sesireeee s seeens 54
The COMPULING RECUIENCE........ . iiiiie ettt e e e e e e e e e snbbee e e e e e ennres 56........
The Dynamic Programming AlGOrithm.........ccuuiiiieiiiiiiice e 65
Computational COMPIEXILY.......ciuriiiiee ettt e e e e srrer e e e e e sstaeeeeeeesss s 68.....

The General Case: Position Structure Grammar Productions of Arbitrary Form................... 68
DISCUSSION. ...ttt ettt ettt ettt ettt ekttt e e ettt e e ekt e e st bt e e eabe e e e s abbe e e aab b e e e st e ¢ s 69

(1o Tox 111 Y2 PO 69

The Learnability of Optimality TREOIY.......c.uuviiiiiiiiiic e 71
The Learning Problem in Optimality TREOIY.........cooiiiiiiiii i 71
Optimality Theory and Language Acquisition in General...........ccocccuvvveeeiiiiiine e 71

Learning the LEXICON........uiiiiie ettt ettt e e e s e e e e s et e e e e s e enss s e s« 73

41.3

4.2

421

4.2.2

4.2.3

4.3

431

4.3.2

4.3.3

434

4.3.5

4.4

441

4.4.2

4.4.3

4.4.4

4.5

451

452

453

454

4.6

4.6.1

4.6.2

4.6.3

4.7

The Learning Problem: Learning Constraint RanKiNgS...........oocvviieeeiiiiiieeesiiiieeee e sniineeee e 74
The Recursive Constraint Demotion (RCD) AlgOrithm..........cccuvvviieiiiiiiiiiee e 75
An Example: Learning CV Syllable StrUCIUre............cccviiieiiiiiiie e 75
General Statement of the Recursive Constraint Demotion Algorithm............ccccooecveeiinnn, 80
Informal Analysis of the AIGOrthM...........ccooiiiiiiiiie e 82.......
General Constraint DEMOLION.cuuiiiiiiiie ittt 83........
The Core CD AlGOItNMe.......coi i e e e s eesaeeeead 83...
Versions of the CD AlGOItNM.........coiiiiiiii e B84......
EXAMIPIE. ettt e e e e n e e e e e e aans s —— 85
RESLrCtiONS 0N RANKINGS. .. uviiieiiiiiiiie ettt e e e et e e e e e s ssbaee e e e s smmnnean 81...

INPUL ETTOFS. ..ottt e ettt s s e e e e e et e et ee bbbt s e e e eeaaeeneannennnnnmnses 88
Formal Analysis of Constraint DEMOLION.ccvuiiieeiiiiiie e 89
Stratified HIErarChies.... ... s 89

The Target Stratified Hierarchy...........ccooocviiiii s Qaa.....

The Constraint Demotion AlGOrithm........cc.uiii i 92
The Relation 0f RCD t0 BAtCh CD..........oiiiiiiiiiiiiie ettt B 9
Error-Driven CoNnStraint DEMOTION.c.couuiiiiiiiee ittt ettt e e sibe e sbe e e snaee s 95
Using Parsing to Generate Suboptimal COmMPEetitors.........ccccveeeiiiiiiiee e 95
A Family of Error-Driven Learning Algorithms............ooiveiiiiiiiiiie e 98
The Time-Course Of LEAMNING.........cccuuiiiie ittt ssaee e e e s ssiaae e e e e s snnssaeeeeeans aq9.......
The Data Complexity of Error-Driven Constraint Demotion...........ccccccvvvvveeiivenenn. 102.......
Principles of Universal Grammar and Principles of Learning..........ccccccceevvcvvveeeeninns 102........
LIS 102

(@701 o101 1 7SR 104
Principles and Explanatory AEQUACY...........ccuuriiieeiiiiiiiiie e 106..........

Learnability and LINQUISTIC TREOIY......cccoiiiiiiiiee et e e 8...... 10

4.8 Other Work on Learnability in Optimality TheOrY.........ccccviiiiiiiiiiiiie i 109
5. CONCIUSIONS. ...ttt et e e st e e ekt e e e e sabe e e s eat e e 4 111

5.1 PAISING. . ittt e e s e e e s —— 111

5.1.1 What Has Been ACCOMPLISNEd..........coiiuiiiiiiiiiiiiiiiee e 11......... 1
B5.1.2 THE NEXE S EPS. i iiiiiiiiiie ettt e e e e ettt e e e e s sttt e e e e e sestbaeeeee e s s nmnnmmnnnns 112

5.2 [T 14 = o1 1 2 112

5.2.1 What Has Been ACCOMPLISNEd.........ccoiuiiiiiiiiiiiiiiiie e 2. 11
L 1 1 1= I [] 1= o PSPPSR 113

5.2.3 Theoretical IMPlICAtIONS..........ouiiiiiiiiiiiee et e e et e e e e e s sse e s 113

5.3 Other FULUIE WOTK......eoiiiiiiee ettt et s 114.

271 o] ToTo] =T o] 1) V28 PRSI 115

Chapter 1. Introduction

In Optimality Theory (Prince and Smolensky 1993), Universal Grammar provides a set of highly
general universal constraints which apply in parallel to assess the well-formedness of possible structural
descriptions of linguistic inputs. Grammar is described in terms gb@mination function: the possible
structural description of an input that optimally satisfies the constraintsgsatimenatical one. Evidence
in favor of this characterization of Universatammar is provided elsewhere. Much of the work to date
addresses phonology: see Prince and Smolensky (1993) and the several dozen works cited therein, notably
McCarthy and Prince (1993a). Work addressing syntax includes Grimshaw (1993) and Legendre,
Raymond and Smolensky (1993), as well as the papers presented at the 1995 MIT Workshop on
Optimality in Syntax.

The grammars characterized by Optimality Theory are functions mapping inputs to outputs; they
are not directly concerned with computatidtiowever, one can ask interesting computational questions
about Optimality Theoretic grammars. Thare two major problems of computational linguistics. The
first concerns the processing of linguistic forms. The second concerns the learning of grammars for
specific languages. This dissertation examines how these two problem areas are characterized within
Optimality Theory, and will provide answers to some specific computational questions.

1.1 Optimality Theory

This section presents a self-contained presentation of the relevant principles of Optimality
Theory. These principles are consistently exemplified using the BasRyltAble Theory of Prince and
Smolensky (1993, §6), which is developed concurrently.

1.1.1 Constraints and Their Violation

(1) Grammars are functions.

A grammar is a specification of a fuimn which assigns to each input a unique structural description or
output (A grammar does not provide an algorithm for computing this function, e.g., by sequential
derivation.)

In the Basic CV Syllable Theory, an input is a strin@sfandVs, that is, a member o€V},

e.g., VCVC/. An output is a parse of the string into syllables, which is notated as follows:

@ a V.CVC. =[, VI, CVC]
b. (V).CV.(C) =V[,CcVvIC
c. (V).CV.C[D. =V[,CV][, C]]
d. OV.CV.{C) =[,OV][,CV]C

A syllable consists of a minimum of one and a maximum of thregigpes The nucleus position is
mandatory, and may be filled by a vowd).(The onset position, which appears before the nucleus, and
the coda position, which appears after the nucleus, are optional, and may be filled by conShnants (
What (1) asserts is that the grammar assigns to the WWpMQ/ one structural description, such
as one of the possibilities listed under (2). Which one gets assigned is determined by subsequent
principles. The possibilities shown depict phenomena referred to as underparsing and overparsing.
Underparsing is represented in (2b) by the f#stnd the finalC, both of which are not parsed into
syllable positions. They are present in the overall structural description, but will not be pronounced in the
surface form. Overparsing is represented2d) by the unfilled onset position in the first syllable
(denoted by; an unfilled nucleus position is denoteéyl This position does not have an input segment
parsed into it, but will be filled by phonetic interpretation, and so will be realized gutfece form (this
phenomenon is often referred to as epenthesis).
(3) Alinguistic input is mapped to a set of possible outputSBN
Universal Grammar provides the set of possible inputs, the set of possible outputs, and aGEidtion
which, given any input, generates the set of candidate out@Es|1), forl. The input is a substructure
contained within each of its candidate outputSEiN(I).
In the CV case, for any inputthe candidate outputs @EN() consist in all possible parses of
the string into syllables, including the possible over- and underparsing structures exemplified above in (2).
The structural descriptions generated@igN are strings of syllables with the following restrictions:
nuclei are mandatory, onsets and codas are optional, atidqare assumed to contain at most one
input segrent. The order of the input segments must be preserved, and each input segment must either

be placed in a syllabic position or marked as unparsed in the structural description. FGrthay, anly

3
be parsed as an onset or a coda, whiteay only be parsed as a nucleus. Notice that this is a statement
of the universal set of structural descriptions to be considered, and not the inventory of optimal forms for
any particular language.
(4) Well-formedness is assessed on the basis of universal constraints.
Universal Grammar provides a set of universal constraints which assess the well-formedness of candidate
outputs for a given input in parallel (i.e., simultaneously). Given a candidate output, each constraint
assesses a sethRrks each of which corresponds to one violatiothaf constraint; the collection of all
marks assessed a candidate c is denateds(c).

The Basic CV Syllable Structure constraints dealt with here are as follows:

(5) ONs Syllables must have onsets.
NoCobA Syllables must not have codas.
PARSE Input segments must be parsed (into syllabic positions).
FiLL e A nucleus position must be filled (with\g.
FiLL ™ An onset position must be filled (with@).

1.1.2 Optimality and Harmonic Ordering

The central notion of optimality now makes its appearance. The idea is that by examining the
marks assigned by the universal constraints to all the candidate outputs for a given input, there is one
which is least marked, or optimétis is the one and only well-formed description that may be assigned
to the input by the grammar. The relevant notion of ‘least marked’ is not the simplistic one of just
counting numbers of violations. Rather, in a given language, different constraints have diffengihisstre
or priorities: they are not all equal in force. When a choice must be made between satisfying one
constraint or another, the stronger must take priority. The result is that the weaker will be violated in a
well-formed description.

(6) The relative importance of constraints is determined by their ranking in a strict dominance hierarchy.

4

The grammar of each languag@ksthe universal constraints irdaminance hierarchywhen
constraintC, dominates anothet, in the hierarchy, it is denote@,> C, The ranking is total: the
hierarchy determines the relative dominance of every pair of constraints:

C,>C,>» .- >C,

A grammar's constraint hierarchy induces on all the candidate outidatsn@nic orderingas follows.
Leta andb be two candidate parses with sets of marksks(a) andmAaRKs(b). To compara andb,
first cancel all the marks they have in common, getting lists of 'uncancelled’ marss’(a) and
MARKS'(b); now, no mark occurring in one list occurs in the other. Then determine which list of
uncancelled marks contains the worst mark: a mark assessed by the highest-ranking constraint violated
in the two lists. This candidateléss Harmonior has lower Harmonghan the other; if it i, then this
relationship is denoted: < b (MARKS(a) < MARKS(D) is also sometimes written). For a given input, the
most Harmonic of the candidate outputs provide@Bis theoptimal candidate: it is the one assigned
to the input by the grammar. Only this optimal candidate is well-formed; all less Harmonic candidates
are ill-formed.

Harmonic ordering in the CV case can be illustrated with a specific gramomar,
(7) Constraint Hierarchy fdr,: ONS>> NoCODA > FALL® > PARSE > ALL°™
In the followingconstraint tableapthe candidates of (2) are shown, along with their constraint violations.

The most dominant constraintslinappear to the left:

Table 1
Constraint Tableau fdr, = X,
Candidates ONs | NoCopA | FitL ™° | PARSE | FiLL ©™
NCVC/ -
Emd veve e A N
............. o VRCVAC) M
............. c wveveo b
a V.CVC. * *

The candidates in this tableau have been listed in Harmonic order, from highest to lowest
Harmony; the optimal candidate is markednually (determining that this candidate is optimal requires
demonstrating that it is more Harmonic than any of the infinitely many competing candidates). Starting
at the bottom of the tableau, verify tleat c. The first step is to cancel common marks: here, there are
none. The next step is tet@rmine which candidate has the worst mark, i.e., violates the most highly
ranked constraint: it ig, which violates @s. Thereforea is the less Harmonic. In determining that
b, first cancel the common mark ARSE, ¢ then earns the worst remaining mark of the twa,l*E°. The
importance of retaining multiple marks can be seen in the comparibda difone *RARSE mark cancels,
leavingMARKS'(b) = {*PARSE} and MARKS'(d) = {*FILL°™}. The worst mark is the uncancelleda®sE
incurred byb: sob < d.

The final central principle of Optimality Theory is:

(8) Language typology is explained by re-ranking the universal constraints.

Cross-linguistic variation is principally due to variation in language-specific rankings of the universal
constraints. Analysis of the optinfarms arising from all possible rankings of the constraints provided

by Universal Grammar gives the typology of possible human languages. Universal Grammar may impose

restrictions on the possible rankings of its constraints.

If in L,'s constraint hierarchy we exchange the twa Eonstraints, we gét,:
(9) Constraint Hierarchy fdr,: ~ ONS>> NOCODA > FLL %" >> PARSE > ALL "
Now the tableau corresponding to Table 1 becomes Table 2; the columns have been re-ordered to reflect
the constraint re-ranking, and the candidates haee re-ordered to reflect the new Harmonic ordering:
Table 2

Constraint Tableau fdr, = 2%,

Candidates QNS NoCODA FiLL °™ | PARSE FiL e
NCVC/ -
............... e Meveo |
L it I N S S W
s S tEVCVAC) W A . A
a V.CVC. * *

Like L,, all syllables irL, areCV; /VCVC/ gets syllabified differently, however. Ly, underparsing is
used to avoid onsetless syllables, and overparsing to avoid tgda$(ince and Smolensky's (1993)
languageX®y,, .-

In the CV theory, Univesal Grammar imposes no restrictions on the ranking of the constraints
| have discussed here (5). Analysis of all possi#nkings of these constraints reveals that the resulting
typology of basic CV diable structures is an instantiation of Jakobson's typological generalizations
(Jakobson 1962, Clements & Keyser 1983): see Prince and Smolensky (1993, §6). In this typology,
syllable structures may have required or optional onsets, and, independently, forbiolokiomat codas.
1.2 Computational Questions in Optimality Theory

Central to language processing is the assigning of structural descriptions to linguistic material
via algorithms. Within the Optimality Theory framework, the most obvious such mapping is the assigning

of a structural description to a linguistic input. The corresponding computational problem is the problem

7
of computing the optimal description, or parse, of an input. | will call this the parsing problem in
Optimality Theory.

(10) The parsing problem: computing the optimal parse of an input.

The exact correspondence of the competence input/output mapping to the performance processes
of comprehension and production remains an open issue, although the input/output mapping is more
naturally understood as a mapping from an underlying form to a description including the surface phonetic
form, and thus as corresponding to production.

The computability of optimal descriptions has been of real concern to people working in
Optimality Theory, because a grammadéscribed in terms of the simultaneous generation, evaluation,
and comparison of an infinite number of candidates. This description can make the problem appear
intracteble: how could an algorithm efficiently compute the optimal description if it must generate and
evaluate an infinite number of candidate descriptions? This dissertation will show that it is not necessary
to generate and evate an infinite number of candidates in order to compute the optimal description.
Provably correct algorithms will be given which efficiently compute the optimal description for grammars
satisfying a few basic conditions.

Cross-linguistic variation is explained in Optimality Theory through the rankings of the universal
constraints. Therefore, an important part of language learning in Optimality Theory is learning the correct
ranking of the universal constraints for a given language, from positive data. | will call this the
learnability problem in Optimality Theory.

(11) The learnability problem: learning the correct constraint ranking from positive data.

One challenging aspect of this problem in Optimality Theory is imposed by the use of violable
constraints. Given a grammatical description, a learner might observe that it violates some of the universal
constraints. But if grammatical descriptions are allowed to violate constraints, how can anything be
learned from those obseions? There is also a combinatorial concern. The number of distinct total
rankings is a factorial function of the number of caists: 10 constraints have 10! = 3,628,800 distinct

rankings. If the amount of data required to learn the correct ranking scales as the number of possible

8
rankings, then a grammar with many constraints could require a prohibitively large amount of data to be
learned successfully. This dissertation will show that a significant subproblem of the learnability problem,
that of inferring rankings from hypothesized structural descriptions, has an efficient solution. Provably
correct algorithms W be given which compute the correct ranking from positive data in the form of
structural descriptions, and require an amount of data on the order of only the square of the number of
constraints.

To be precise about the goals of this work: it is not claimed here that any of these algorithms are
psychologically "plausible", in the sense of being detailed models of human processing. Developing
plausible psychological models of language processing and acquisition based upon Optimality Theory
proposals is a more aitibus project. This work is more preliminary. This work addresses the very
serious doubts that these problems can be solved by any algorithms whatsoever. Nevertheless, | sincerely
hope that some of the principles and insighitderlying these algorithms will eventually contribute to
psychological models.

1.3 Overview

Chapter 2 and Chapter 3 address the parsing problem in Optimality Theory. Chapter 2 discusses
parsing when the linguistic representational structures may be described by a regular formal grammar;
the Basic CV Syllable Theory is such as case, and is used as an example. Chapter 3 discusses parsing
when the linguistic representational structures are described by context-free formal grammars. The
parsing algorithm for the context-free case is a direct extension of the algorithm for the regular case.
Chapter 4 addresses the learnability problem in Optimality Theory. Algorithms are there presented which
apply to any linguistic grammar within the framework of Optimality Theory. Chapter 5 briefly

summarizes the main results, and discusses some possible directions for future research.

Chapter 2. Parsing: Regular Structures

In Optimality Theory, gammaticality is defined in terms of optimization over a large (often
infinite) space of candidates. This raises the question of how grammatical forms might be computed. This
chapter and the next examine this question in detail. It will be shown that parsing in Optimality Theory
is tractable, given reasonable restrictions on the universal constraints &t€NonAn algorithm is
described which computes the optimal parse of the input in time that is linear in the length of the input.
As an illustration, the Basic CV Syllable Theory is discussed and a complete algorithm is detailed for
grammars defined within that theory. The main ideas of the parsing algorithms will be presented in the
course of presenting that example. A later section will explain how to create a complete parser for any
grammar with regular representational structures.
2.1 The Parsing Problem in Optimality Theory

Recall from chapter 1 the parsing problem, repeated here for convenience:
(10) The parsing problem: computing the optimal parse of an input.
Although Optimality Theory is easily understood mathematically in terms of the generation and
evalutation of all candidates in parallel, it is unnecessary, and in fact counterproductive, to consider
computing optimal forms in those terms. Intuitively, the algorithm presented in this chapter works by
gradually constructing a few candidate parses as it works itdwaygh the input. When the end of the
input is reached, only a few complete parses havedwmestructed, one of which is guaranteed to be the
optimal structural description (relative to the entire cdaite set). This will be accomplished by making
some assumptions about the grammar being parsed. This chapter discusses thmdsehim core set
of “skeletal structurésemployed by the grammar may be described by a formal regular grammar (the
notion of a core set dfskeletal structurésis formalized in section 2.2 by the conceptpokition
grammal). The universal constraints of the grammar are assumed to be "local" in a sense to be made

precise below. Under these assumptions, a grammar may be parsed in linear time. The next chapter will

10

discuss the case in which the position grammar is a general context-free grammar, and will provide an
algorithm for that case with a complexity that, while not linear, is still reasohable.
2.1.1 The Technique: Dynamic Programming

The challenge is to efficiently choose the optimal structural description from an infinite set of
candidates. The solution is to avoid dealing with whole structural descriptions, and instead build up the
optimal one fece by piece. The basic technique used to do this is dynamic programming (see, e.g.,
Corman, Leiserson, & Rivest 1990). The algorithm presented here is related to chart parsing (see, e.g.,
Kay 1980), an algorithm used in natural language parsing that employs dynamic programgmamic
programming has also been used for optimization in sequence comparison (Sankakal K883) and
Hidden Markov models (see, e.g., Rabiner 1989). The algorithm presented here combines the use of
dynamic programming for language structure processing with dynamic programming for optimization,
resulting in optimization-based language processing.
2.1.2 The Main Idea: An Intuitive Explanation of Dynamic Programming

Due to the nature of the problem under consideration, the analysis presented in this paper will
at times involve considerable formal complexity. Whtat in mind, the fundamental idea underlying the
analysis, dynamic programming, is here introduced via an intuitive@nalSuppose that there are two
towns, X and Y. In between these towns is a river, which must be crossed in order to travel from X to Y.
There are three bridges across the river: A, B, and C. Suppose that we wish to find the shortest - the
optimal - route from X to Y.

We know that any path between X and Y must cross one of the three bridges. There are many
different ways to get from Town X to each of the three bridges, and many different waysamgeach

of the bridges to Town Y. However, we can simplify our problem by first only considering the best way

'Ellison (1994) has independently developed some work on computiigabgorms in
Optimality Theory that is similar in principle to part of the work in this chapter, althexgtessed in the
formalism of finite state automata. Among the additional ideas provided in this chapter are independent
characterizations of the formagscription of the grammar, the input and the parser, as well as a method
for creating a parser from a description of the grammar.

11

to get from X to A, the best way from X to B, and the best from X to C. Having found each of these
"sub-routes", we could make a small chart for future reference: it would have three entries, each giving
the route and the distancetbé route to one of the bridges. Next, we could consider the best way to get
to Y from each ofhe three bridges. Once we determine the shortest route from bridge A to town Y, we
can easily calculate the shortest route from X tehch crosses bridge A, by adding the distance of the
shortest route from A to Y with thehart entry giving the distance from X to A. In the same fashion, we
can calculate the shortest route from X to Y crossing B, by comhiminghortest route from B to Y and
using the already calculated shortest route from X to B. The same can be domgéCbrt this point,
we need only choose the shortest of three routes: tineeshroute of those for each of the three bridges.

Notice that there are many possible routes between X and Y: just considering bridge A, every
possible route from X to A may be combined with every possible route from A tofactirthe problem
is best understood in that fashion, as the probleseafching the space of all possible routes between X
and Y to find the shortest one. But while the problem is most easily statedd@edtood in those terms,
it is not most easily solved in those terms. The above illustration gives the essence of dynamic
programming: break a large problem, like traveling from X to Y, into smaller sub-problems, like traveling
from X to A, and traveling from Ato Y.

The value of this way of thinking is perhaps even more apparent if we change the problem so that
there are two rivers between X and Y: the second river having three bridgesrd, FE,In this case, we
would first put into our chart the shortest route from X to the bridges A, B, aNdxt,.for bridge D, we
would consider the shortest route from each of the bridges A, B, and C. We would then make another
chart entry giving the shortest route from town X to bridge D: this wilhbeshortest of three routes, the
shortest route from X to D via bridge A, via bridge B aradbridge C. Next, similar short entries would
be written down for bridges E andMnally, we could calculate the shortest route from town X to town
Y by considering the shortest route via bridge D, via E and via F. Again, at the end, we need only compare

three complete routes between X and Y.

12

The algorithm presented in this paper will use dynamic programming to compute dptimsl
Each segment of the input is something like a river in the above illustration. There are a limited number
of ways to deal with one input segnt, and the best way to do each can be recorded in a table. Once all
of the input segments have been considered in order, only a very few entire parses of the input need be
compared in order to determine the optimal one.
2.2 A Formal Characterization of The Basic CV Syllable Theory

Recall the Basic CV Skable Theory, as laid out in Chapter 1. An input to the grammar is a
sequence of segments categorized as consonants and vowels, that is, a medyggt: of e structural
descriptions generated BWYEN are strings of syllables with the following restrictions: nuclei are
mandatory, onsets and codas are optional, and positions are assumed to contain at most one input segment.
The order of thenput segments must be preserved, and each input segment must either be placed in a
syllabic position or marked as unparsed in thecttire. Further, & may only be parsed as an onset or
a coda, while/ may only be parsed as a nucleus. Notice that this is a statement of the universal set of
structural descriptions to be considered, and not the inventory for any particular language. For a given
input, GEN generates all possible syllable structures that contain the input, and meet the restrictions just

given'. The constraints of the theory are given in (5) (repeated here for convenience):

(5) ONs Syllables must have onsets.
NoCobA Syllables must not have codas.
PARSE Input segments must be parsed (into syllabic positions).
FiLL e A nucleus position must be filled (with\.
FiLL ™ An onset position must be filled (with@).

These constraints are violable and may be ranked differently by different languages.

!Strictly speaking, Prince and Smolensky (1993) describe these restrictionsdrgaity fixing
the constraints dic, *CoMPLEX, *M/V, and *P/C at the top of the hierarchy. This insures that they are
unviolated in optimal forms, so | here treat them as paBEfl

13

Prince and Smolensky (1993) implicitly describe the space of possible structural descriptions.
Immediately below, | give a formal description of this space. This description is used when explaining
the parser for the CV Theory.

For computational purposes, lllregard a structural description of an input as a string of
syllabic positionsreferred to as position structurewhich are matched with the input segments. The
positions are represented by the symbols {o,n,d}, for onset, nucleus, and coda, respectively ('C' is reserved
for consonant). In a given structural descaptieach position may be filled with at most one input
segment, and each input segment may be parsed into at mpskaim. Any input segment not parsed
into a syllabic position is so marked in the structural description. For a given position structure, each
allowable way of matching the input with the structure counts as a candidate structural description. An
allowable matching is one in which the order of the input segments is preserved, and W sdgafents
are only parsed into n positions, whiesegments are only parsed into o0 and d positions.

Figure 1 shows some examples of candidate parses for theM@ats/ expressed in these terms.

<—B
0O—=a

Figure 1 Parses fovC/ expressed with position strings.

The lower case letters are syllable positions. Syllable positions with vertical bars under them are filled
by the input segments immediately under the vertical bars. Any syllable position without a vertical bar
underneath is unfilled in that g&. An input segmenY(or C) which is not underneath a vertical bar is

unparsed.

14

I will use the followingposition grammato describe the set of allowable position structures:
(12) S= e|o0|nN

O = nN

N = e|dD| 0O |nN

D = e|0o0|nN
The terminals in the position grammar are the syllabic positions and the empty string (e). The non-
terminals {S, O, N, D} may be thought of as corresponding to states in the derivation of a position
structure. S is the starting state. O signifies that the last position generated was an onset (0), N that a
nucleus (n) was just generated, and D a coda (d). Those non-terminals which may evaluate to e correspond
to possible finishing states. O is not a finishing state, because a syllable with an onset must also have a
nucleus. This position grammar guarantees that each syllable has a nucleus, that onsets precede nuclei,
that codas follow nuclei, and that there is at most one of each type of position per syllable.

It should here be emphasized that the position grammar just discussed is a defarripaiiem
useful in understandin@GEN it is NOT a computational mechanism. The actual computational
mechanism understandable in terms of the position grammar is the set of operations contained in the
Operations Set, described below.
2.3 Parsing the CV Syllable Theory

The algorithm proceeds by creating a table, called the Dynamic Prograrfiiadig, and filling
in the cells of the table. Once all of the cells have been filled, the oftimrals quite easily determined.
Section 2.3.1 describes the table and explains how it contributes to computing the optimal form. Section
2.3.2 describes the operations used to fill the cells of the table, discussing both how they relate to the table
and how they relate to CV Syllable Theory.
2.3.1 The Dynamic Programming Table

Table 3 shows the Dynamic Programming Tdbtehe input WC/, with the constraint ranking

ONS >> NOCODA >> ALLN® >> PARSE >> ALL°™

15
Table 3

Dynamic Programming Table fovC/

BOI L=V i,=C
S V) (VC)
o ||l O ov.o ov.c
N] m\Y; aOv.(C)
D o, ovao. [OVC.

Optimal ParsefV.{C) This parse is represented in cell [N,i].

Each cell in this table contains a structure. Each column of this table stands for a segment of the
input except the firstolumn, BOI, which corresponds to the "beginning of the input". Notice that each
cell in the column headed i contain¥ agfurther, every structure in the column headed i contains both
aV and &C, in the correct order. The label on each row is a hon-terminal of the position grammar, and
corresponds to a type of syllable position. Notice that for stacbture in the N row, the last-generated
position in the structure is a nucleus. The O row contains structures ending in an onset, while the D row
contains structures ending in a coda. The S row only contains structures in which no positions at all have
been generated (i.e., all of the input segments seen are unparsed).

Eachcell contains a structure representing the best way of parsing the input up through the
segment for that column. The last column (the column for the last input segment) includes the complete
parses to be considered. The optimal parse is easily chosen from among this set of possibilities.

In general, a given input string | 5,i i ;.. is parsed by constructing a dynamic programming table.
The table has one column for each segment of the input, plus a first column, BOI. The BOI column is
present because positions may be gerd at the beginning, before any of the input has been examined
(this would correspond to epenthesis at the beginning of the utterance). Eaolresplonds to partial
description which is a structural description of part of the input. Ultimately, each cell contains the

optimal way of parsing the input up through the segment heading the column, with thdéldh&t sy

16

position in the structure matching the row label. The table cell [N,i] corresponds to the optimal way of
parsing up through the second segment of the input, with a nucleus being the last structural position in the
partial description. Each cell also contains the constraint violation maessasl the partial description,
and representing the Harmony of that description (these marks are not depicted in Table 3).

The parsing algorithm proceeds by fillingtire columns of the table one at a time, left to right.
After the best way of parsing the input through segment i ending in each non-terminal has been
calcdated (the entries of colump,i), those values are then used to determine the best way (for each
possible final position) of parsing the input through segment i. Once all the values for the last column are
determined, the Harmony values in the table cells of the last column in rows corresponding to possible
finishing states are compared (this is explained in greater detail below). The cell containing the highest
Harmony value thus also contains the optimal parse of the input.
2.3.2 The Operations Set

Operations are used to fill cells in thgnamic Programming (DP) Table. An operation works
by taking the partial description in a previously filled cell, adding an element of structure to ifitamgl p
the new description in the new cell. A cell entry is determined by considering all of the operations that
might fill the cell, and selecting the one witte highest resulting Harmony to actually fill the cell. This
is the essence of dynamic programming: becaugeetti@l descriptions in later cells contain the partial
descriptions listed in earlier cells, the earlier cell entries may be used directly, rather than explicitly
recalculating all of the possibilities for later cells.

Each operation is based upon one of three primitive actions. The three primitive actions are:
(13) (a) parsing a segment of input into a syllabic position;

(b) underparsing an input segment;

(c) overparsing a syllabic position.
Primitive actions (a) and (@volve generating positions, so they must be coordinated with productions
in the position grammar GEN (b) does not involve position generation. e other hand, actions (a)

and (b) consume put, while (¢) does not. Operations are versions of the primitive actions coordinated

17
with the specifics of the modeBEN and the universal constraints). An operation may be specified by
four things: the new cell (being filled), the previous cell containing the description being added to, the
structure added to the partial description, and:tmestraint violation marks incurred by the operation. A
candidate structural description of an input may thus be viewed as resulting from a sequence of operations.
It should be emphasized that an operation does not transform one entire structural description into another,
but merely adds to a partial description.

As an example, consider the actions that might fill cell,[O,i] of the DP Table. Recall that the
structure in this cell must contain input segments i and i , and the last syllabic position in the structure
must be an onset. One possibility is the underparsing action: takeuttterstfrom the cell immediately
to the left in the same row, [Q,i], and add to it the input segment i marked as underparsed. We don't need
to consider any other ways of filling this cell with i underparsed, because we have already guaranteed that
[O,i;] contains the best way of parsing through i ending in an onset. THengs$tarmony of the
operation will be the Harmony listed in [Q,i], with the mark £#g added to it (indicating the
constraint violated by underparsing). If i is a consonant, then another possibility is tg parse i into a
newly generated onset position. This requires having a structure from the previous column to which an
onset position may be legally appended. The position grammar shows that an onset position may be
generated dectly from the non-terminals S, N, and D; this corresponds to the intuitive notions that an
onset must be at the beginning of a syllable, and may be the first position of a description (generated from
S), may immediately follow a nucleus position (generated from N), or may immediately follow a coda
position (generated from D). An onset position may not immediately follow another onset position,
because then the first onset belongs to lkaldg with no nucleus. Fortunately, we have already
determined that the cells [S,i], [N,i], and [D,i] do contain the optimal partialigéeas for these three
cases. Finally, the cell [Q,i] may be filled by an overparsing opethatidrvould take a structure which
already contains, i and append an unfilled onset position.

The set of possible operations is called the Operations Set, and is organized to indicate what

operations may fill eaclype of cell (the cells are here typed by row). Table 4 shows the Operations Set

18
for the CV sylable theory. Each row in the table corresponds to an operation. The new cell column
shows the type of cell to be filled by the operation. The condition column contains any additional
conditions that must be met in order for the operati@ppdy (in this case, the restriction\éfto nuclei,
etc.). The previous cell column indicates the relative position of the cell containingtthledasscription
being added to by the operation. The structure column indicates the additional structure added by the
operation. Theiwlations column shows the constraint violation marks incurred by the added structure.
The final two columns are informational: the production column lists the position grammar production

used by the operation if one is used, and the operation type column indicates the type of operation.

Table 4

The Operations Set

Information

New Condition Previous Struc Violations Production Operatio
Cell Cell Type

[S.i] [S.ii] (ip {*P ARSE} Underparsin
[O.i] [O,ij4] (ip {*P ARSE} Underparsin
[O,i] [IFi=C [Sii4] oi {} =00 Parsing
[O,i] [IFi=C [Ni;a] ofi, { =00 Parsing
[O,i] [IFi=C D4l ofi; {} =00 Parsing
[O.i] [S.i] o/ {*F 1L S - 00 Overparsing
[0,i] [N,i] o/ {*F L™y N = 00 Overparsing
[O.i] [D,i] o/ {*F 1L D — 00 Overparsing
[Ni] [N,i] (ip {*P ARSE} Underparsin
[N;i] [IFi=V [Sii4] ni {*O Ns} S = nN Parsing
[Ni] [IFi=V [O,i] n/i; {3 = nN Parsing
[N;i] [IFi=V [Nl nii, {*O Ns} N = nN Parsing
[Ni] [IFi=V [D,i;4] n/i; {*O ns} D = nN Parsing
[N,i] [S.i] n/C] {*ONS*FILL"} @S = nN Overparsing
[Ni] [O,i] n/0J {FFiL™e O = nN Overparsing
[N,i] IN,i] n/ O {*ONsS*FILL™} N = nN Overparsing
[Ni] [D.i] n/ O {*Ons*FiILL"} §D =nN Overparsing
[D.i] [D,i] (ip {*P ARSE} Underparsin
[D,i] [IFi=C [NLi4] dfi; {*N oCoba} N = dD Parsing
[D.i] [Ni] d/o {*N oCobpa} N = dD Overparsing

19

20

The Operations Set relates to the DP Table as follows. The Operations Set gives all of the
possible operations that may fill a given cell in the Dynamic Programming Table. Each of the possible
operations "competes" to fill in the cell. The product of eaeain is a partial structure consisting of
two things: the partial structure contained in the operation's previous cell with the operation's additional
structure appended to it, and the Harmony of the new partial structich,sonsists of the list of marks
in the operation's previou=ell with the marks incurred by the operation added to it. The operation
producing the most harmonic fiaf description (that is, the one whose resulting list of marks is least
offensive with respect to the constraint ranking of the grammar) actually gets to fill the cell. Told from
the point of view of the algorithm, examine each of the operations which can fill the current cell, select
the one which produces the most harmonic partial structure, and place that operation's partial structure and
list of marks into the current cell.

The cell [S,BOI] is the starting cell: no input has yet been examined, gubitions have been
generated. So, [S,BOI] has a Harmony value of no constraint violations in it. The other cells in the BOI
column may be filled from there by overparsing operations. The cells in the BOI column may only be
filled by overparsing operations, as there are no input segments for other operations to work with.

One crucial aspect has not yet been explained about the applmfthis formula. The Parsing
and Underparsing operations have a previous state cell from the previous column in the DP, Table, i .
However, the Overparsing operations refer to other cells in the same column of the DP Table as the cell
being filled. How, in general, can thesglls be filled, if the value for each cell in the column depends
upon the values in the otheells of the column? The answer involves some intricate details of the
algorithm, and is given in the next section.

Notice that, in the Operations Table, the Parsing operations contain IF conditions. These are used
to enforce constmts of the CV theory that consonan® (nay only fill onsets and codas, and vowels

(V) only nuclei. These restrictions are assumed to be p&EDf and so are included here as IFs.

21

2.3.3 Limiting Structure: Position Grammar Cycles

The overparsing operations consume no input, and so they map between cells within a single
column. In principle, an unbounded number of such operations could apply, and in fact structures with
arbitrary numbers of unfilled positions are contained in the output sp&ENfas formally defined).
However, the algorithm need only explicitly consider a finite number of such operations vethinran.
The position grammar has four non-terminals. Therefore, at most three overparsing operations can take
place consecutively without thepeating of a non-terminal. A set of consecutive overparsings that both
begins and ends with the same non-terminal can be considesadeaAn example of a cycle of
overparsings is an entire epenthesized syllable. ThecBnstraints serve to penalize overparsings by
penalizing any structural positions unfilled by input segments.

This fact is not specific to the Basic Syllable Theory. Forthegry within Optimality Theory,
the constraints must ban cycles of overparsings in order for the optimal value to be well-defined. If the
constraints make a description containing such a cycle more Harmonic than a description differing only
by the removal of that cycle, then there is no optimal value, because one could always increase the
Harmony by adding more such cycles of overparsings. If such cycles have no Harmony consequences,
then there will be an infinite number of optimal descriptions, as any optimal description can have more
cycles of overparsings added. Thus, for the optimization with respect to the constraimeliedained
and reasonable, the constraints must strictly penalize overparsing cycles. The number of non-terminals
in the position grammar bounds the number of consecutive overparsings that may occur without having
a cycle.

Operations are properly applied to the Dynamic Programming Table by first filling in all cells
of a column considering only underparsing and parsing operations (which only use values from the
previous column). Three passes are then made through the column cells, considering the overparsing
operations: if the resulting Harmony of an overparsing operation into a cell from another cell in the same
column is higher than the Harmony already listed in the cell, replace the Harmony in the cell with that

resulting from the considered overparsing operation.

22

The ban on overparsing cycles is the crucial observation that allows the algorithm to complete
the search in a finite amount of time; although the space of structural descriptions to be searched is
infinite, there is a provably correct (input-dependent) bound on the space of descriptions that actually need
to be considered.
2.3.4 Selecting the Optimal Parse

Once the entire table has been completed, the optimal parse may be selected. In the position
grammar, cdain non-terminals may evaluate to the empty string. This means that they can be the last
non-terminal in a derivation, and therefore thatdylable position to which each corresponds is a valid
end of syllable position. Therefore, the cells in the final column, in rows corresponding to these
non-terminals, contain valid complete parses of the input. For the Basic Syllable Theory, the non-terminals
are N and D, signifying that a syllable may end in a nucleus or a coda, and S, for the null parse. These
three entries are compared, and the entry with the highest Harmony is selduteopdisnal parse of the
input.
2.3.5 Overview of the Parser
NOTE: OP(j) stands for the result (structure and marks) of applying operation OP for golumnii.
Set [S,BOI] to no structure and no violation marks
Fill each other cell in column BOI with the best overparsing operation that currently applies
Repeat until no cell entries change

For each row X in BOI

For each overparsing operation OP for X

If Harmony(OP(BOI)) > Harmony([X,BOl]), set [X,BOI] to OP(BOI)

23
For each column i, proceeding from left to right
For each row X
Fill [X,i] with the result of the underparsing operation for X
For each parsing operation OP for X
If Harmony (OP(i)) > Harmony([X;i]), set [X,i] to OP(i)
Repeat until no cell entries change
For each row X
For each overparsing operation OP for X
If Harmony (OP(i)) > Harmony([X;i]), set [X,i] to OP(i)
Select from the final column the most Harmonic of the entries in rows S, N, and D
2.3.6 A Sample Parse
Table 5 is an example of the filled Dynamic Programming Table for the M@t with the

constraint ranking @s > NOCODA >> ALL " >> PARSE > ALL ™.

Table 5

The Completed Dynamic Programming Table f9IC/.

24

BOI i, ="V i,="C"
START under from{S,BOI] | under from:[S,i,]
*PARSE *PARSE *PARSE
V) (VC)
over from:[S,BOI] || over from:[N,i]] | parse from:[N,i]
*FILL O™ *FILL O *FILL O™ *FILL O™
O av.ad Ov.C
over from:[O,BOI] || parse from:[O,BOI] ||| under from:[N,i]
*EgLL OnS*p L Nue *EyLL O *FILL O *PARSE <1
0o v m\YX(ey)
D over from:[N,BOI] | over from:[N,i]] | parse from:[N,i]
*FILL ©"™ *FiLL M***N oCoDA *FILL °"*N oCODA *FILL °"*N oCODA
0o v, VC.

Optimal ParsefV.{C) This parse is represented in cell [N,i].

The top line of each cell contains on the leftratication of the type of operation that filled the
cell, and on the right (after the 'from:' label) the row and column designation of the previous cell (the
already-filled cell whose structure was added onto by the operation to fill the current cell). The
abbrevations indicate the kind of operation that filled the cell: 'over' for overparsing, ‘under' for
underparsingand 'parse’ for parsing. The constraint violation marks assessed the partial description are
given on the middle line of each cell, and the bottom of each cell shows the partial description represented

by that cell. The cell containing the optimal parse is indicated manually, and the cells which constitute

the steps in the construction of the optimal parse are double-lined.

25

Parsing begins by filling the cells of the first column. The first cell, [S,BOI], is automatically
filled with no structure, which incurs no constraint violations. Next, the cell [O,BOI] is filled. For this,
the Operations Set is consulted. The Operations Set lists seven operations that can fill a cell in the O row.
However, the underparsing and parsing operations do not apply here because they make reference to
entries in an earlier column, which does not exist here. Of the three overparsing operations, two require
entries in cells not yet filled: [N,BOI] and [D,BOI]. The remaining operation uses the entry in [S,BOI]
as the previous cell and adds an unfilled onset position. This structure is placed in the cell, and the
incurredmark listed in the operation. Next, the cell [N,BOI] is filled. Of the nine operations listed for a
cell in the nucleus row, two may be considered here. The first is for previous cell [S,BOI], and results in
violations of usand FLL™. The second is for previous cell [0,BOI], and results iratiohs of F_L°"™
and RLL". Because @s >> FALL®™, the result of the first operation has lower Harmony than the result
of the second; thus, the second operation gets to fill the cell. The cell [D,BOI] is filled similarly. That
completes the first pass through the column for the overparsingtiopst Next, a second pass is
performed; now, for eachlteall of the overparsing operations may be considered, because each cell in
the column contains an entry. However, no furtharparsing operations change any of the cell entries,
because none improve the Harmony of the entry.

Now, column j must be filled. The cells are first filled via the underparsing and parsing
operations. We will focus in detail on how cell [O,i] gets filled. First, the one underparsing operation fills
the cell; this results in a structure which has an unfilled onset position, and in which the first input
segment,,i =V, is left unparsed. Next, the three parsing operations are considered. But none apply,
because the input segment is/aand an onset position may only haveC garsed into it. The
underparsing and parsing operations for the rest of the column are now performed. The results of the steps

up to this point are shown in Table 6.

26

Table 6

The DP Table with the Underparsing and Parsing Operations Completed for Cplumn i

BOI i,=V i,=C
S || START under [S,BOI]
*PARSE
(V)
O || over [S,BOI] [under [0,BOI]
*FiLL O *FILL°"™ *PARSE
0 V)
N || over [0,BOI] | parse [0,BOI]
*FILL O *FiLL N *FLL O
0g v
D || over [N,BOI] | under [N,BOI]
*FILL O™ *FiLL M *N oCoDA *FILL °"™ *FILL M *N OCODA *PARSE
0od. 000(\v)

Finally, we consider the overparsing operations that might fill the cell. It is important to
remember that each of the cells in the column have already been filled on the basis of underparsing and
parsing operations before any overparsing operations are considered. For [O,i], there are three
overparsing operations to be considered. The first adds an unfilled onset to theesm&,j], yielding
(V).0, which incurs marks *RsE and *ALL °™ The second adds an unfilled onset to thestra in cell
[N,i]], giving .CO0V.0J, which incurs marks *EL°™ and *ALL °"™ The third one has previous cell [D,i],
giving L01.(V).0, which incurs marks *EL ©™, *FiLL™, *NoCobA, *NoCoDA, and *ALL°™. Of the
three, the second overparsing operation has the highest resulting Harmony. Imporstléas higher
Harmony than the entry already in cell [O,i], becauses® > FALL®™ Therefore, the result of this

overparsing operation replaces thdieaentry in the cell. Overparsing also replaces the entry ipn [D,i].

27
On the next pass through the column, no cell entries are replaced by further overparsing operations, so
the column is complete.

Once all of the columns have been filled, the optimal parse may be selected. The final candidates
are the structures in the cells in the final column, and in rows S, N, and D. These rows are considered
because these dtee non-terminals that may evaluate to the empty string e in the position grammar. In
the complete table above, the optimal parse is in cell [N,i].

2.3.7 Ties

It is possible for two different operations to tie for optimality when attempting to fill a cell. To
illustrate, there are two ways to derive an essentially identical partial description: first insert and then
delete, or first delete and then insert. In this case, the tie might be seen as a kind of anomaly, having no
significance to the ultimate phonetic realization. However, if more than one truly different partial
description for the same cell incurred identical marks, including all of them in the cell permits all of the
optimal descriptions to be recovered from the table, if dbfitshould happen to figure in the set of
descriptions ultimately found to be optimal.

2.4 Creating Parsers for Grammars

The previous section illustrated the parsing method with the Basic CV Syllable Theory. However,
the parsing method is not limited to this theory or to phonology. It is a general method for parsing in
Optimality Theory when the position grammar is regular. This section describes how to create a parser
for any Optimality-Theoretic grammar satisfying the appropriate conditions. The next section provides
a general definition and analysis of the parsing method.

For any given grammar with a regular position structure grammar, the Operations Set may be
constructed as follows. First, for any cell [X,i] where X is a non-terminal (x is the corresponding
structural position unless X is S), one allowable operation is to underparse the input segment. So, include
the underparsing operation that takes the structure i [X,i] and adds an undetparsed i to it. For each
position grammar production with the non-terminal X on the right-hand side, two operations are possible:

the generated position x has the next input segment parsed into it, or it is left unfilled. So, for each

28
prodiction Y=xX generating X, create two operations: a parsing operation which takes the structure in
[Y.i,] and appends a position x with i parsed into it, and an overparsing operation which takes the
structure in [Y,i] and appends an unfilled position x. Add to each operation any conalitichgestrict
its application (such as the restriction of vowels to nucleus positions in the Basic Syllable Theory).
Finally, each operation must be supplied with marks indicating the constraint violations incurred by its
application.

The Dynamic Progimming Table will have one row for each non-terminal in the position
grammar. For any given input, it will have a first column, BOI, and one subsequent column for each input
segment.

2.5 Formal Analysis

2.5.1 Formal Definition of Optimality Theory Grammars

(14) Def. The position structure grammak’ is a formal regular grammar which generatesition
structures. Each terminal symbol df is a structural position. Each production should be of one

of two forms: X=yY, X = e. The start symbol is S.

(15) Def. A unit of structure is any of the following: (a) a single input segment marked as underparsed;

(b) a single position filled with a input segment; (c) a single unfilled position.

(16) Def. Suppose there are an input |, =i ,... i, and a position structurg P =p ..npatcliingu is a
string of units, where the set of possible matchings between P aWdATISHP, 1), defined by
the following recurrence:

MATCHP,I) = M[p,.i]
M[p,i, = {the null structurg
MIpgi] = {s+ip|seMlpgi;]}
Mpyigl = {s+p/C|seMIp,_yigl}

MIPyi] = {S+)[seMIp,i]} U {s+pfi[seMIp, i T} U {s+p/TI|seMIp, i 1}

29
The ‘+' operator here means concatenation. The '/’ operator here means to fill the position to
the left of the operator with the material to the right of the operator. The set {the null structure}
contains precisely one object, which consists of exactly no structure. Asserting the existence of
this object at the base of the recurreattews the rest of the recurrence to begin building
descriptions by concatenating structure to the null structure.
This definition may be augmented by further restrictions for different specific instanGsNoffor
example, forbidding consonants from being parsed into nucleus positions).

(17)Def. The set of candidate structural descriptions for input | is

GENI) = U MATCHP,)

PeL(I")

L(T) is the set of all position structures generated.by

(18) Def. The structural description(s) assigned to | by the gramnraais{ GEN(I)} . The function
maxH{} returns the structural description(s) with maximum Harmony. Implicit in the definition
of maxH is a set of universal constraints and the ranking of those constraints.

What has just been given iglefinition of the optimal form, in terms of position structures and matchings.

Nothing has yet been said abailgorithms

2.5.2 The Computing Recurrence

(19) Def. The functionOPT(l) is defined by the computing recurrence

OPT(l) = maxHQ[X"i] | X'-e € I}
Q[Si,] = {the null structurg
Q[Sij] = {Q[Si;_]+(ip}
Q[X ki = maxHQ[X™i]+x¥0 | XM=x*X* € T}
{QIXNij 4] +()} U
QX ki = maxH{Q[X ™] axMip | X"=x'X* e T} U

{QXMi]+x 0 | X"=x*X* e T}

30
where } is the equivalent of BOI in the earlier description of the DP table. For notational
convenience, from this point forward, ‘+' will heeated as a set operator, appending its second
argument to each member of the set which is its first argument.

The computing recurrence bears a resemblance to the matching recurrence, but the two are quite different

in important ways. The first index of the computing recurrence is not a specific piece of a specific

position structure, but a non-terminallof

The computing recurrence also has a complexity not present in the matching recurrence. There
is a circularity in the dependencies of each set of terms with an identical value for the second index (the
input segment). N@e that each such set of terms corresponds precisely to a column of cells in the
dynamic programming kde. The value of each term is dependent upon the values of the other terms in
the set. Thus, each set of terms is a set of interdependent equations. We want to determine conditions
under which a solution to each set of equations exists and is efficiently computable.

(20) Def. A partial description is a contiguous substring (of units) of a structural description p
(generated b®EEN) which includes the first unit of 1. A partial description is said to have a last
non-terminal, which arresponds to the last non-terminal in the derivation of the part of the
position structure contained in the partial description.

The set of partial descriptions for an input ilea all complete structural descriptions, as they are those

partial descriptions where the contiguous substring is in fact the entire string of units making up the

description. This observation is useful, as it is now possible to give one definition of Harmony for all
partial descriptions, which includes the definition of Harmony for all complete structural descriptions.

(21) Def. A universal constraint ifocal if it may be evaluated solely on the basis of the internal
configuration of a unit of structure, and the type of position which immediately precedes it.

(22) Def. TheHarmonyof a partial description is the collection of the constraint violation marks assessed
each unit of the partial description.

(23)Lemma The value of each terﬂx",i] of the computing recurrence, if one exists, is a set of partial

descriptions containing input segments;i ..i and having last non-ternfinal X .

31
Proof
This result is established through correspondence between the computing recurrence and the
matching recurrence. Observe thatritetching recurrence defines matchings by the recursive
concatenation of units. Therefore, every string of units which is the value of some term of the
matching recurrence for some position structure P is a partial description.
First, observe that both recurrenbewe the null structure as their base case. Th&si) is a
partial description containing no input segments, and with final non-terminal S.
Now, consider some terrﬁ[Xk,i;] of the computing recurrence. The possible structures
considered as values for this term are described by the three parts of the main computing
recurrencdormula (the last equation in (19)). Assume that all@p{",i, J} ., (contain as
values only partial descriptions which contain input segments i ..i
Consider the first part of the main computing recurrence formula. This considers the structure
o formed by appending a unit with i underparsed to the partial descrip@{%hij_J]. This
directly corresponds to the first part of the main matching recurrence formula. By hypothesis,
Q[XKi] is a valid partial description containing i.,.i with last non-termin&l Xhenw is also
a valid partial description containing i ..i with last non-terminél X .
Consider the secorghrt of the main computing recurrence formula. This considers structures
{w™ formed by appending a unit, with i parsed into positién x , to the partial descriptions in
selected Q[X"i,J}. This directly corresponds to the second part of the main matching
recurrence formia, provided that the consecutive positiofis x followed'by x are part of some
valid postion structure. This is guaranteed by the condition on the terms in this part of the
computing recurrence formula; this condition only permits consideration of appending a position
x¥if there is a derivation rule il permitting the derivation of positior§ x fronon-terminal X' .
By hypothesis, eacd[X"i,] is a valid partial description containing i...i and with last non-

terminal X". Thus, "} are valid partial descriptions containing j ..i with last non-termirfal X .

32
Consider the third part of the main computing recurrence formula. This part considers structures
{»™ formed by appending an unfilledx to the structures in seled¥d Ti]}. This part
directly corresponds to the third part of the main matching recurrence formula, provided that the
consecutive positions"x followed b§ x are part of some valid position structure. The provision
is guaranteed by the condition on the terms in this part of the computing recurrence foisula;
condition only permits consideration of @pgling a position*x if there is a derivation ruldin
permitting the derivation of positiorf ffom non-terminal X . Therefore, i€][X Ti]} contain
only valid partial descriptions containing i ..i with last non-terminél X , then the structures
obtained by appending the unfilletl x are also valid paféiatriptions containing i i1 with last
non-terminal X .
Call the number of unfilled positions in a structure following the last unit containing an input
segment théinal overparsing lengtlof that structure. The partial descriptions considered by the
first two parts of the main computing recurrence formula, discussed above, have final
overparsing length 0. Because the third part of the computing recurrence formula only considers
structures of final overparsing length one or greater, the earlier results for the first two parts of
the computing recurrence formula establish that all structures of final overparsing length zero
that are considered are valid partial descriptions. Now, assume that all considered structures of
final overparsing length N-1 are valid partial descriptions. Any considered strwCtofdinal
overparsing length N is considered only through the third part of the computing recurrence
formula. The structure being appendedafX "], must be of final overparsing length N-1.
By hypothesis, that structure is a valid partial description. Therefdtés a valid partial
description. By mathematical induction, all structures considered by the third part of the main
computing recurrence formula are valid partial descriptions contajnipg i ..i with last non-terminal

XK,

33
This exhausts the main computing recurrence formula, as all three parts have now been shown
to consider only valid partial descriptions. Thus, only partial descriptions contginjng i ..i with
last non-terminal X may be values of the terms of the computing recurrence.

(24) Def. A cycle of overparsing unitis a contiguous string of unfilled positions in which the first and
last units are the same type of position.

(25) Def. A Harmony function is said tban overparsing cyclei§, for any partial description which
contains a cycle of overparsing units, removing all but the first unit of the cycle results in a new
partial description which is strictly more harmonic.

(26) Lemma Suppose that the Harmony fuioct bans overparsing cycles. Then for arfy X and i, of all
partial descriptions containing i through i and with last non-termifial X , there exist a subset that
have maximum Harmony, and that subset is finite.

Proof

Let K be the number of types of non-terminals. In any candidate partial description, there are
only a finite number of units ctaining input segments (j of them, to be precise). By the
pigeonhole principle, between any two units containing consecutive input segments, there cannot
be more unfilled positions than there are types of positions without repeating a position, thus
creating an overparsing cycle. ldentical reasoning gives the same bound on the number of units
that may occur before the first input segment, or after the last input segment. Thus, a partial
description cannot have more than (j+1)*K unfilled units without overparsing cycles. Thus,
there are only a finite number of candidate partial descriptions which do not contain any
overparsing cycles.

By assumption, any candidate containing an overparsing cycle is strictly less harmonic than some
candidate without that overparsing cycle. Thus, there are only a finite number of candidates,
those not containing overparsing cycles, which could possibly have maximum Harmony.
Because the set of optimal partial descriptions is contained in this finite set, and because there

is guaranteed to be at least one candidate that does not contain overparsing cycles, the set of

34
candidate partial descriptions with maximum Harmony is finite, and contains at least one patrtial
description.

(27) Lemma Suppose that the Harmony function bans overparsing cycles, and that the universal
constraints are local. Then for any set of computing recurrence @f¥s J} ., the solution
values for these terms exist. F@ch terer[Xk,i;], the solution value is precisely the set of
partial descriptions of maximum Harmony containipg i ..i and with final non-terminal X .
Proof
By lemma (23), the computing recurrence only considergssipe values faR[X k,i;], partial
descriptions containing i..i and with final non-termin&l X . By lemma (26), we know that for
each recurrence terﬁ[X",i], there exist a positive finite set of partial descriptions containing
i,..i; and with final non-terminal X, that have maximum Harmony. Assign to each term its
corresponding set of optimal partial descdps. Consider some partial descriptioassigned
to Q[XKi].
Supposéhat the last unit of: contains;i underparsed. Then the partial description containing
all but this last unit is an optimal partial descriptiontX i - Suppose, to the contrary, that
it weren't. Then a better solution fﬁ{xk,i}] could be constructed by appending the last unit of
7 to an optimal value fa@[XXi .1- The locality of the universal constraints guarantees that the
marks assessed the final unit will be the same when that unit is appended to any partial
description with last position®X . The Harmony of any partial description including the final unit
is thus simply the collection of violation marks assessed the partial description without the final
unit, with the marks assessed the final unit added to it. This contradicts the assumption that
is an optimal solution. Thus, satisfies the recurrence, as it is considerethéyirst part of the
recurrence, and is ofiaximum Harmony out of all possible partial descriptions considered for
QIxKi].
Suppose that the last unitofcontains;i parsed intd x . Therwith this last unit removed is

an optimal paial description for the ter[X"i,], where X" is the last non-terminal of this

35

partial description. Suppose, to the contrary, that it weren’t. Then a better partialidadonipt
Q[X",i;| could be constructed by appending the last unit &5 an optimal value faR[X"i, .
This contradicts the assumption thais an optimal solution. Thus, satisfies the recurrence,
as it is considered by the second part of the recurrence, and is of maximum Harmony out of all
partial descriptions considered m[xk,i;.
Suppose now thahe last unit oft does not contain input segment i. By containmembust
include a unit containing i, so the last unitofust be an unfilledx . Thenwith this last unit
removed is an optimal partial description fX"i], where X" is the last non-terminal of this
partial description. Suppose, to the contrary, that it weren’t. Then a better partialidadonipt
Q[X k,ij] could be constructed by appending the last unit ¢ an optimal value fdR[X",i].
This contradicts the assumption thais an optimal solution. Thus, satisfies the recurrence,
as it is considered by the third part of the recurrence, and is of maximum Harmony out of all
partial descriptions considered m[xk,i;.
This demonstrates that assigning the optimal partial descriptions to each of the computing
recurrence terms solves the recurrence. Finally, no otheossl@xist, because the recurrence
only assigns to a term partial descriptions of maximum Harmony among those considered. The
base casé)[S,ij], is fixed, so for each term considering descriptions of length one or greater, the
optimal values are considered. So any other partial descriptions are disallowed by the recurrence
in virtue of their sub-optimality.

(28) Theorem Suppose that the Harmony function bans overparsing cycles, and that the universal
constraints are local. Th&PT(l) = maxH{GEN)}.
Proof
First, consider the set of descriptions selecte@B¥(l). By definition,OPT(l) only considers
recurrence term@[X¥i] where X = e is inI. This ensures that each term has as values only

descriptions with valid final positions, and thus that each term has as values only descriptions

36
generated b5EN(l). Thus, the set of candidates optimized oveOIB¥(l) is a subset of the
candidates optimized over IBEN(). ThenOPT(l) < maxH{GEN()}.

Now, consider the set of descriptions selected by m@g{l)}. Each such description must
have a valid final non-terminal*X . Thus, such a description is one of the descriptions optimized
over byQ[XXi]. Thus, for eachr, & < Q[XXi] < OPT(l). Then maxHGEN()} < OPT().
It follows thatOPT(l) = maxH{GEN])}.
2.5.3 The Dynamic Programming Algorithm
(29) Def. The iterative solution procedurefor a set of computing recurrence equations
IterSolve{ Q[X]}) is:
For each X, se®[X"i] to {Q[Xi;] +(i))}
For each X, se®[X"i] to maxHQ[X"i], {Q[X™i,_J+x i, | XM=x*X* e T}}
Repeat
For each X, se®[X"i] to maxHQ[X"i], {Q[X™i]+x¥O | XM=x*X* e T} }
Until no Q[Xk,ij'] has changed during a pass
Return ({Q[Xi]})
(30) Def. Thedynamic programming algorith@P(l) is:
SetQ[S,iy] to {the null structure}
For each XS, setQ[X k] too
Repeat
For each X, se@[XXi] tonaxHQ[X i, {Q[XMiJ+x O | X™ox*X* € T} }
Until no Q[X k,io] has changed during a pass
For each;i, sdiQ[X i}, titerSolvg{ QX i]})
SetAnswerto maxHQ[X i | X'=e € T}
Return Answej
The symbok- represents théwvorst possible Harmoriywalue. This is used as a way of marking terms

that have not yet been assigned a partial description as a candidate value.

37
This algorithm directly corresponds to the dynamic programming algorithm described in the
earlier sections. Each recurrence tél[)(",i;] is the same as cell ['Xj,i] of the Dynamic Programming

Table. Index,j is the same as column heading BOI. The Operations Set simply lists the pre-calculated

consequences of each operation considerdtbtolve()

(31) Theorem Suppose thabENis defined as above, the universal constraints are local, and the resulting
Harmony furction bans overparsing cycles. Then DP(l) computes the optimal structural
description of I.

Proof

By theorem (28)QPT(I) is the optimal structural description of I. It remains to be shown that
DP(I) correctly computes it.

The nature of the algorithm is to consider certain candidate solutions, and keep any solution
considered unless another solution is explicitly considered which ishtaoneonic. Therefore,

it can be proven that all optimal solutions for a computing recurrence term are computed by
showing that all optimal solutions are explicitly considered by the algorithm.

Observe tha®[S,i] is assigned the optimal solution by the recurrence, because thele ine
possible candidate. The repeat loop in the main DP() is separate only because this first set of
terms may only consider partial descriptions with unfilledcstme (no input segments have yet

been considered). The logic proving this loop correct is the same as that for the other sets of
inter-related terms as given below. However, in this first set the only solutions of final
overparsing length zero are the pre-assigned values of the null structere and

Consider the ter[X5i], assuming that@[X™i,J} .-, contain all of their optimal solutions.

By the lemma (27), we know that the correct solutions for this term are those partigtidescr
containing ..j with final non-terminal * that have maximum Harmony, and thatitiveos

finite number of such descriptions exist. Consider some arbitrary optimal satution

38

Suppose that the last unit ofcontains;i underparsed. Then it is explicitly considered by the
first step ofiterSolve() Suppose that the last unitotontains;i parsed into a position. Then
it is explicitly considered by the second steptefSolve()
Suppose now that the last unitrotioes not contain i. By containmentmust include a unit
containing i, so there must be somatérsubstring of unfilled positions following the unit
containing;i. Call the number of such unfilled positions the final overparsing lengthTdfe
solutions considered in the first two steps, where the final unit did contain i, are thus solutions
with final overparsing length zero. It will next be shown that if all optimal solutions of final
overparsing length N-1 have been considered, then all optimal solutions of length N will be
considered.
Suppose that has final overparsing length N. Then the partial description containing all but
this last unit is an optimal solution of length N-1. By hypothesis, thisigolaf length N-1 has
already been considered. Because it is an optimal solution, when it was considered, it was added
as an optimal value f@&@[X"i], thus changing the value 6[X"i]. This change ensures that
another pass of the third steptefSolve()will take place after. On this next pass, W@@Q",i;l
is evaluatedr will be considered, because the third step explicitly considers solutions which
append an unfilled* to all optimal solutions already determine@[oFi].
Therefore JterSolve()finds the correct values for every tef2fX ",ij.
The only remaining step of the algorithm computeaxH Q[X f,iJ] | X'=e e I} just as
specified forOPT(l). Therefore, DP(I) correctly comput&PT(l).

(32) Corollary The Basic CV Syllable Theory grammars may be correctly computed by DP(l).
Proof
First, observe that the set of position structures is defined by an appropriate formal grammar.
Next, observe that each of the universal constraints is local in the appropriate sense. Next,
observe that the twalk constraints, along with the locality of the other constraints, guarantee

that descriptions with overparsing cycles are sub-optimal. Removing all but the first member

39

of an overparsing cycle elimates the fEL violations incurred by the removed units. It cannot

incur any new violations, because the constraints are local to units, and no new units are added

when cycle units are removed. Thus, the Harmony function bans overparsing cycles.

Finally, consider the hard conditions banning the parsing of V into an onset or coda position and

banning the parsing of C into a nucleus position. Both of these conditions are entirely local (they

may be evaluated for individual units) asichply rule out certain operations considered in step

two of lterSolve() In fact, they may be treated as superordinate (undominated) constraints for

the purposes of the algorithm.

Thus, all the conditions of the main theorem are satisfied, so the theorem applies.
2.5.4 Computational Complexity

Each column in the DP Table is processed in constant time for any fixed grammar: the number
of cells in each column is the number of non-terminals in the position grammar, and the nyrakeesf
through the column is bounded from above by the number of non-terminals, due to the fact that
overparsing cycles are sub-optimal. There is one cofameach input segment (plus the BOI column).
Therefore, the algorithm is linear in the size of the input.
2.6 Conditions on and Extensions of the Algorithm
2.6.1 Parsing More Than One Segment into a Position

The algorithm as defined in section 2.5 inherits from the Basic Syllable Theory the simplifying
assumptions that each syllable position may have at most one input segment parsed into it. As stated in
a footnote above, this constraint actually comes from ratkéngonstraint *OMPLEX as superordinate.
More sophisticated syllable theories will need to have a space of candidate parses which permits violations
of this constraint. This may be accommodated by the current algorithmic scheme. What is required are
more complex versions of the parse operation. One parse operation could parse the new input segments
into the last syllable position in a partial structure (as opposed to adding a new position with the new
segment parsed into it). This operation would then incur a mark indicating the violatioonprex,

along with marks for any other constraints violated.

40

What the algorithm requires is that a new input segment may be parsed by a parse operation into
either the current last syllable position, or into a newly generated syllable position. What is not permissible
under the current form of the algorithm is the parsing of the current segmenpasitien preceding the
final position in the partial structure; this would violate the sense of locality required by the algorithm.
Notice that this does not require that two input segments shasirlglle position be consecutive in the
input. What it requires is that, if twoput segments are not consecutive but are sharing a single syllable
position, that all intervening input segments be either parsed into the same position or unparsed.

2.6.2 Locality

A property of the Basic CV $gble Theory important to the success of the algorithm is the
"locality" of the constraints. Each constraint may be evaluatéldeobasis of at most one input segment
and two consecutive syllable positions. What really matters here is that the constraint violations incurred
by an operation can be determined solely on the basis of the operation itself. The infarseatiby the
constraints in the Basic Syllable Theory include the piece of structure added and the very end of the partial
description being added on to (the last syllabic position generated). These restrictions on constraints are
sufficient conditions for the algorithm given.

An example of a constraint that would not be local in the context of the Basic Syllable Theory
is a constraint which requires that the number of syllables be at least two, as when a word must contain
a foot, and a foot must be binary at the levedydifables. That constraints referring to feet are not easily
computed using the formal description given in this chaper should not be surprising, as there is no explicit
representation of feet in the structures. To properly haodle theories, a more complex set of position
structures will probably beequired, perhaps a context-free space of structures in which foot nodes may
dominate one or more syllable nodes, and so forth. In that case,ahefbit constraint would be local
in the sense relevant to context-free position structures in Optimality Theory: the constraint could be
evaluated dely on the basis of a foot node and the syllable nodes immediately dominated by it. This

notion of locality will be formalized in the next chapter.

41

Other examples of non-locality are alignment constraints (McCarthy & Prince 1993b).
Alignment constraints typically refer to the alignment of boundaries of constituents, where in principle
an arbitrary amount of structure may intervene between the two boundaries. Alignment constraints can
be non-local in two ways. One involves the relationship between constituent bouaddriemtext-free
structures, and will be discussed in the next chapter. The other way occurs with a type of alignment
constraint which incurs multiple violatiorsne for each instance of a type of structure which intervenes
between the relevant boundaries. This non-locality is of a restricted form, in the sense that a constraint
violation is incurred independently by each relevant unit of intervening structure. Thus, the violation is
“local to the unit of structure given the knowledge that it is between the two relevant boundaries, and
independent of howifar’ the unit is from either of the boundaries. This may well make many classes of
alignment constraints amenable to parsing with dynamic programming. Efficient parsing in systems
which use alignment constraints is the subject of current research.

It is important to distinguish between localityaoinstraintsand locality ofeffects Independent
of computational concerns, Optimality Theory provides striking illustrations of howcloestraints can
have very non-local effects. This is reflected in the dynamic programming algorithm by the fact that more
than one partial description is maintained at each stage. Each partial description in a column represents
a different set of decisions on what to do up to that point in the input. The several partial descriptions are
maintained because thoselg decisions may interact with decisions about later parts of the input. The
efficiency of the dynamic programming algorithm for regular structures stems from the fact that at each
stage, only a constant number of partial descriptions need to be maintained (in the case of Basic Syllable

Theory, four).

Chapter 3. Parsing: Context-Free Position Structures

Using a context-free position structure grammar increases the complexity of the parsing task.
Instead of a linear structure of non-terminals running parallel to the terminal positions, as in the regular
position grammar case, a string of positions may be dominated by a hierarchy of non-terminals. The space
of possible structural descriptions will be in general richer, because in addition to a large space of possible
strings of positions, each string of positions may support several different descriptive structures.
However, while this may increase the complexity of parsing within Optindiigpry, it does not render
the problem intractable.

This chapter will preseraigorithms for parsing with context-free position structure grammars.
The special case of a context-free grammar in a restricted canonical form will be discussed in detail.
3.1 Context-Free Position Structure Grammars

Using a context-free position structure grammar does not greatly affect the conceptual
functioning of GEN The position structures still have fiims as terminals, an@ENSstill generates all
allowable ways of matching the input string to the position string for each generated position structure.
Notice that we are here still assuming the input to be a linear string. The increase in complexity is thus
confined entirely to the space of considered position structures.
3.2 An Algorithm for “Revised Chomsky Normal Form Position Structure Grammars

Chomsky Nomal Form (Chomsky 1959) is an often-studied canonical form for context-free
grammars. Intuitively, it enforces binary branching in the derivation tree.
(33) A formal grammar is in Chomsky Normal Form (CNF) if every production has for its right side

either two non-terminals or one terminal.
CNF is of interest to computer scientists because, for any arbitrary context-free grammar, there is a
formally equivalent grammar in Chomsky Normal Form. Branching which is at most binaigtisrest
to linguists, lecause it is often considered a desirable constraint on linguistic structures, particularly in
syntax. Itis useful here because the productions are restricted to a couple of simple forms which are more

easily analyzed. This chapter will discuss in detail a canonical form wtstigh#ly less restrictive than

43

Chomsky Nomal Form. It enforces at most binary branching, and is here ¢&dsed Chomsky

Normal Form (RCNF).

(34) A formal grammar is itRevised Chomsky Normal Form (RCNF) if every production has for its
right side one of the following forms: (a) two non-terminals; (b) one non-terminal; (c) one
terminal. The production-2e is also permittedyhere S is the start symbol, and e is the empty
string.

One nice property of the pure CNF is that structures cannot be generated with cycles of non-terminals

singly dominating other non-terminals (e.g., A dominates only B dominates onlyiGadesonly A ...).

The RCNF by itself permits such structures. Thiglievant for analyses in Optimality Theory, because

excess structure is often penalized by constraints which are violated by extra material which is

phonetically realized (that is, unfilled terminal positions). A well-defined grammar will have to ensure
that the faithfulness constraints are sufficient to restrict the amount of structure actually present in optimal
descriptions, either by ensuring that the specific position structure grammar does not permit cycles of
singly dominating non-terminals (as is the case in the example discussed belowgwngycbnstraints

which penalize unwarranted higher structure such as non-terminals in a description, or by some other

means.

3.2.1 The Dynamic Programming Table
The Dynamic Programming Table is more complex for context{bosition structures. It is no

longer a simplewo-dimensional grid. The table now has three indices: one indicating the identity of a

non-terminal (just like the row index in the regular grammar case), and two other indices indicating the

range of the substring of the input string covered by the non-terminal. The cell [X,2,5] should contain the
structure of and the Harmony of the best way of parsing sggments,i through i with a structure that

has the non-terminal X at the root (that is,Ofrdnates the rest of the structure). The table has a cell for

every non-terminal, faevery legitimate substring range of the input. Thus, a cell for a substring of one

input segment is peritted, such as [X,3,3], but no cells exist with the starting index greater than the

ending index, like [X,3,2].

44
The DP Table is perhaps best envisioned as a set layers, one for each non-terminal. A layer looks
like the following (the cells are labeled):
Table 7

Example Layer of the Dynamic Programming Table

[X,1,3]

[X,1,2] [X,2,3]

[X,1,1] [X,2,2] [X,3,3]
i i, is

It will help to visualize the table as follows. Feach non-terminal X, there is a row containing
one cell for every segment of the input: [X,a,a] for each irggment . The next row will contain one
fewer cell, and each cell corresponds to a pair of consecutive input segments: [X,a,a+1]. The next row
has one less cell yet, with each cell covering a substring of three consecutive segments. This pattern
continues up to the top row, which contains only one cell: [X,1,J], where J is the length afigheFstri
each substring length, there is a collection of rows, one for each non-terminal, which will collectively be
referred to as kevel The first level contains the cells which only cover one input segment; the number
of cells in this level Wl be the number of input segments multiplied by the number of non-terminals.
Level two contains cells which cover input substrings of length two, and so on. The top level contains
one cell for each non-terminal.

In the rest of this chapter, table cells will be denoted with square brackets, [], as above. Tree
structures will be denoted with parentheses: a parent node X with child nodes Y and Z is den@ed X(
3.2.2 The Operations Set

As in the regular grammar case, the operations set contains operations corresponding to
underparsing, parsing, and overparsing actions. Also, the parsing and overparsing operations are matched

with position structure grammar productions. However, there is additional complexity introduced by the

45
context-free position grammar. The regular position grammar had only one type of production. The CNF
position grammar has two main types of productions, one with a single terminal on the right hand side,
and one with two non-terminals on the right hand side. We need parsing and overparsing operations to
correspond to each of these.

The first type of parsing operation involves productions which generate a single terminal.
Because we are assuming that an input segment may only be parsed into at most one position, and that
a position may have at most one input segment parsed into it, this parsing operation may only fill a cell
which covers exactly one input segment. The second kind of parsing operation is matched to a position
grammar prodetion in which a parent non-terminal generates two child non-terminals. This kind of
operation fills thecell for the parent non-terminal by combining cell entries for the two child so that the
substrings covered by each of them combine (concatenatively, with no overlap) to form the input
substring covered by the cell being filled. The resulting Harmony in the cell being filled will be the
combination of the marks assessed each of the substructures for the two child non-terminals, plus any
additional marks incurred agesult of the production itself. This operation has to consider all possible
ways in which the child non-terminals, taken in order, may combine to covartibing, and select the
way with the best resulting Harmony. Because ltile oon-terminals must be contiguous and in order,
this amounts to considering each of the ways in which the substring dardael into two pieces. This
can be expressed as floemula shown in the Previous Cell column for this parsing operation, with b
ranging in value from a to (c-1).

Underparsing operations are not matched with position grammar productions, but they are more
complex for other reasons. A DP Tab#dl which covers only one input segment may be filled by an
underparsing operation which marks the input segment as unparsed; this is just as in the regular grammar
case. In general, any partial description covering any substring of the input may be extended to cover an
adjacent input segment by marking thatiiddal segment as unparsed. Thus, a cell covering a given
substring of length greater than one may be filled inmweoor-image ways via underparsing: by taking

a substructure which covers all but the leftmost input segment and adding that segment as unparsed, and

46

by taking a substructure which covers all but the rightmost input segment and adding that segment as
unparsed.

Overparsing operations are more complex in the context-free case. The reason is that more than
just one unfilled position needs to tensidered. A single non-terminal may dominate an entire subtree,
in which none of the syllable positions at the leaves of the tree are filled. Thus, the optimal "unfilled
structure" for each non-terminal must be determined. We will denote the optimal overparsing structure
for non-terminal X with [X,0], and we will refer to such an entity as a base overparsing structure. A set
of such structures must be computed, one for each non-terminal, before parsing may begintH®seause
values are not dependent upon the input, they may be "compiled" into the Operations Set. In fact, this is
exactly what was done in the regulammmar case, it was just less apparent because the possible
overparsing structures were less complex. The actual computation of these values will be discussed in
further detail below.

The DP Table is filled as follows. First, all of the cells cogemput substrings of length 1 are
filled. Then, all ofthe cells covering substrings of length 2 are filled, utilizing the entries in the cells of
the length 1 level. The cells of the other levels are filled by order of increasing substring length. The final
level to be filled has one cell for each non-terminal, including thesstarbol. When this level has been
completely filled, the cell [S,1,J] will contain the optimal parse of the input, and its Harmony.

Table 8 shows templates for the kinds of operations.

47
Table 8

The Different Operation Forms

New Cell Previous Cell(s) Structure Production Operation
Type
[X,a,a] [X,0] (ip Underparsing
/ Overparsing
[X,a,a] none X(x/1) X=X Parsing
[X,a,a] [X*,a,a] X(X) X=X* Overparsing
[X,a,a] [X*,a,a] [X",0] XX, X™) X=X Overparsing
[X,a,a] [X*,0] [X™a,a] XX, X™) X=X Overparsing
[X,a,c] [X,a+1,c] (iy Underparsing
[X,a,c] [X,a,c-1] (i) Underparsing
X,a,c] max, {{X*,a,b] X(XE,X™) X=Xk ™ Parsing
[X™b+1,c]}
[X,a,c] [X*a,c] X(X) X=Xk Overparsing
[X,a,c] [X*a,c] [X™,0] X(XKX™ X=X Overparsing
[X,a,c] [X*0] [X"a,c] X(XK XM X=XX ™ Overparsing |

3.2.3 The Overparsing Operations

The overparsing operations must be considered after the underparsing and parsing operations.
This is for the same reasons as in the regular gracesar the overparsing operations may make use of
cell entries in the same level. Further, the application of overparsing operations must go through several
cycles, again just as in the regular grammar case. In the regular grammar case, a successive sequence of
overparsing operations resulted in a sequence of unfilled positions. In the context-free grammar case,
overparsing operations add entirely unfilled subtrees. The unfilled subtree may contain several unfilled

positions, and the terminals of several consecutive overparsing operations will not necessarily be in

48
succession in the terminal position string. For example, if [X ,0] affd [X ,0] are base overparsing
structures, and we start with a structure in which the non-terminal Z dominates a substring of the input,
the first overparsing operation might put[X ,0] to the left of Z, all dominated’by X , while the second
overparsing operation might put{X ,0] to the right, resulting in the structure’X (X ([X ,0],2), [X ,0]).
Notice that in this structure dominated by non-termirfal X , the unfilled positions‘of [X ,0] precede the
positions dominated by Z, while the unfilled positions of [X ,0] follow.

The same principle that guaranteed a limit on the number of successive overparsing operations
in an optimal form in the regular grammar case must be in force here. The faithfulness constraints must
penalize overparsing. In particular, the constraints should prevent overparsing from adding an entire
overparsed non-terminal more than once. That is, cycles of overparsing must be suboptimal. Given that
the universal constraints meet this criterion, the overpangiatations may be repeatedly considered for
a given level until none of them increase the Harmony of the entries in any of the cells.

3.2.4 Calculating the Base Overparsing Structures

The base overparsing structures, denoted above as [X,0], represent the optimal structures
dominated by each non-terminal that contain none of the input segments arehiesst calculated using
a dynamic programming algorithm quite similar to the main parsing algorithm. First, for each non-
terminal X which has a production rule permitting it to dominate a terminal x, set [X,0] to contain the
structure with the corresponding terminal x left Uil Next, for each value [X,0], for each production
X=X*X™ consider the Harmony of the structure with root X dominatirtg [X ,0] afid [X ,0], and choose
the more Harmonic of that structure and the prior value of [X,0].

This procedure amounts to iterating overparsing operations over cells for each non-terminal. The
same conditions which guarantee that a cycle of overparsing operations will not occur in the general case
also apply to this case. A "pure" implementation of the general algorithm might not pre-compute these
base overparsing structures; it might instead compute from scratch the optimal unfilled structure for a
non-terminal for each location in which an overparsing operation for that non-terminal decedsBut,

the locality assumptions being employed here require that there not be any interaction between the

49

structure dominated by a non-termiaall structure above that non-terminal. So, we are guaranteed that
the optimal unfilled structureothinated by a given non-terminal will be the same in any location where
the overparsing is considered. Thus, it is efficient to pre-compute these base overparsing structures, and
simply recall them every time an overparsing operatiaorsidered. This strategy was employed in the
regular grammar case as well, but it is not apparent because there is only one way to overpase for a g
non-terminal, given the assumption that a non-terminal may only dominate one specific terminal.

Notice that if a grammar is developed within Optimality Theory which does not meet the locality
assumptions in their entirety such that the optimal unfilled structure for a non-terminal is different in
different locations, but sufficiently restricts the intgi@ans so that parsing may be conducted efficiently,
the above "pure" version will quite straightforwardly handle the case.
3.2.5 Computational Complexity

The algorithm has a computational complexity 8f N in the size of the input.
3.3 An Example: Context-Free Pseudo-Syllable Structure

This section will illustrate the context-free case with a simple artificial grammar (artifitfegdtin
it does not correspond to any proposed linguistic analysis). The set of structures considered here are based
upon the‘pseudo-syllabte a peak (p) surrounded by one or more pairs of margin positions (m). These
structures exhibit context-free behavior, in that margin positions to the left of a peak should be balanced
with margin positions to the right.

The set of inputs isG,V}". The position grammar is:
(35) S=F|e

F=Y]|YF

Y = MR

R=PM|YM

M=m

P-p

50

The constraints are:
(36) *m// Do not parse & into a margin position.

*p/C Do not parse & into a peak position.

PARSE Input segments must be parsed (into positions).

FILL™ A margin position must be filled.

FILLP A peak position must be filled.
In this grammarGEN generates candidates witl garsed into a margin position, and witls @arsed
into a peak position, as well as vice-versa. The conditions on parsing segment types into positions are
now contained in the violable constraints, rather than in the definiti@Edf as was the case with the
Basic CV Syllable Theory.

The non-terminal Y dominates a pseudo-syllable, which consists of a left margin position and
a rhyme (R) which in turn consists of a center constituent and a right margiceritke constituent may
either be a single peak ptisn or an entire pseudo-syllable. The non-terminal F is a pseudo-foot, and
permits hierarchical grouping of a sequence of pseudo-syllables.

Consider the case of the following ranking: {’y#p/C, PARSE} > {FILLP} > {FILL™}. This
ranking ensures that in optimal descriptions the balancing of margin positions around a peak is perfect,
and that &/ will only be parsed as a peak, whil€awill only be parsed as a margin. Further, all input
segments will be parsed, and unfilled positions wilineduded only as necessary to produce a sequence
of balanced pseudo-syllables.

For example, the inpuV/C/ receives the description S(F(YWM(R(P{),M(C))))). The surface
string for this description i3VC: the firstl] was“epenthesizedo balance with the one following the peak
V. Balanced inputs likeCICVCC/ and CVCCCVCC/ will receive completely faithful descriptions which
incur no constraint violations.

Table 9 shows the operations of the Operations Set for cells headed by the non-terminals M, Y,

and S. Other dynamic programming table cell entries are denoted with square brackets [].

Table 9

The Operations Set for M, Y, and S

51

New Cell Structure Violations Production Operation Type
[M,a,a] [M,0] (i {*F L™ Underparsing /
*PARSE} Overparsing
[M,a,a] M(m/i,) ifizV {*fm/V} M =m Parsing
[M,a,c] (iy [M,a+1,c] {*PARSE} Underparsing
[M,a,c] [M,a,c-1](i, {*P ARSE} Underparsing
[Y,a,a] Y([M,0], [R,0]) (i, {*P ARSE *FILL" Underparsing /
*FILL™ *FiLL ™ Overparsing
[Y,a,c] (iy [Y,a+l,] {*PARSE} Underparsing
[Y,a,c] [Y,a,c-1)(i {*P ARSE} Underparsing
[Y,a,c] max, {Y([M,a,b], [R,b+1,c])} | {} Y = MR Parsing
[Y,ac] Y(IM,0], [R,a,c]) {*FiLL™} Y = MR Overparsing
[Y,a,c] Y([M,a,c], [R,0]) {*FILL™*FILL?} Y = MR Overparsing
[S,a,a] [S,0%i, {*P ARSE} Underparsing /
Overparsing
[S,a,c] [S,a,c-11i {*P ARSE} Underparsing
[S,a,c] S([F,a,c]) {} S=F Overparsing

52
The base overparsing structures are shown in Table 10.

Table 10

The Base Overparsing Structures

Root Structure Violations
[M,0] M(m/) {*F L™

[P,0] P(ph) {*FiLL?}

[R,0] R([P,0], [M,0]) {*FILL™ *FILL"}
[Y,0] Y([M,0], [R,0]) {*F ILL™ *FILLP *FiLL ™}
[F,0] F(Y,0]) {*FiLL™ *FiLLP *FiLL ™
[S,0] the null structure {}

Now, the dynamic programming table for the inpUE/ will be shown. Because the table is
three-dimensional, it will be shown as sevéstites, one for each non-terminal.
Table 11

Cells for Non-Terminal M

*PARSE

(V) M(m/C)

*PARSE *FiLL™

M(m/0) (V) M(m/C)

\Y, C

Table 12

Cells for Non-Terminal P

*PARSE
(C) P(pN)
*PARSE *FILLP
P(pN) P(pL) (C)
Vv C
Table 13
Cells for Non-Terminal R
R(P(pV), M(m/C))
*EiL™ *FiLLP
R(P(pV), M(m/)) R(P(p1), M(m/C))

\Y

Table 14

Cells for Non-Terminal Y

C

*FiLL™

Y(M(m/D), R(P(p¥), M(m/C)))

*FiLL™ *Fil™

Y(M(m/D), R(P(p¥), M(m/d)))

*FILLP *Fie™

Y(M(m/O), R(P(p), M(m/C)))

\Y

C

53

54
Table 15

Cells for Non-Terminal F

*EiL™

F(Y(M(m/), R(P(pV), M(m/C))))

*FiLL™ *Fil™ *FiLLP *Fie™

F(Y(M(m/D), R(P(pV), M(mA)))) | F(Y(M(m/), R(P(p), M(m/C))))

\% C

Table 16

Cells for Non-Terminal S

*Fie™

S(F(Y(M(mL), R(P(pV), M(m/C)))))

*FiLL™ *FiLL™ *EILL? *FiLL™

S(F(Y(M(mD), R(P(pV), M(m/))))) | S(F(Y(M(mI), R(P(pl), M(M/C)))))

\Y C

The optimal description is the one contained in cell [S,1,2].

3.4 Formal Analysis of the*Revised Chomsky Normal Form Case

3.4.1 Formal Definition of Optimality Theory Grammars

(37) Def. Theposition structure grammdr is a formal context-free grammar‘iRevised Chomsky
Normal Form which genatesposition structures Each terminal symbol df is a structural

position. The start symbol is S.

(38) Def. A local regionis any of the following: (a) a non-terminal and the child non-terminals that it

immediately dominates; (b) a non-terminal which dominates a terminal symbol, along with the

terminal and the segment filling the terminal position.

55
(39)Def. Suppose there are aninput | =1 ;... i composeeggments from the segment alphabet G, and
a position structure P, which is a tree consisting of terminals p ... p and non-terminalé N
A matching p is a string of units, where the set of possible matchings between P and | is
MATCH(P,I), defined by the following recurrence:

MATCHP,1) = M[S1,]]

MIN,0] = {N(p/9)|N(pJ€eP, geG} U
{N,(s)|SeMIN,,0], N(N)eP} U
{N(s.s,)|sEMIN,,0], s, eM[N,,0], N(N,,N)eP} U
{ the null structure| P=5)}

M[N,a,a] = {s+i|seMIN,0]} U
{N(pyi,)IN(p)eP} U
{N,(s) [sEeM[Na.a], N(N)eP} U
{N(s.s,)|sEeMINa,a], s eM[N.,0], N(N,,N)eP} U
{N(s.S,)sMIN,,0], s.eM[N, a,a], N(N,N,_)eP}
M[N,a.c] = {s+(i)|seM[N,a+1c]} U
{s+(i|seM[N,ac-1]} U
{N/(s.s,)|asbsc, seM[N,,a,b], s,eM[N, b+1c], N(N,N_)P} U
{N(s)|seM[N,ac], N(N)eP} U
{N(s.s,)|sEeMINa.cl, s,eMIN, 0], N(N,,N)eP} U
{N(8.S) IsEMIN,,0], s,.eM[N,acl, N(N,.N,)eP}

The '/’ operator here means to fill the positiorthie left of the operator with the material to the
right of the operatorThe set {the null structure} contains precisely one object, which consists
of exactly no structure.
This definition may be augmented by further restrictions for different specific instanGsNoffor
example, forbidding consonants from being parsed into nucleus positions).

(40) Def. The set of candidate structural descriptions for input | is

GENI) = U MATCHP,)

PeL(I")

L(T) is the set of all position structures generated.by

56

(41) Def. The structural description assigned to | by the grammaraisH GEN()} . The function
maxH{} returns the structural description with maximum Harmony. Implicit in the definition
of maxH is a set of universal constraints and the ranking of those constraints.

3.4.2 The Computing Recurrence

(42) Def. The functiorOPT(l) is defined by the following computing recurrence (where G is the segment
alphabet):

OPT() = Q[S1.]
{X'(x¥g) | X'=xkeT, geG} U
{(X{Q[xkop | Xt=xker} U

X QX K,01,Q[X™0]) | X'=XKXMe T} U
{ the null structure| X'=S S—e e I’}

Q[X'0] = maxH

{Q[x",0]+()} U
{X'(x¥i) | X'=>x*er} U
maxH {(XY(Q[X*aa]) | X'=X*eT} U
(X YQIXK0LQXMaa]) | X'=XkXXMe T} U
{(XYQ[Xka,al,QX™0]) | X'=XkX™ ¢ T}

Q[X'a,a]

{Q[X'a+1,c]+(iy} U
{Q[Xa,c-1]+i } U
maxHUX QX abl,Q[X Mb+1,c]) | asb<c, X'5X*XMe T} UL
{(X{Q[xkac)) | Xt=xker} U
{(XYQ[XK0L,Q[XMac]) | X'=X*X™e 1} U
{XYQ[X K a,c,QX™0]) | X'SX*X™e I}

Q[X'a,]

(43) Def. A partial descriptionr is a tree which is a subtree of a structural description p (generated by
GEN). A partial description is classified by its root non-terminal. Each leaf of a partial
description consists of a position (a terminal of the position grammar) which either contains an
input segment or an overparsed segment.

(44) Def. A universal constraint ifocal if it may be evaluated solely on the basis of the internal

configuration of a local region.

57

(45) Def. TheHarmonyof a partial description is the collection of the constraint violation marks assessed
each local region of the partial description.

(46) Def. An overparsing region is a local region where one child non-terminal dominates all of the input
segments dominated by the root non-terminal. A local region withiltbron-terminals is not
an overparsing region.

(47)Lemma The value of each ter@[X"'0] of the computing reurrence, if one exists, is a set of partial
descriptions containing no input segments and having root non-terminal X .
Proof
This result is established through correspondence between the computirgyiee foiQ[X 0]
and the matching recurrence for M[N ,0].
Consider some terf[X'0] of the computing recurrence. The possible structures considered
as values for this term are described by the four parts of the recurrence.
Consider the first part of the computing recurrence. This considers struetiyésrfned by
creating a non-terminal dominating a terminal with a non-input segment parsed into the terminal
position. This directly corresponds to the first part of the matching recurpenealed that the
parent-child relation X ¢) is part of some position structure, which is guaranteed by the first
condition on this part of the computing recurrence. The root non-terminiahisddt covers no
input segments. Thuse{} are valid partial descriptions containing no inpegsients and with
root non-terminal X.
Consider the last part of the computing recurrence. This considers the null parse, where the start
symbol (S) dominates no other structure. This directly corresponds to the last part of the
matching recurrence. The root non-terminal is S, atmbviérs no input segments. Thus, this is
a valid partial description containing no input segments and with root non-terminal S.
The second and third parts of the computing recurrence are analogous to the fourth and fifth parts
of the computing recurrence for terf§X'a,c] discussed in lemma (49), and the proof is

similarly analogous.

58

(48) Lemma The value of each ter@[X'a,a] of the computing recurrence, if one exists, is a set of partial
descriptions containing the input segment i and having root non-terniinal X.
Proof
This result is established through correspondence between the computing recurrence for
Q[X'a,a] and the matching recurrence for M[N ,a,a].
Consider some terf[X"a,a] of the computing recurrence. The possible structures considered
as values for this term are described by the five parts of the recurrence. By lemma (47) all terms
Q[X'0] contain as values only valid partial descriptions covering no input segments and with
root non-terminal X.
Consider the second part of the computing recurrence. This considers strusthfesied
by setting X to dominate the terminal positién x wijth i parsed into it. This directly corresponds
to the second part of the matching recurrence, provided that the parent-child rélation X (x) is part
of some valid position structure, which is guaranteed by the condition on this part of the
computing recurrence. This structure has root non-terminal X, and covers only input segment
i, Thus, '} are valid partial descriptions containing i with root non-terminal X .
The first part of the computing recurrence is analogous to the first part of the computing
recurrence for term€2[X'a,c], discussed in lemma (49). The proof for this part is similarly
analogous.
The third, burth, and fifth parts of the computing recurrence are analogous to the fourth, fifth,
and sixth parts of the computing recurrence for te€fxs,a,c], discussed in lemma (49). The
proof for these parts is similarly analogous.

(49) Lemma The value of each ter@[X"'a,c] of the computing recurrence, if one exists, is a set of partial
descriptions containing input segments i throygh i and having root non-terrhinal X.
Proof
This result is established through correspondence between the computing recurrence and the

matching recurrence, for terms'[X ,a,c].

59
Consider some terf[X"a,c] of the computing recurrence. The possible structures considered
as values for this term are described by the six parts of the recurrence. Assume that all of the
computing recurrence terms coveringcstsubsequences qf i through i contain as values only
valid partial descriptions containing input segments i through i with root non-terrinal X.
Consider the first part of the computing recurrence. This considers the stadtuneed by
adding the input segment i underparsed to the partial descripficya+1,c]. This directly
corresponds to the first part of thratching recurrence formula. By hypothe€ip('a+1,c] is
a valid partial description containing,i through i with root non-terminal X. Thanalso a
valid patial description, and it containg i through i with root non-terminal X. Directly
analogous reasoning applies to the second part of the computing recurrence.
Consider the third part of the computing recurrence. This considers strucitirésrfned by
setting the non-termal X' to immediately dominate the partial descriptions in te2fxs,a,b]
and Q[X™Mb+1,c]. This directly corresponds to the third part of the matching recurrence,
provided that the parent-child rétan X'(X*X™) is part of some valid position structure, which
is guaranteed by the second conditiorttis part of the computing recurrence. By hypothesis,
the termsQ[X*a,b] andQ[X™b+1,c] are valid partial descriptions meeting the terms of this
lemma. The first condition on this part of the computing recurrence ensures that each of the
segments of the subsequence is covered by precisely one of the child noriserfiting, {o"}
are valid partial descriptions containing input segments i thrqugh i with root non-terrhinal X.
Consier the last part of the computing recurrence. This considers struettiydsrined by
setting non-terminal X to immediately dominate the structur@Xf,a,c] andQ[X™0]. This
part directly corresponds to the last part of the matching recurrence, provided that the parent-
child relation X (X ,X") is part of some valid position structure, which is guaranteed by the
condition on this part of the computing recurrence. By lemma@§X);,0] may only contain
a valid partial description covering no input segments mithh X". Thus, ifQ[X*a,c] contains

a valid partial description containing input segments i thrqugh i witmmoterminal X, then

60
the resulting structure created by this computing recurrence te@jXga,c] is also a valid
partial description containing input segmegts i through i with roeitarminal X. Analogous
reasoning applies to the fourth and fifth parts of the computing recurrence.
Call the number of overparsing regions in a structure which are not al@tiiby any non-
overparsing local region the final overparsing length of that structure. The partial descriptions
considered by the last three parts of the computing recurrence formula add an overparsing region
to the root, and thus only consider structures of final overparsing length one or grbatérst
three parts of the computing recurrence, as discussed above, only consider valid partial
descriptions. Because these first three parts are the only parts that can consider structures of final
overparsing length zero, it follows that all structures of final overparsing length zero that are
considered are valid partial descriptions. Now, assume that all considered structures of final
overparsing length N-1 are valid partial descriptions. Any considered strugturefinal
overparsing length N is considered only through the last three parts of the computing recurrence.
The structure being added @[X*a,c], must be of final overparsing length N-1. By hypothesis,
that structure is a valid partial description. Therefargis a valid partial description. By
mathematical induction, all structures considered by the last three parts of the main computing
recurrence formula are valid partial descriptions.
This exhausts the computing recurrence, as all parts have been shown to consider only valid
partial descriptions. Thus, only partial descriptions containing input segments i through i with
root non-terminal X may be values of the terms of the computing recurrence.

(50) Def. A cycle of overparsing regions is a sequence of overparsing regions where each successive
region includes as a child non-terminal the root non-terminal of the preceding region in the
sequence, where each region dominates all of the input segments dominated by the region
following it in the sequence, and where the root non-termindfedirst and last regions of the

sequence are the same non-terminal.

61

(51) Def. A Harmony function is said to ban overparsing cycles if, for any partial description which
contains a cycle of overparsing regions, removing all but the first region of the cycle results in
a new partial description which is strictly more Harmonic.

(52) Lemma Suppose that thdarmony function bans overparsing cycles. Then for d@ny X, a, and c, of
all the patial descriptions containing i through i and with root non-termidal X, there exist a
subset that have maximum Harmony, and that subset is finite.

Proof

Let T be the number of types of non-terminals, and L be the length of the input subsequence
covered by the candidate partial descriptions (that is, L=c-a+1). First, observe that any non-
terminal in a candidate partial description must cover a contiguous subsequence (of length zero
or greater) of the input. There are only a finite number of such contiguous subsequences (1 +
L*(L+1)/2 of them).

A subtree which covers no input segments cannot have depth greater than the number of types
of non-terminals without some non-terminal dominatingther non-terminal of the same type,

thus creating an overparsing cycle. Thus, the subtree cannot contain mofentirase2minals

without overparsing cycles.

By the pigeonhole principle, for any subsequence of length ayreater, there cannot be more
non-terminals covering precisely that subsequence than there are tgpast@fminals without
repeating a non-terminal type, thus creating an overparsing cycle. Thus, a partial description
which contains no overparsing cycles will contain at most T non-terminals covering any given
input subsequence, for U*¢1)/2 such subsequences, and therefore will contain not more than
T*L*(L+1)/2 non-terminals which cover at least one input segment.

Becausehe root of any candidate partial description must cover all of the input segments, any
non-terminal covering no input segments mustidm@inated by some non-terminal which does
cover an input segment. Therefore, the number of maximal subtrees containing no input

segments cannot be greater than the number of non-terminals which do cover input segments.

62
A maximal subtree is one which covers no input segmeittsa root whose parent does cover
an input segment. Aggued above, those maximal subtrees contain not more than 2 non-
terminals. Therefore, there cannot be more than 2 *(TL(L+1)/2) non-terminals covering no input
segments in any partial description not containing overparsing cycles.
Therefore, for a partial description to not contain overparsing cycles: (a) the number of non-
terminals which cover at least one input segment cannot exceed TL(L+1)/2; (b) the number of
non-terminals which cover no input segments cannot exceed 2 *(TL(L+1)/2). Thus, there are
only a finite number of candidate partial descriptions which do not contain any overparsing
cycles.
By assumption, any candidate containing an overparsing cycle is strictly less Harmonic than
some candidate without that overparsing cycle. Thus, there are only a finite number of
candidates, those not containing overparsing cycles, which could possibly have maximum
Harmony. Because the set oftiomal partial descriptions is contained in this finite set, and
because there is guaranteed to be at least one candidate that does nativeptaising cycles,
the set of candidate partial descriptions with maximum Harmony is finite, and contains at least
one partial description.

(53) Lemma Suppose that the Harmony function bans overparsing cycles, and that the universal
constraints are local. Then for any set of computing recurrence t&xs$aicl},., ; the
solution values for these terms exist. For each @fdfa,c], the solution value is precisely the
set of partial descriptions of maximum Harmony containjng i throygh i and with root non-
terminal X.

Proof
By lemmas (47), (48), and (49), the computing recurrence onbiders, as possible values for
Q[X'a,c], partial descriptions covering i through i with root non-termial X. By lemma (52),

for each ternf2[X"a,c], there exists a finite set of such partial descriptions that have maximum

63
Harmony. Assign to each term its corresponding set of optimal partial descriptions. Consider
some partial descriptiom assigned t&[X"a,c].
Suppose that contains j underparsed. Then the partial description containing all but the
underparsed,i is an optimal partial description(pX'a+1,c]. Suppose, to the contrary, that
it weren't. Then a better solution f@fX'a,c] could be constructed by adding underparsed i to
an optimal value fo[X"a+1,c]. The locality of the universal constraints guarantees that the
marks assessed the underparsed segment will be the samealdiéencaany partial description
with root X. This contradicts the assumption tinég an optimal solutionThus,r satisfies the
recurrence, as itis considered by the first term of the computing recurrence, amdxsnedm
Harmony out of alpossible partial description considered®X'a,c]. Analogous reasoning
applies ifr containsj underparsed.
Suppose that has root non-terminal’X dominati@jX*a,b] andQ[X™b+1,c]. Then removing
the root non-terminal leaves two partial descriptions which are optimal partial descriptions for
termsQ[X*a,b] andQ[X™b+1,c]. Suppose, to the contrary, that one of them weren't, say term
Q[X*a,b] (without loss of generality). Then a betteutioh forQ[X'a,c] could be constructed
by using an optimal value &[X%a,b] as a child. The locality of the universal constraints
guarantees that the marks assessed the tap degion will be the same when any partial
description with root non-terminal’X ised as a child. This contradicts the assumptiontthat
is an optimal solution. Thus, satisfies the recurrence, as it is considered by the third part of the
computing recurrence, and is of maximum Harmony out of all possible partial descriptions
considered fof2[X"a,c].
The other cases involving partial descriptiarith the root non-terminal dominating other non-
terminals may be proved in analogous fashion to the case just proved.
Suppose that has root non-terminal’X directly dominating a terminal. This directly satisfies
parts of the computing recurrences fjX'a,a] andQ[X"0] without reference to other term

values.

64

This demonstrates that assigning the optimal partial descriptions to each of the computing

recurrence terms solves the recurrence. Finally, no otheossléxist, because the recurrence

only assigns to a term partial descriptions of maximum Harmony among those considered. So,

any other partial descriptions are disallowed by the recurrence in virtue of their sub-optimality.
(54) Theorem Suppose that the Harmony function bans overparsing cycles and that the universal

constraints are local. Th&PT(l) = maxH{GEN)}.

Proof

First, consider the set of descriptions selecte®By{(l). By definition, it only considers the

recurrence ternf2[S,1,J]. This ensures that only descriptions generateGBMI) are

considered. Thus, the set of candidates optimized ov@Pay) is a subset of the candidates

optimized over bYGEN(I). ThenOPT(l) < maxH{GEN()}.

Now, consider the set of descriptions selected by m>{l)}. Each such description must

have root non-terminal S. Thus, such a descriptionésof the descriptions optimized over by

Q[S,1,J]. Thus, for each, & < Q[S,1,J] =OPT(l). Then maxHGEN()} < OPT(l).

It follows thatOPT(l) = maxH{GEN])}.

65
The Dynamic Programming Algorithm
(55) Def. The base overparsing calculation procedBeeseCal¢{ Q[X ,0]},) , is:
For each X, se®[X'0] to =
If S=e is IinT", setQ[S,0] to {the null structure}
For each X, se®[X"'0] to maxHQ[X',0], {X'(xYg) | X'=x"' € T, geG} }
Repeat
For each X
SetQ[X'0] to maxH Q[X',0], {X'([Xk0]) | X'=Xk e T}}
SetQ[X'0] to maxH Q[X',0], {X'([X 0L,[X™0]) | X'=X*X™e I} }
Until no Q[X',0] has changed during a pass
Return({Q[X',01},)
(56) Def. The iterative solution procedure for input sequences of lengtHter®olve { Q[X ,a,al})
is:
For each X, se®@[X'a,a] to{ Q[X",0]+(i)}
For each X, se®[X'a,a] to maxHQ[X"'aa], {X(x"i,) | X'=x"' e I}}
Repeat
For each X, se®[X'a,a] to
maxHQ[X ' a,a], {X'(Q[X aa]) | X'=Xke T}}
For each X, se®[X'a,a] to
maxHQ[X 'a,a], {X(Q[XX01.QXMaa]) | X'=>XX™Me I}}
For each X, se®[X'a,a] to
maxHQ[X a,a], {XY(Q[X aal,Q[X™0]) | X'=XkXXM e I} }
Until no Q[X'a,a] has changed during a pass

Return({Q[X ',a,a]},)

66
(57) Def. The iterative solution procedure for input sequences of length greater than one,
IterSolvé{ Q[X ' acl},), is:
For each X, se®@[X'a,c] to {Q[X"a+1.c]+i)}
For each X, se®@[X'a,c] to {Q[X"a,c-1]+i)}
For each X
For b=atoc
setQ[X'a,c] to
maxHQ[X 'a,c], {X([X* ab,[XMb+1c]) | X'=X*X™e I} }
Repeat
For each X, se®[X'a,c] to
maxHQ[Xa,c], {X(Q[X ac]) | X'=X*XeT}}
For each X, se®[X'a,c] to
maxHQ[X'a,c], {X(Q[X*0]QXMac]) | X'=XXXMe T} }
For each X, se®[X'a,c] to
maxHQ[X 'a,c], {X(Q[X*a,c,Q[X™0]) | X'=XkXM e I} }
Until no Q[X'a,c] has changed during a pass

Return({Q[Xa,cl})

67

(58) Def. The dynamic programming algorithm DP(I) (where J is the input length) is:
Set({Q[X",0]},) toBaseCal¢{Q[X",0]},)

Fora=1toJ, s¢fQ[X"'aal},) therSolvel{Q[X'aal},)
For d=1 to (J-1)
For a=1 to (J-d)
Set{Q[X'aa+d]},) tolterSolvé{Q[X ‘a,a+d]},)
Return [S,1,J])

(59) Theorem Suppose thaBENis defined as above, the universal constraints are local, and the resulting
Harmony furction bans overparsing cycles. Then DP(l) computes the optimal structural
description of I.

Proof

By theorem (54)QPT(I) is the optimal structural description of I. It remains to be shown that
DP(I) correctly computes it.

The nature of the algorithm is to consider certain candidate solutions, and keep any solution
considered unless another solution is explicitly considered which ishtaoneonic. Therefore,

it can be proven that all optimal solutions for a computing recurrence term are computed by
showing that all optimal solutions are explicitly considered by the algorithm.

Consider the terr@[X*a,c]. Assume that all terms &f covering strict subsequences of ia
through ic contain all of their optimal solutions. By lemma (53), we know that the correct
solutions for this term are those partial descriptmngaining input,j through i with root non-
terminal X that have maximum Harmony, and that a finite number of such descriptions exist.
Consider some arbitrary optimal solution

Supposen contains jJ underparsed. Then it is explicitly considered by the first step of
IterSolve() Suppose that the root non-terminaldimmediately dominates a terminal. Then

it is explicitly considered by step threeRdiseCalc()and step two dterSolvel()

68

Suppose that theot non-terminal oft immediately dominates two non-terminals, each of

which covers a strict subsequence,of i throygh i. Thereipficitly considered by step six of

IterSolve()

Suppose that the root non-terminalmfmmediately dominates another non-terminal which

covers all of | through,i. Then it is eigtly considered by the steps in the repeat loop of

IterSolve() That all such solutions are considered within this loop can be proven by

mathematical induction over the final overparsing length of the solutions, in a raaaf@gous

to the final part of the proof for lemma (49).
3.4.3 Computational Complexity

Each block of cells for a subsequence of the input (the block has one cell for each non-terminal)
is processed in time linear in the length of the input subsequence. This is a consequence of the fact that
in general operations filling a cell must consider all ways of dividing the subsequence into two pieces (see
step four ofterSolvg)). For any fixed grammar, the number of passes through the block is bounded from
above by the number ofon-terminals, due to the fact that overparsing cycles are sub-optimal. The
number of such blocks is the number of input subsequences (equivalently, the nurebieriof layer),
which is on the order of the square of the length of the input. If N is the length of the input, the algorithm
has computational complexity O{N).
3.5 The General Case: Position Structure Grammar Productions of Arbitrary Form

Handling grammars with position structure grammars that are not in "Revised" Chomsky Normal
Form requires making the relationship to chart parsing more explicit. This is done by expanding the
dynamic programming table in the following way. Consider the block of cells for some subsequence of
the input. The dynamic programming table described gusly contained blocks with one cell for each
non-terminal of the position structure grammar. In the general case, there will also be one cell for each
left-aligned substring of the righthand side of each production.

Here is an illustrédn. Consider the production N WXYZ. The left-aligned substrings of the

righthand side of this production are W, WX, and WXY. The dynamic programming table will contain

69
a cell foreach of these. These left-aligned substrings directly correspond to uncompleted edges in
traditional chart parsing. There is separate cell for the entire righthand side, WXYZ, because that is a
completed edge, and the result is stored inctilefor the non-terminal on the lefthand side of the
production, N.

A cell corresponding to a left-aligned substring is filled by considering all ways of combining
entries for the last non-terminal of the substring with complementary entries for the substring with that
non-terminal removed. The parsing operations for filling cell WXY will considenbinations of entries
in cells for WX with entries in cells for Y. This corresponds to "extending an edge" in traditional chart
parsing. Notice that the algorithm in the RCNF case can nawmderstood in terms of extending edges.
With at most binary branching, any left-aligned substring only consists of one non-terminal, so that the
uncompleted edge may be identified with a subtree dominated by the single non-terminal.

The complexity of the parsing algorithm in the general case is exactly the same as the RCNF
case: cubic in the length of the input. Exg@ansion of the dynamic programming table is sensitive only
to the position structure grammar; the table still has, for a fixed position structure grammar, a constant
number of cells for each subsequence of the input.

3.6 Discussion
3.6.1 Locality

As discussed in the previous chapter, alignment constraints are examples of proposed non-local
constraints. There is a kind of non-locality which does not arise when regular position structures are
employed, but can arise when context-free structures are employed. This kind of non-lotatiy the
“vertical locality implicit in the definition of a local region. Consider an alignment constraint that
requires the alignment of the left boundary of each constituent X with the boundary of some constituent
Y. If X must immediately dominate Y, or vice-versa, then the constraint is local in the relevant sense,
because the constraint can be esgtdd based on whether Y is the leftmost constituent immediately
dominated by X, or vice-versa. However, if some other non-terminal (call it Z) may dominate Y and in

turn be dominated by X, then the location of Y with respect to the left bounddigdert by Z. The

70
restricted form of this non-locality may permit the following resolution. The dynamic progrartabieg
could be expanded so that every cell for a partial description with root non-terminal Z is expanded into
two cells: one in which there is a Y as the leftmost constituent, and one in which there isn’t. This would
make the information relevant to the alignment constraint available in the local region with parent non-
terminal X. Both partial descriptions with root Z could be considered, with the resulting Harmony

(including the alignment violation) of each correctly determined.

Chapter 4. The Learnability of Optimality Theory
4.1 The Learning Problem in Optimality Theory
4.1.1 Optimality Theory and Language Acquisition in General

Substantive knowledge of language in Optimality Theory consists in knowledgeunfitieesal
set of possible inputs, outputs a@&N (3); of the universal constraints (4); of the ranking of those
constraints particular to the language (6); antheflexicon providing the particular underlying forms in
the language-particular inputs. Under the assumption that what is universal in this knowledge is not
learned but innate, what remains then to be learned is the lexicon and the constraint ranking.

The general problem of lgnage acquisition has many challenges. Among the questions to be
answered are: what kind of information isegsible to the learner from the environment, what kinds of
language-specific principles must be learned, what is the structilve lekicon, and so forth. There are
some famous problems which must be faced ultimately no matter what linguistic framewqploigeein
For example, given an observed utterance, how can the learner segment it into morphemes, and how can
the learner determine which morpheme corresponds to which linguistic element (syntactic element,
semantic meaning, etc.). This chapter will not answer all of these questions.

It is commonly proposed in the literature on language acquisition that the learner needs lexical
knowledge to learn the grammar, and grammatical knowledge to learn the lexicon (see, for example,
Pinker 1987, @itman 1990, Grimshaw 1994). This suggests that the learner maintains both a
hypothesized lexicon and a hypothesized grammar dig@nging, and is repeatedly evaluating possible
lexical entries with respect to its active hypothesized grammar, and then evaluating possible grammars
with respect to itaactive hypothesized lexicon. The learner iterates in this fashion until a stable
configuration, the targetit@uage, is reached. Clearly, this high-level account raises many important
questions, questions for which no one has all of the answers. It is nevertheless quite worthwhile to
investigate the implications of Optimality Theory for this overall view. In particular, one can ask what
procedures could be usedttwe learner to acquire the lexicon given a hypothesized grammar, and what

procedures could learn the constraint ranking given a hypothesized lexicon. The first question is discussed

72
very briefly in the next section, and little more will be said aifouthe second question, the learning of
the constraint rankings, is the subject of the rest of this chapter.

In fact, the work in this chapter addresses a subproblem of the problem of learning constraint
rankings. The subproblem is that of learning rankings based upon (hypothesized) descriptions. This is
not trivial, due to the highly interactive nature of the constraints in Optimality Theory. The early
experience of many linguistgorking in Optimality Theory has been that deducing a ranking consistent
with a set of analyzed data can be very difficult. This raises the question of how a child could learn the
correct constraint ranking, given that the child has much more impoverished data sources. In response,
the problem of learning constraint rankings is here divided into two parts. The first part is the
hypothesizing of a structural description of an utterance, given the actual information (phonetic, semantic,
etc.) available to the child. The second part, the part addressed by the present work, is that of inferring
a constraint ranking given hypothesized descriptions.

This division is not a frequent one in work on formal languageability. Much current work
in formal learnaltity is done within the Principles and Parameters Framework (Chomsky 1981). The
parameter &ttings constitute language-specific knowledge of the core grammar. A parameter setting
determines an inviolable constraint on grammatical descriptions. Thus, at the level of entire descriptions,
the parameters are entirely independent: a single parameter setting can rule a description ungrammatical,
regardless of the settings of the other parameters. As a consequence, the problem of inferring parameter
settings (and thus, of inferring the grammar) from entire structural descriptions is often perceived to be
a trivial one. The only challenge, on this view, lies in contending with the underdetermination of the
complete description by the actual information available to the child.

This challenge, however, is rather severe, because the parameter settings, while being
independent with respect to entire descriptions, can interact in their relationship to surface phonetic forms.
One response to this has been to try and restrict the parameters so as to guarantee identifiable
consequences of each parameter setting individually, at the level of surface forms. Unfortunately, this

results in a conflict between the goals of learnability and the goals of linguistic explanation: learnability

73
favors parameters which do not interact, while linguistic explanatimr$ parameters which do interact
(this is discussed below in the section on Learnability and Linguistic Theory).

In Optimality Theory, even the problem of inferring rankings from entire descriptions is not
trivial, because constraint interaction is pervasive to all levels. Constraint interaction is the primary
explanatory mechanism; it is entirely unavoidable. Thus, constraint interaction must be faced and dealt
with by any attempt to address learning in Optimality Theory. This makes the problem of learning
constraint rankings from descriptions a relevant and important one. The following situation will be
assumed by the work in this chapter: the learner has access to positive data in the form of grammatical
structural descriptions, including the underlying form. The goal is to find a solution to the problem of
learning constraint rankings, given this information. The hope is that the solution to this problem will play
an important role in a solution to the more general problem of learning constraint rankings given the kinds
of information available to children.

One advantage afforded this part of the learning problem is that any results will be entirely
general to the framework of Optimality Theory. Nothing specific to syllable structure or syntactic binding
or any other specific phenomenon is assumed. This work is an investigation of what contributions to
language learning are made by the formal structure of the framework.

4.1.2 Learning the Lexicon

Prince and Smolensky (1993, §9) give a proposal for the acquisition of the lexicon. They
propose a principle of lexicon optimization. This involves having an observed phonetic form, and also
several hypothesized underlying forms, each of which is mapped to a description with the observed
phonetic form by the grammar. Notice that this is not the problem of choosing from among several
candidate outputs for one input, but of choosing from among several inputs, each of which supports the
same output. Lexicon optimization states that the underlying form with the most Harmonic description
should be selectefdr the lexicon. The relative Harmony of the several descriptions is determined with

respect to the constraint ranking of thargmar, just as when comparing candidate descriptions for a

74
given input. In this way, the same principles of optimization which underlie the functioning of the
grammar also explain the structure of the lexicon.
4.1.3 The Learning Problem: Learning Constraint Rankings

Two major concerns are perhaps most apparent. The first is that of trying to learn anything from
positive data in a framework that employs violable constraints. Given a grammatical description, you may
observe that it violates some of the universal constraints. But if grammatical descriptions are allowed to
violate constraints, how can anything be learned from those observations? The second concern is a
combinatorial one. The number of distinctalorankings is a factorial function of the number of
constraints. For example, a set of 10 constraints has 10! = 3,628,800 distinct rankings. If the amount of
data required to determine the correct ranking scales as the number of possible rankings, then a grammar
with many constraints could require a prohibitively large amount of data to be learned successfully.

The initial data for the learning problem are pairs consisting of an input and its well-formed
(optimal) description. For example, the learner of thd&@\uagd., might have as an initial datum the
input NCVC/ together with its well-formed descriptianV.CV.(C) (2.d). Becaus&EN and the
universal constraints are part of Universal Grammatr, it is assumed that the learner is able to generate
candidate structural descriptions of an input, and is also able to determine what constraint violations are
assessed any description.

Together with any single piece of explicit positive evidence comes a large mass of implicit
negative evidence. Every alternative description of this input is known to be ungrammatical; for example,
if the descriptionIV.CV.(C) (2.d) is observed, then the faithful description of the inp@\VC/,

* V.CVC. (2.a), is ungrammatid. Thus the learner knows that, with respect to the unknown constraint
hierarchy,
(60) V.CVC. < .OV.CV(C)

Furthermore, corresponding Harmonic comparisons must hold for every sub-optimal description.

75

Thus each single piece of positive initial data conveys a large amount of inferred comparative
data of the form:
(61) [sub-optimal descriptiosub-optof inputl] < [optimal descriptioropt of inputl]
Such pairs are what feed the learning algorithms presented below. Each pair carries the information that
the constraints violated by the sub-optimal descrigidiroptmust out-rank those violated by the optimal
descriptionopt, that, in some sense, it must be the casentlaakgsub-op} > markgopt), or more
informally, loser-marks> winner-marks The algorithm now presented is nothing but a means of
making this observation precise, and deducing its consequences.
4.2 The Recursive Constraint Demotion (RCD) Algorithm

Before giving a general descifot of the algorithm, its use is first illustrated by showing how
the algorithm learns the langudggfrom the single positive ergple which we have discussédCVC/
- .[V.CV.(C), as shown in Table 1. Itis then shown how the algorithm learns the different lahguage
from its (different) description of the same input.
4.2.1 An Example: Learning CV Syllable Structure

In the first language we considky, the correct description 6#CVC/ is.[1V.CV.(C). This fact
forms our starting point, oneifial datum. Table 1 gives the marks incurred by the well-formed
description (labeled) and by three ill-formed descriptions. From this table we form the tabbad¢
data pairs shown as Table 17.
Table 17

Mark-data PairsL())

sub-opt< opt markgsub-opj markgopt)
a~d V.CVC. < .[OV.CV.C) {*O NS *NOCODA} | {*P ARSE *FILL°"}
b~d (V).CV.(C) < .[OV.CV.C) {*P ARSE *PARSE} | {*P ARSE *FILL "}
c~d | (V).CV.CO. < .OV.CV.(C) {*P ARSE*FILL™Y} | {*P ARSE *FILL °"}

76
In order that each sub-optimal descriptioi-optbe less harmonic than the optimal description
opt, the marks incurred by the formararkgsub-op} must collectively be worse thamarkgopf). What
this means more precisely is tkab-optmust incur the worst uncancelled mark, comparegtoSo the
first step in the learning algorithm is to cancel the common marks in Table 17, as shown in Table 18:
Table 18

Mark-data Pairs after Cancellatidn

loser-marks= winner-marks=

sub-opt< opt marks(sub-op} marks(opt)
a~d V.CVC. < .[OV.CV.C) {*O NS *NOCoDA} | {*P ARSE *FILL "}
b~<d (V).CV.(C) < .[OV.CV.(C) {*PARSE *PARSE} | { *PARSE *FILL "}
c~d (V).cv.CO. < .[OV.CV.(C) {*PARSE *FILLNY} | { *PARSE *FILL °"}

The canceled marks have been struck out. Note that the cancellation operation which transforms
marksto marks is only well-defined omairs of sets of marks; e.g., ARsEis canceled in the paibs<
d andc < d, but not in the paia < d. Note also that cancellation of marks is done token-by-token: in the
row b < d, one but not the other mark ARsE in markgb) is canceled. As we will see, the algorithm is
sensitive not to absolute numbers of marks, but only to whetiheoptor optincurs more marks of a
given type (Optimality Theory recognizes a relative distinction between more- or less-violation of a
constraint, but not an absolute quantitative measure of degree of constraint violation.). The Mark-data
Pairs after cancellation are the data on which the rest of the algorithm operates.

The second part dhe algorithm proceeds recursively, finding first the constraints that may be
ranked highest while being consistent with the mark-data pairs, then eliminating those constraints from
the problem andtarting over again to rank the remaining, lower, constraints. Conceived as a sequence
of passes, the first pass through the data determines the highest-ranking constraints, the next pass the next-

highest ranking constraints, and so forth down the hierarchy. If the data provide enough information to

77
completely determine the total ranking, then only one constraint will be returned by each pass. In general,
however, the result of the algorithm will betaatified hierarchyof the form:

(62) Stratified Domination Hierarchy

{C,C,, ...Ci} > {C,C,,Cd>..>{C,C, ..Cy}
The constraint€,, C,, ...,C, comprise the first stratum in the hierarchy: they are not ranked with respect
to one another, but they each dominate all the remaining constraints. A stratified hierarchy may not totally
Harmonically order all candidate descriptions for a given input, since it fails to specify the relative ranking
of constraints which may conflict. This has the consequence, discussed below, that the output of the
algorithm may fail to decide between candidates for which relevant training data is unavailable. Note:
Henceforth, 'hierarchy' will mean 'stratified hierarchy'; when appropriate, hierarchies will be explicitly
qualified as 'totally ranked.'

The initial state ofhe learner can be taken to be the completely degenerate stratified hierarchy
in which all the constraints are lumped together in a single stratum. Learning proceeds to refine this
hierarchy into a sequence of smaller strata. Each pass of the algorithm begins with a set of not-yet-ranked
constraints, and ends by selecting some of them to constitute the nexttiaiten in the hierarchy. At
each step, mark-data pairs which are accounted for by the already-ranked constraints are eliminated so that
only not-yet-ranked constraints are left.

The key observation is this: for any given pair, if an uncancelled mark is incurred by the winner,
then it must be dominated by a mark incurred by the loser: otherwise, the winner wouldn't win (this is
the Cancellation/Domination Lemma of Prince and Smolensky (1993, 130, 148, 221)). Therefore, any
constraint assessing an uncancelled mark to the winner cannot be among the highest ranked constraints
in the set, and cannot be output as part of the next stratum. Conversely, any constraintrthbh skess
a mark to any winneranenter the next stratum, since no evidence exists that it is dominated by any of
the remaining constraints.

We illustrate how this process deduces the hierarchly, fisom the data in Table 18.

78

When the algorithm begins, the not-yet-ranked constraints comprise the entire universal set:

(63) not-yet-ranked-constraints {ONS, NOCODA, PARSE, FiLL""®, ALL°"}

Examining the rightmost column of the mark-data table (Table 18) we see that two marsg aRd

*FILL°™ appear in the list of uncancelled winner marks. So the two constrairgs #nd FLL ™ must

be dominated by other constraints (those violated by the corresponding losers); they cannot be the highest-
ranked of thenot-yet-ranked-constraintsThis leaves:

(64) highest-ranked-constraints {ONs, NoCoba, FLL"'}

which constitutes the output of the first pass: these three constraints form the highest stratum in the

hierarchy. The data do not support any distinctiomariking among the three, so none are made. Now

(65) not-yet-ranked-constraints {PARSE, FILL°"}

Now that the highest ranked constraints have been determined, the list of mark-data pairs can be trimmed
down by removing any mark-data pairs that are completely accounted for by the constraints selected as
highest. This is the case if at least one of the marks incurred by the loser of a pair is among the highest
ranked constraints. Such a mark is guaranteed to dominate all of the corresponding winner's marks,

because all of the winner's marks were disqualified from being ranked highest.

So we eliminate from the mark-data table every row in which any of the highest-ranked
constraints appear. In the current example, we eliminate the pad because *@s appears (or,
alternatively, lecause *NCODA appears), and also the pait d, because *EL""° appears. The new
mark-data table is thus:

Table 19

Mark-data PairsL(;, After First Pass)

sub-opt< opt " loser-marks | winner-marks

b~<d (V).CV.(C) < .[OV.CcV.(C) " {*PARSE *PARSE} |{*PARSE*F|LLO”9}

At the end of the first pass, we now have the first (highest) stratum (64), a reduced list of not-yet-

ranked constraints (65), and a reduced mark-data table (Table 19). Crucially, the reduced mark-data table

79
involves only thenot-yet-ranked-constraintso we can now recursively invoke the same algorithm, using
the remaining data to rank the remaining constraints. This initiates the next pass.

Repeating this process with the reduced mark-data table (Table 19), we examine the rightmost
column of the table, and observe that of the hwbyet-ranked-constraints5), only one, L™,
appears. The remaining constraint, then, is output as the next stratum of highest-ranked constraints:
(66) highest-ranked-constraints {PARSE}

This leaves

(67) not-yet-ranked-constraints {FILL °"%}

The final step of the second pass is to trim the mark-data table, eliminating rows in whigfhts-
ranked-constrainteippear. This eliminates the only row in the table, so that the new mark-data table is
empty.

Table 20

Mark-data PairsL(;, After Second Pass): none

The result of the first two passes is the highest segment of the stratified hierarchy:

(68) {ONs, NoCopA, ALL""} > {PARSE}

The third pass operates on an empty mark+d#aia. Since there are no marks in the rightmost
column of such a table, no remaining constraints must be dominated: all the not-yet-ranked constraints
are output as the highest-ranked. In this case, that is the one remaining constrdit F
(69) highest-ranked-constraints {FILL "%}

This leaves
(70) not-yet-ranked-constraints {}
so the algorithm terminates, with the final result:
(72) Learned Stratified Hierarchy far:
{ONSs, NoCopa, FLLN} >> {PARSE > {FILL"}
This result represents a class of totally-ranked constraint hierarchies which give rise to the target

languagd.,: the same optimal outputs arise regardless of the ranking of the three highest constraints. One

80
of these refinements of the learned stratified hierarchy (71) is the particular total gin&mn (7): this
is but one of the correct hierarchies for the target language.

Itis easy to see how the course of learhipdiffers from that of_,, assuming the learner's initial
datum is the description of the same inpUGVC/, which is now(V).CV.CLl. (candidate 2). The
mark-data table used by the algorithm, after cancellation, is now:

Table 21

Mark-data Pairs after Cancellatidn,)

sub-opt< opt loser-marks winner-marks
a~<c V.CVC. < (V).CV.CLl. {*O NS *NoCoDA} | {*P ARSE *FILL""}
b~<c (V).CV.(C) < (V).CV.CL.. {*PARSE *PARSE} | { *PARSE *FILL""}
d~c OV.CcV.(C) < (V).Cv.CL. {*PARSE*FILL®"} [{ *PARSE *FILL "}

This table is identical to its, counterpart (Table 18) except that the marks*¥° and *ALL°™ are

interchanged. The result of the algorithm is thereforsdinee as before, (71), with this exchange made.

(72) Learned Stratified Hierarchy fag:
{ONs, NoCoDA, FALL®™} > {PARSE} > {FILL""}
Again, this stratified hierarchy is correct: its further refinements intdytotahked hierarchies, including
the one we singled out in (7), all give rise_to
That these CV languages can each be learm@gletely from a single positive example attests
to the power of the implicit negative data which comes with each positivepds in Optimality Theory.
4.2.2 General Statement of the Recursive Constraint Demotion Algorithm
The RCD algorithm operates on pairs of constraint violation marks. It is here assumed that the
learner has already collected all of the observed (optimal) descriptions, selected one or more suboptimal

competitors for each optimal description, and deiteeohthe constraint violation marks assessed to each

81
description. How the learner might select appropriate suboptimal competitors for an optimal description
will be discussed at length below, in the section on the error-driven learning algorithm.

Given:
universal-constraints a set of universal constraints
mark-data= a table of pairs of mark listebéer-markswinner-mark$
To Find:
A stratified hierarchy with reget to which each of thHeser-markss less Harmonic than its
correspondingvinner-marks
RCD Algorithm:
Setnot-yet-ranked-constraints universal-constraints
I. Mark Cancellation
For each pairl¢ser-markswinner-mark$ in mark-data
a. For each occurrence of a matkih bothloser-marksandwinner-marksn the same
pair, remove that occurrence & from both.
b. If, as a result, nawinner-marksemain, remove the pair fromark-data
Il. Recursive Ranking
a. Outputhighest-ranked-constraints all the constraints inot-yet-ranked-constraintshich
do not have a mark in the colummner-marksof mark-data these form the highest-
ranked stratum of theot-yet-ranked constraints
b. Remove théighest-ranked-constrainfsom thenot-yet-ranked-constraints
c. Remove all rows frommark-datawhich contain any marks assessed byhigeest-ranked-
constraints
d. Call Recursive Ranking again, with the remainimgrk-dataand the remainingot-yet-
ranked-constraints
Note that in step ¢ of Recursive Ranking, the relevant marks (those assessetigiebieranked-

constrainty can only appear in the coluntwser-marks for any constraint contributing a mark to the

82

column winner-marksis not, by step a, among the relevant constraints (tho$égiest-ranked-
constraint3.
4.2.3 Informal Analysis of the Algorithm

Observe first that multiple unceelled tokens of the same type of mark inrtfaek-datatable,
either for winner or loser, have thanse effect as a single token. For in Recursive Ranking step a, we
simply determine which constraints assess no marks at all winher-markscolumn: whether a single
or multiple tokens of a mark appear makes no difference. Then in Recursive Ranking step b, a row is
removed frommark-dataif it contains any marks at all assessed byhiighest-ranked-constraints
multiple tokens of a mark type have the same effect as a single token. Thus, for efficiesidgrations
below, we can assume that in Mark Cancellation step a, if a row ofaHedatatable contains multiple
tokens of the same type of mark after cancellation, duplicates are eliminated, leaving at most one token
of each type. In other words, in the initial mark-data table prior to cancellation, whatratilys is, for
each constraint, which alub-optor optincurs more violations of the constra@itif it is sub-opt then
a token of the mark® appears in the columaser-marksif it is opt, then the token of® appears instead
in the columnwinner-marks What matters in the assessment of optimality is only which of two
candidates more seriously violates each constraint, not any absolute magnitude of violation.

The correctness of the algorithm should be clear. higiest-ranked-constraintsutput at each
pass of the algorithm are exactly the constraints which need not be dominated in order to explain the
availabledatg the remainingnot-yet-ranked-constraintdy contrast, must be dominated and so cannot
be highest-ranked. We now show that the algorithm must terminate.

On each pass of the algorithm/edst one constraint must be output. For suppose not. That
would mean that every one of thet-yet-ranked-constraintsppears in the columminner-marksi.e.,
as an uncancelled mark of an optimal description. But that would mean that every oneobfytite
ranked-constraintsnust be dominated by one of the othet-yet-ranked-constraintsvhich means there
is no ranking of these constraints which is consistent witimém-data in contradiction to the basic

assumption that themark-dataderive from some ranking of the given constraints. Notice that RCD

83
indicates when theada are inconsistent, by failing to output any constraints at the end of a pass while
some constraints have not yet been ranked.

So on each pass, at least one constraint is eliminatedHeomot-yet-ranked-constraintsThus
the number of passes required cannot be more than the number of universal constraintdNga|l this
The number of steps required for each pass cannot exceeadrthemof uncancelled marks in theark-
datatable: each mark in the columinner-markss examined in Recursive Ranking step a to ensure that
its corresponding constraint will not be output &ighest-ranked-constrainand, in the worst case, each
mark in the columipser-marksmust be examined in Recursive Ranking step ¢ to determine which rows
must be eliminated fromdata The number of uncancelled marks per row of the table can't exceed the
number of constrainty,,.., S0 the total number of steps per pass can't edeei ,,; whereN, ;. is
the number ofmark-datapairs used. Therefore, the number of steps required for all the passes can't

exceed N,)°N In the worst case, the RCD algorithm is quadratic in the number of constraints, and

pairs
linear in the number of mark-data pairs.
4.3 General Constraint Demotion

In this section, we pull out the core part of the RCD algorithm, which we call the Core CD
Algorithm, and show how it can be used in a number of ways to yield a family of CD Algorithms which
differ primarily in how much data they process at one time.
4.3.1 The Core CD Algorithm
Given:

H = a stratified hierarchy of constraints

mark-data= a table of pairs of mark listlbéer-markswinner-mark$
To Find:

A stratified hierarchy with reget to which each of thHeser-markss less harmonic than its

correspondingvinner-marks

84

Core CD Algorithm
I. Mark Cancellation
For each pairl¢ser-markswinner-mark$ in mark-data
a. For each occurrence of a matkih bothloser-marksandwinner-marksn the same
pair, remove that occurrence & from both.
b. If, as a result, newinner-marksemain, remove the pair fromark-data
II. Constraint Demotion
Repeat the following until no demotions occur:
For each pairl¢ser-markswinner-mark$ in mark-data
a. find the mark €, in loser-markswhich is highest-ranked fh(
b. for each €., in winner-marks
if C,,eer dOES NOt dominate,;,, .. in H

C to the stratum immediately bela®y .,

winner

(creating such a stratum if it does not already exist)

OutputH

4.3.2 Versions of the CD Algorithm

Now we present several ways of using the Core CD Algorithm to learn a language. All start, like
RCD, with the stratified hierarchy in which all the universal constraints are in the top stratum: we call this
H,. The constraints in this stratified hierarchy are then demoted as demanded by the data.
(73) Batch CD

a. Compile all available description paissibopt, opt

b. Setmark-datato {(marks(subopt), marks(opf)

c. SetH = H,

d. Execute Core CD amark-dataandH (once).
Batch CD is closely related to RCD (see discussion below): all the data are processed simultaneously by

Core CD.

85
(74) On-line CD
a. SetH = H,
Execute repeatedly:
b. Select one pais@bopt opf).
c. Setmark-data= {(markgsubop}, markgopt))}.
d. Execute Core CD amark-dataand currenf.
On-line CD operates by applying Core CD separately to eatioft opt) pair.
(75) 1/0 CD
a. SetH = H,
Execute repeatedly:
b. Select several pairsubopt opf) for one optimal descriptioopt
c. Setmark-data= {(markgsubop}, markgopf)}
d. Execute Core CD amark-dataand currenf-.
I/O CD is one way of using Core CD in between the extremes of Batch CD (all data processed at once)
and On-Line CD (one mark-data pair processed at a time). One desajpitfoom the language is
processed at a time, but a number of competi#iobeptto opt may be processed at once.
4.3.3 Example
We exemplify On-Line CD using the langudgeabove. Recall that On-Line CD operates on
one (oser-markswinner-mark$ pair at a time.
Step a of On-Line CD has us set the initial stratified hierarchy to
(76) H=H, = {PARSE, ALL"", ALL°", ONs, NOCODA}
Step b has us pick @ubopt opt) pair; suppose we pick ~ d of (2). Step ¢ has us generate the
corresponding pair of mark lists, as shown in the second row of Table 17. Step d has us execute Core CD.

Step | of Core CD is Mark Cancellation; the result is:

86
Table 22

Mark-pair for On-Line CD, Step 1()

sub-opt< opt " loser-marks | winner-marks

b~d (V).CV.(C) < .[OV.CV.(C) " {+PARSE *PARSE} |{*PARSE*F|LLO”9}

Step Il of Core CD is Constraint Demotion. We first find the highest-ranked (uncancelled)Gpark *
in H; this is *MRSE. We next check to see whether thiener-marksare dominated by *#RSe The
only winner mark is €., = *FILL°", which isnotso dominated. So Core CD requires the demotion
of Cynner = ALL®™ to the stratum immediately beloy,.., = PARSE. Since no such stratum currently
exists, we create it. The hierarchy is now
(77) H ={PARSE, FLL"", ONS, NOoCoDA} > {FILL°"}

This completes the execution of Core CD, saetarn to step b of the On-Line CD procedure:
picking anothergubopt opt) pair. Suppose this & ~ d of (2):
Table 23

Mark-pair for On-Line CD, Step 2.{)

sub-opt< opt " loser-marks | winner-marks

a<d i V.CVC. < .0OV.CV.(C) | {*ONs*NoCopA} | {*P ARSE *FILL"}

We proceed to the Constraint Demotion step of CD, which calls first for finding theshiginked of the
loser-marks since Qus and NDCoODA are both top ranked, either will do: choose, says.OWe next
check whether each efinner-marksis dominated by @s. FALL°™is so dominated, so no demotion
results. RRSE is not, however, so it is demoted to the stratum immediately below thatspfti@
hierarchy is now:

(77) H={FILL"", ONs, NOCODA} > {PARSE, ALL°"}

Suppose now that the nesttb-opt~ opt pair is:

87
Table 24

Mark-pair for On-Line CD, Step 3.()

sub-opt< opt " loser-marks | winner-marks

c<«d i (W.CV.CO. < [OV.CV.C) " {*PARSE *FILL""%} |{*P#RSE*F|LL°"3

Since the uncancelled loser markjLtF"° already dominates the uncancelled winner mark, 4, no
demotion results, ant is unchanged. This is an example oliamformativepair, given its location in
the sequence of training pairs, since ho demotions result.

Suppose the nesub-opt~ optpair results from a new inpu¥/C/:
Table 25

Mark-pair for On-Line CD, Step 4()

sub-opt< opt " loser-marks | winner-marks

(VG < .0v{C) " {*PARSE *PARSE} |{%*FILLOnﬂ

Since the loser mark #RsE does not dominate the winner markitF"™, we must demotelft °*to the
stratum immediately belowARSE, resulting in the hierarchy:
(79) H={FiLL"", ONS, NOCODA} > {PARSE} > {FILL°"}
This stratified hierarchy actually gives rise exactl{{oso no further data will be informative. It is the
same hierarchy as that learned by RCD, (71).
4.3.4 Restrictions on Rankings

Some analyses within Optimality Theory have proposed further restrictions on the rankings of
the universal constraints, as a part of Universal Grammar. An example is the Universal Syllable Theory
in Prince and Smolensky (1993, §8). The question of how twpocate restrictions into CD algorithms,
and what kinds of restrictions can be accommodated, is open.

The Universal Syllable Theory in Prince and Smolensky (1993, §8) uses a particular type of

ranking restriction: a universal markedness scale. A subset of the universal constraints have their relative

88

rankings fixed by universal grammar. The absolute location of these constraints is not fixed, and the
ranking of other constraints not in the markedness scale is entirely free. Thus, as long as the relations of
the markedness are preserved in the final learned hierarchy, the restriction is met. One possibility for
learning such grammars is to use, as the starting hierarchy, one with all constraints in the top stratum
except for those in a markedness scale. The constraints in the markedness scale start with their relative
rankings set, with the top constraint in the top stratum, the second constraint of the scale in the second
stratum, and so forth. Because the relative rankings of the scale must be respected in any target hierarchy,
the position of each constraint in this initial hierarchy is at or above its position in all possible target
hierarchies . What remains is to ensure that constraint demotion does not result in a hierarchy with the
constraints out of order relative to the markedness scale. This coultbbeptished by observing when
a constraint being demoted belongs to a markedness scale, and ensuring that after demotion it still
dominates all constraints below it in the scale (demoting the other constraints if necessary). Correctness
would then follow, by the analysis presented in section 4.4.
4.3.5 Input Errors

The CD algorithms assume that the ingatia contain no errors. It remains to be explored what
kinds of errors the CD algorithms might be resistant to, and what reasonable modifications might increase
the ability to overcome input errors. RCD is capablgetécting when inconsistencies exist in the input;
it is less clear how On-Line CD will behave when given inconsistent input. The issuedbrlthe case
is h-domination (see section 4.4): if a constraint is accidentally demoted below the stratum it occupies in
the target hierarchy, then the resulting hierarchy does not h-dtentive target hierarchy, and the formal

proof no longer applies.

! Formally, the craial concept is that dfi-domination defined in section 4.4; this proposed
initial hierarchy h-dominates all possible target hierarchies.

89

4.4 Formal Analysis of Constraint Demotion

4.4.1 Stratified Hierarchies

(80) Def. A stratumis a set of constraints. dratified hierarchyis a linearly ordered set of strata which
partition the universal constraints. A hierarchy distinguishes one stratum as the top stratum. Each
stratum other than the top stratum is immediately dominated by exactly one other stratum. The
top stratum immediately dominatite second stratum, which immediately dominates the third
stratum, and so forth.

(81) Def. A total rankingis a stratified hierarchy where each stratum contains precisely one constraint.

(82) Def. A constraintC, is said to dominate constrai@i, denotedC, > C,, in hierarchyH if the
stratum containin@, dominates the stratum containi@gin hierarchyH.

(83) Def. Theoffsetof a constrain€ in a hierarchyH is the number of strata that dominate the stratum
containingC. Cisin a lower stratumn 3, than in3, if the offset ofC in H, is greater than in
H,. Cisinthe same stratunm H, andH, if it has the same offset in both.

(84) Def. A constraint hierarchy(, h-dominatesH,, if every constraint is in the same or a lower stratum
in H, than in3.

(85) Def. A constraint hierarchy, is called aefinemenbf H, if every domination relatio@ > C’ of
H, is preserved ifH,.

(86) Def. H, denotes the stratified hierarchy with all of the constraints in the top stratum.

(87) Lemma H, h-dominates all hierarchies.
Proof
H, h-dominates itself, because h-domination is reflexive (h-domination is satisfied by constraints
that are in the same stratum in both hierarchies). Corsidez constraint in some hierarchy
H. Cis either in the top stratum of, and thus in the same stratum asip or it is in some
lower stratum ofH, and thus in a lower stratum thandify. ThereforeH, h-dominates all

hierarchies.

90

4.4.2 The Target Stratified Hierarchy

(88) Def. Theh-dominant target stratified hierarchgr simply the ‘target,” for a languagiegenerated
by a total ranking, is denoted,, and is defined as follows. The top stratum of the target
contains precisely those constraints which never assess uncancelled marks to any optimal
description inL. The second stratum consists of precisely those constraints which assess
uncancelled marks only to optimal descriptions relative to competitors which are assessed at least
one uncancelled mark by a constraint in the top stratum. Each stratum consists of precisely those
constraints which (a) cannot occur higher in the target, and (b) only assess uncancelled marks
to optimal descriptionsefative to competitors assessed an uncancelled mark by at least one
constraint ranked higher in the target.

(89) Lemma For anyL generated by a total ranking, exists and is unique.

Proof

Existence follows from the definition, and the assumptionltiimgenerated by at least one total
ranking of the constraints. The top stratundffis guaranteed to contain at least the constraint
ranked highest in the total ranking. Among the constraints not placed in the top stratym of

one dominates all the remaining others in the total ranking, and is thus guaranteed to meet the
requirements for placement in the second strafima.same logic, applied to subsequent strata,
shows that all of the constraints will be placed in a stratuhf in

Uniqueness is guaranteed because a constraint cannot meet the requirements for placement in
more than one stratum in the hierarchy, because meeting the requirements for one stratum
automatically disqualifies it for any lower strata.

(90) Lemma Each constraint with offset n>0 irH, for a language generated by a total ranking has the
following property. There must exist an optimal descriptiptwith a competing suboptimal
descriptionsuboptsuch thatC assesses an uncancelled marlopy suboptis assessed an
uncancelled mark by a constrafijt, with offset precisely n-1, arglboptis not assessed any

uncancelled marks by any constraints with offset less than n-1.

91
Proof
Consider some constraifif with offset n>0 in target(. Suppose, to the contyathat no such
pair (subopt opf) exists forC,. Recall that ifC, assesses an uncancelled mark to an optimal
description relative to some suboptimal competitor, it must be dominated by some other
constraint which assesses an uncancelled mark to the suboptimal competitor, for otherwise the
optimal description would not be more Harmonic, and the correct language would not be
generated.
One possibility is thaf,, never assesses an uncancelled mark to any optimal description. But
then it would have offset O ii(, contradicting the assumption that it has offset greater than 0.
The other possibility is that for ampt assessed an uncancelled marlChyelative to some
subopt suboptis assessed an uncancelled mark by a constraint with offset siveatier-1. But
thenC, could be placed one stratum highefHp, with resulting offset n-1, and the resulting
hierarchy would generate the same language, contradicting the fact that by definition every
constraint is ranked as high as possibl&{jn
Therefore, the supposition must be false, and an appropriate pair must exist.

(91) Theorem For any language generated by a total rankirigf, has the property that each constraint

is ranked as high as possible; thatH$,h-dominates every hierarcliy’ which generatek.
Proof
Consider a (stratified) hierarcliy’ which generatek.
Consider a constrair@® with offset 0 inH’. C must not assess an uncancelled mark to any
optimal description in the language; otherwigé would not generate the language. Therefore,
C must have offset O i, . It follows thatC has offset inH; <=C's offset inH’, as both are
0.
Assume thatach constraint with offset <= n fH’ is in the same or higher stratum3t].
Consider a constraidt,,, with offset n+1 intH’. For any pair of an optimal descriptiopt with

a suboptimal competit@ubopt if C,,, assesses an uncancelled markgb suboptmust be

92

assessed an uncancelled mark by a constairith offset <= n inH’ (that is,C > C,,, in H');
otherwiseH’ would not generate the language. By hypothesis, any constraint with offset <=
ninH’ has offset <= n ifH,. ThereforeC,,, has offset <= n+1 ifi{,.
By mathenatical induction, every constraintdd’ is in the same or higher stratumiify. It
follows directly that every constraint is in the same or lower stratufi('inhan inH,.
Therefore, target h-dominateg{".
(92) Corollary H; h-dominates every total constraint ranking which genetates
4.4.3 The Constraint Demotion Algorithm
(93) Def. The mark cancellation procedure, MarkCanc@&gér-markswinner-marks}), is:
For each pairl¢ser-marks, winner-marks
For each occurrence of*in bothloser-marksandwinner-marks
Remove that occurrence offrom both lists
If winner-markss empty, delete the pair

Return (Joser-markswinner-marky)

93
(94) Def. The constraint demotion procedure, Cl$er-markswinner-mark3}, H), is:
SetH' toH
Set mark-data to MarkCanceli@éer-markswinner-mark3})
Repeat
For each pairl¢ser-markswinner-mark3 in mark-data
Find the constraint, with a mark inoser-marksanked highest i’
For eachC,, with a mark inwinner-marks
If C, does not dominat€,, in H’
DemoteC,, to the stratum immediately belaly
Until no demotions occur during a pass
Return (H')
(95) Lemma The hierarchy output by CD is h-dominated by the input hierarchy.
Proof
Because constraint demotion only demotes constraints, each constraint is in either the same or
lower stratum in the output hierarchy than it was in the input hierarchy.
(96) Lemma If the input hierarchy h-dominaté$, so does the output hierarchy.
Proof
This holds because CDilvnever demote a constraint lower than necessary C| & some
constraint demoted by CD. Then there is a mark-data ueiopt opf) requiring thatC,, be
dominated by one of the constraints assessing uncancelled madopi LetC, be the one
with the smallest offset (highest rankedHnthe input hierarchy, and let n denote its offset. By
assumptionH h-dominatesH,, soC, in H, has offset >= n. Thus, every constraint assessing
an uncancelled mark suboptmust have offset >=n. Therefo&, must have offset at least n+1
in H;. CD demoteg,, to the stratum immediately below the one contaifiingoC,, has offset
n+1 in the resulting hierarchy. Th, has offset in the output hierarchy less than or equal to

its offset in3{, guaranteeing that the output hierarchy h-domirfes

94

(97) Def. An informative pairfor a hierarchyH’ is a mark-data pair that, when given as input to CD
along with®H’, causes at least one demotion to occur. The property of being informative is
jointly determined by the mark-data pair and the hierarchy being evaluated.

(98) Def. Theh-distancebetween a hierarchif; and a hierarch§, h-dominated byH; is the sum,
over all constraint€, of the difference between the offsettin H, and inH..

(99) Lemma Suppose the input hierarchy h-domindtgs Theh-distancebetween the output hierarchy
andH is decreased by at least one (from the h-distance between the input hieratehy fand
each demotion.

Proof

By lemma (95), the input hierarchy h-dominates the output hierarchyC ket constraint that

is demoted, with offset n in the input hierarcbffset m in the output hierarchy, and offset tin

H,. Cis demoted, so m>n. By lemma (96), the output hierarchy h-domiRaie® t>m>n.

Therefore, (t-m)<(t-n), so the contribution®to h-distaice is smaller for the output hierarchy.

Thus, the output hierarchy h-distance is at least one less for each constraint demoted.
(100) Lemma The h-distance from(, to H; cannot exceed

Yo(Neons LN consy

Proof

By lemma (87),H, h-dominates every hierarchy, and therefore must h-domiHateThe

greatest h-distance will be whef) is a totally ranked hierarchy. The furthest constraint from

the top stratum will be the one in the bottom stratum, which has dffsef-0). The next lowest

constraint has offseN(,,,2), and so forth. Thus, the h-distance will be:

(Neonsr D+ (N onsz2)+...+1+0 which is precisely M(, 1IN constr

(101) Theorem Starting withH, and repeatedly presenting the CD algorithm with sets of mark-data
pairs, the procedure converges on the target hierar6hgfter at most A s 1IN conse

informative pairs.

95

Proof

By lemma (99), each informative pair reduces the h-distance by at least one. Therééogethe

hierarchy is converged upon after a number of informative pairs that is at most the h-distance

betweenH, and the target. Lemma (100) guarantees that this distance is at most

Y2(Neonsir 1N const
4.4.4 The Relation of RCD to Batch CD
The first iteration of Batch CD runs once through all the data, demoting a certain number of constraints.
The constraints which remain in the top stratum at the end of this first iteration can never be demoted in
subsequent iterations through the data; and other constraimsvearbe promoted into this stratum. So
after the first iteration, the top stratum has its final form. All mark-data aisining these constraints
can be removed and ignored in subseqiterdtions; if not, they will not cause further demotions. This
same property then holdscursively for subsequent iterations. In generalnthigeration of Batch CD
definitively determines the" stratum from the top. This is the same as theesponding stratum output
by RCD on the" call to RCD (a recursive call for> 1).
4.5 Error-Driven Constraint Demotion

Several versions of the Constraint Demotion algorithm have been presented. All of these
versions require that one or more suboptimal competitotpibleed’ to form mark-data pairs with the
observed optimalescription. Given thaEN provides an infinite number of suboptimal competitors,
it is not immediately clear how to algorithmically select suboptimal descriptions. This is particularly
significant in light of the fact that some suboptimal competitors will be much more informative than
others; if uninformative competitors are consistently selected, no learning will take place. Can informative
competitors be efficiently selected?
4.5.1 Using Parsing to Generate Suboptimal Competitors

It is here that the work on the parsing problem in Optimality Theory becomes relevant to
learning. In the learning problem, it is assumed that the learner has access to the input form. If the

learner has a current hypothesized ranking of the constraigisn@ral, a stratified hierarchy), then they

96
can compute the optimal parse of that input with respect to the current hypothesized ranking. It is this
capacity that is exploited to determine suboptimal competitors.

The algorithm, Error-Driven Constraint Demotion, makes use of Constraint Demotion, and works
as follows. The learner has in hand a hypothesized ranking; at the beginning, the initial higgarchy
The learner receives as input a single complete parse along with its underlying form. The learner then
computes the optimal parse of the underlying form according to its cumé&iriga If this parse matches
the observed one, then nothing may be learned (no suboptimal candidate could be informative), so the
learner does nothing further with that input. If, on the other hand, the computed optimal parse differs from
the observed parse, then the CD algorithm is applied, using the observed parse as the winner and the
computed parse as the loser. Because thentuanking held the computed parse as optimal, that parse
is guaranteed to be informative. At least one constrainbtitemmust take place in order to modify the
ranking so that the observed parse is more Harmonic than the computed parse. Thus, the application of
CD will result in a new hypothesized ranking.

For this scheme to be feasible, the learner must be capable of evaluating the relative Harmony
of candidate structural descriptions with respect to hierarchies which are not total rankings. The Harmonic
ordering of forms defined by Prince and Smolensky (1993@&Ssumes total rankings. However, there
is a quite straightforward extension of Harmonic ordering of forms to stratified hierarchies. This
extension treats constraints in the same stratum as having equivalent Harmonic value. When comparing
two descriptions, a mark assessed by one constraint may cancel with a mark assessed by a different
constraint in the same stratum. Harmonic ordering of forms is here defined stratum by stratum, starting
at the top of the hierarchy. Two descriptions are ordered relative to a single stratum by listing for each
description the marks assessed by all the constraints in the stratum. The description with fewer marks is
the more Harmonic relative to that stratum. If they have the same number of marks, the two descriptions

are not Harmonically distinguished relative to that stratum.

97
Consider the following simple illustration:
Table 26

Evaluation with equivalent constraint§;, > C,, C;>C,

C, C, C, C,
F Al *
.................................. F2 * *,
(14 F, *
.................................. F4 **,

In this illustration, descriptions,F and F violate different constraints which are in thetsatam of the
hierarchy. Therefore, the markancel, and it is left to the lower-ranked constraint to decide in favor of
F,. Notice that candate F; is still eliminated by the middle stratum because it incurs more than the
minimal number of marks to constraints in the middle stratum.

In this way, Harmonic ordering of forms is well-defined over all stratified hierarchies. Because
the extensions are entirely internal to the comparison of different lists of marks, the parsing algorithms
may be applied to this extension without difficulty. A consequence of this extension is that descriptions
with non-identical lists of marks can now have equal Harmony, including the possibility of having ties
for optimality.

Given this extension, for each observed piece of positive data, parsing may bedeterdrime
if an informative competitor exists, and if so, to provide such a candiflate results in aerror-driven
learning algorithm (Wexler & Culicover 1980). Each observed descript@mmipared with a computed
description of the underlying form. If the two descriptions match, no error occurs, and so no learning
takes place. If the two descriptions differ, this is treated as an error on the part of the current hypothesized
ranking, and so constraint demotion is used to adjushypethesized ranking consistent with the

observed description.

98

It is important to note that applying CD to a singlark-data pair does not in general guarantee
that the observed description (the winner) is now the optimal description of its underlying form. All that
is guaranteed is that the observed description is more Harmonic than the particular competitor used. It
may well be that the resulting constraint ranking determines a third description to be the optimal one for
the underlying form.

This algorithm demonstrates that using the familiar strategy of error-driven learning does not
require hard constraints or independently evaluatable parameters. Because Optimality Theory is defined
in terms of optimization, errors are defined with respect to the relative Harmony of several entire
descriptions, rather than in terms of applying particular criteria to a single description. Constraint
demotion accomplishes learning precisely on the basis of the comparison of entire descriptions.

4.5.2 A Family of Error-Driven Learning Algorithms

As with Constraint Demotion, Error-Driven Constraint Demotion is actually a family of related
algorithms, all based upon the same basic principle. There are two facts which result in possible variations
in this approach. The first is that for a single input, there may be several candidates which tie for
optimality. Such ties are more likely to occur early in learning, when many constraints do not have
established relative rankings. The second fact is that, when the CD algoafbpiiaesl to a single mark-
data pair, the reding ranking does not necessarily have the winner as optimal. Applying the CD
algorithm to a single pair guarantees that the loser will be less harmonic than the winner, butrdées not
out the possibility that some other candidate is optimal by the resulting ranking.

As a result, two decisions need to be made about error-driven learning. First, if parsing reveals
that several descriptions tie for optimality, the learner may either use each of them to create separate mark-
data pairs to learn on, or the learner can simpbpse one of them, learning on only the single resulting
pair. Creating several mark-data pairs provides more potential information, at the cost of additional
processing. If several mark-data pairs are chosen, it would be reasorzggéy tihe 1/O version of CD;
parsing is used to select the suboptimal candidates for creating the mark-data pairs. If only one competing

candidate is selected for learning, On-Line CD will be employed by default.

99

The second ekision involves what, if any, steps to take after constraint demotion. Because
applying constraint demotion on a single mark-data pair (or the set of pairs corresponding to the set of
descriptions which tied for optimality) does not ensure that the observed description (the winner) is
optimal, the learner could re-parse the inpetording to the new constraint ranking. If the resulting
optimal description(s) is differefitom the winner, the new optimal description may be used to create a
new mark-data pair, to which constraint demotion would béieghpAgain, this allows the learner to
extract more information out of a single obsergedcription, at the cost of greater processing dedicated
to a single observed description. The decision here is whether or not to repeatedly iterate the parse/CD
cycle.
4.5.3 The Time-Course of Learning

Some facts about the time-course of learning will be illustrated with an example, again of the
learning ofL,. This example employs the inpMG/, and applies error-driven learning by selecting a
single candidate fromset of tied optimal descriptions. After constraint demotion is applied to a single
mark-data pair, the input is re-parsed according to the new ranking, and this learning cycle is repeated
until the observed description becomes the optimal one for the input.

The algorithm starts with the rankifd, that is, all constraints tied at the top of the hierarchy,
as in (76). The observed optimal description[i¥.(C); this is the winner. Applying the parsing

algorithm to the input reveals that eight candidates tie for optimality:

100

(102) (VXC) {*P ARSE *PARSE}
V.(C) {*O NS *PARSE}
Ov.(c) {*F ILL°"™ *PARSE}
V.CO. {*O NS *FILLNY
OV.CL. {*F ILL O *FiL Mg
.VC. {*O Ns *NoCoDA}
.Ovce. {*F 1LL°"™*N oCoDA}
(V).CL. {*P ARSE *FILL""}

Although in this case the observed description is one of the eighietfat optimality, it will not
generally be the case that the observed descriptibbevoptimal at the start. At the beginning, all
constraint violations have equal importance (because no distinctions in ranking have yet been made).
Optimality here reduces to having the fewest total number of marks. The eight candidates listed above
are precisely those candidates which incur two violation marks (there are no candidates for thithinput
fewer than two marks).

The suboptimal description chosen for learning on the first application of @. This
gives us the following mark-data pair:
Table 27

Mark-data pair for error-driven learning step 1.

loser-marks winner-marks

V.AC) < .V.(C) || {*ONs*PaRSE} | {*F ILLO™*PARSE}
Applying On-Line CD to this mark-data pair results in the demotionLoff, so the resulting hierarchy
is

(103) H = {PARSE, ALL"", ONS, NOCODA} > {FILL°"}

101
Step 2 repeats the procedure on the same input with the same observed description, using the new

hierarchy. Applying the parsing algorithm reveals that with the current hierarchy, three candidates tie for

optimality:

(104) .OV.(C) {*F ILL°"™ *PARSE}
OV.CL. {*F ILL O *FiL Mg
.Ovce. {*F 1LL°"™*N oCoDA}

As it turns out, the observed description is one of the three which tie for optimality. Thus, one of the other
two will be ®lected as the losing candidate. Here, the chosen losing candida¥.@1. The
corresponding mark-data pair is:

Table 28

Mark-data pair for error-driven learning step 2.

" loser-marks | winner-marks

V.CLI. < .OV.(C) || (FiLMe =R %™ | (*P ARSE *Fit o™}

Applying On-Line CD to this mark-data pair results in the demotiomesPdown to the second stratum
(crucially, below F.L""):
(105) H = {FILL""°, ONS, NOCODA} > {PARSE, FALL°"}

Step 3 repeats the procedure on this new hierarchy. Applying the parsing algorithm reveals that
there are now two candidates which tie for optimality:
(106) .OV.(C) {*F ILL°"™ *PARSE}

(VXC) {*P ARSE *PARSE}
Applying On-Line CD to this final pair results in the correct stratified hierarchy for the language, the one
which gives rise td.;:
(107) H = {FiLL™", ONS, NOCODA} > {PARSE} > {FILL°"}
That this is the correct hierarchy is recognized by Error-Driven Constraint Demotion when the input is

once more parsed and only one candidate, the observed one, is optimal.

102

Notice that, even though the On-Line version of CD was employed, its repeated use by the error-
driven learning scheme allows the entire hierarchy to be learned from one piece of positive data, just as
Recursive Constraint Demotion was able to do.

It is instructive to examine carefully the set of candidates which tie for optimality at each step.
At first glance, the algorithm appears to have a straightforward monotonic character: each step eliminates
some candidates, until only one remains. But, this is not true. In particular, notice that the candidate
(V)(C) is one of the optimal candidates in step 1 and step 3, but not in step 2. This candidate was not
simply eliminated permanently from contention by some particular operation; it moves into and out of
optimal status as tHaerarchy changes. Thus, even this simple two segment example hints at the kinds
of complex dynamics this algorithm is capable of.

It is certainly not being claimed here that no predictions can be made about the time course of
learning if this algorithm is used. It is possible that a particular set of constraints, along with a particular
definition of GEN, would result in restrictive patterns of language development. The point is that such
patterns would not be the result of constraint demotion by itself; such patterns would depend on
interactions between the algorithm and the specific grammars being acquired.

4.5.4 The Data Complexity of Error-Driven Constraint Demotion

Because Error-Driven Constraint Demotion repeatedly invokes On-Line CD, the data complexity
results for On-Line CD applglirectly. Each error is precisely an informative example. Thus, the worst
case number of errors required to learn the hierarchy for a grammar is

Y2(Nconsi N const
In a grammar with 10 constraints, there are 3,628,800 distinctantahgs of the constraints, but Error-
Driven Constraint Demotion will require at most 45 errors to learn the correct hierarchy.

4.6 Principles of Universal Grammar and Principles of Learning
4.6.1 Ties
Error-Driven Constraint Demotion assumes that all competitors to an observed output are

suboptimal. This mightdl to be the case in two different ways. First, a single input may give rise to

103
multiple optimal outputs which all earn the same set of marks (i.e., the constraints fail to distinguish
them). In this case, while it is not actually correct that all competitors of a given observed output are sub-
optimal, no errors in the learning result. Recall thatfirst step in the CD algorithm is the cancellation
of common marks. Thus if the ‘sub-optimal’ descriptidected is in fact a second optimal description,
then all marks cancel and this pair is discarded.

Two descriptions which do not incur identical marks can only tie for optimality if theriymty
constraint hierarchy is not consistent with any totally ranked hierarchy, since it must be the case that
marks for different constraints are canceling. However, Constraint Demotion will not correctly learn such
hierarchies: observing one of the optimal descriptions and assuming that all others are sub-optimal
prevents the tie from being learned. This is easily illustrated with two constraints, and two candidates,
each of which violates one of the constraints. If the target hierarchy ranks the two constraints in the same
stratum, the two descriptions will tie for optimality (assuming every alternative candiciziteeseat least
two marks). Both descriptions will therefore be observed as positive evidence. But when riptiodesc
is observed, CD will automatically assume the other to be suboptimal, and will demote the constraint
violated by the observed description below the other. But, when the other description is observed, CD
will reverse the rankings of the constraints. This will continue endlessly, and learning will fail to
converge. Noticéhat this instability will be observed even if the algorithm starts with a hierarchy with
the constraints in the same stratum. Not only will the algorithm not converge on the tied hierarchy, but
when given the hierarchy it will in time reject it.

It is currentlyunknown whether it is possible to extend CD to learn languages in which some
inputs have multiple optimal outputs which do not earntidal sets of marks. One might, for example,
suppose that the targehfzuage derives from an underlying stratified hierarchy inconsistent with any
totally ranked hierarchy. One might also assume that the learner's initial data consists in a set of inputs,
and for each inpugll its optimal outputs, should there be more than one. The Core CD Algorithm would
need to be extended to handle paipt ~ opt, of tying optima. In this extension, each mark in

marks(opt,) must be placed in the same stratum as a corresponding nrmagakkigi(opt,): a somewhat

104
delicate business. This perhaps is more apparent once the possibility of multiple strata, each containing
more than one constraint, is considered, requiring the learner to sort out which constraints cancel with
which. Indeed, achieving ties for optimality between descriptions which incur different marks is a delicate
matter.

However, the inability of CD to learn such hierarchies is actually a desirable property.
Typological prediction in Optimality Theory presumes that all attested languages correspond to total
rankings of the constraints. It is commonly assumed within Optimality Theory that universal grammar
rules out grammars inconsistent with at least one total ranking. The relation of Constraint Demotion to
typological prediction is further discussed below, in the section on Principlexplach&ory Adequacy.

The inability of EDCD to learn hierarchies inconsistent with any total ranking would be easily
proven if the only consequence of such hidra was the possibility of descriptions with non-identical
marks tying for optimality. However, that is not tase. Another possible consequence was illustrated
above in Table 26. In that case, marks assessed to two diffeszmiptions by two different constraints
in the same stratum cancel, but a constraint in a lower stratum then selects one of the candidates. The
cancellation of marks from different constraints plays a role, but only one etaiidoptimal. It is
unknown whether EDCD could possibly learn a hierarchy which is (a) inconsistent with any total ranking;
(b) does not have multiple descriptions with non-identical marks tying for optimalignyanput.

4.6.2 Optionality

The structure of Optimality Theory endows considerable power to the implicit negative evidence
which the CD algorithm exploits. This has interesting consequences for the Subset Principle for language
acquisition (Angluin 1978, Berwick 1986, Pinki€86, Wexler & Manzini 1987). The Subset Principle
states that if one possible language is a subset of anothetsle¢ Ismmguage must be hypothesized first,
to avoid unrecoverable overgeneralization. The emiged algorithm does not make strong predictions
about any superset relations between earlier and later hypothesizedHies; that is, it does not predict
that the languages generated by later hierarchies are contained in languages generated by earlier

hierarchies. It should be readily apparent, however, that it also does not predict subset relations.

105

In linguistic analyses, subset relations have often been connected with optionality. An example
is the analysis of some languages as optionally permitting null subjects (Rizzi 1982). This kind of analysis
presumes that sentences which permit null subjects contain pairs of otherwise identical sentences which
differ only in that the subject is lexically realized in one and not the other, and further that there is no other
information distinguishing the structural description of the two sentences. Languages which do not permit
null subjects only contain the member of each pair with the subject realized (hence the subset relation).

Samek-Lodovici and Grimshaw, in recent work (Samek-Lodovici 1995, Grimshaw & Samek-
Lodovici in prep.), argue that null subjects are not optional, but are in fact related to the focus and the
topic-referring status of the subject. Languages which permit null subjects only permit them when the
subject is topic-referring, while languages which do not permit null subjects require a lexically realized
subject when the subject is topic-referring. Theyigi® an analysis within Optimality Theory in which
the focus and topic-referring status of the subject is included in the input, and therefore by containment
in the structural description. As a result, there is no subset relation between the two types of languages.
The same input which is described as having a null subject in one language will receive a description with
an overt subject in the other type of language. Neither description is present in both languages; neither
language is a subset of the other.

This difference on optionality symptomatic of a more general difference between Optimality
Theory and the principles and parameters framework. The latter posits a universal set of possible
structures, and specific grammars accept or reject possible structuresyttieg language being the set
of accepted structures. Optimality Theory posits a universal set of pasgiliteand specific grammars
determine what the optimal description is of each input. Grammars in Optimality Theory do not reject
inputs, they only assign descriptions. Thus, at the level of complete structural descriptions, no two
languages can be in a strict subieddtion: each language has the same inputs, and assigns a description
to each input. Optimality Theory denies the possibility of optionality, at least with respect to complete

structural descriptions.

106

The possible structures in a language are those that occur in the optimal description of at least
one input. Arguing that a grammar does not permit some particular structotelsne by showing that
the grammar rejects descriptions containing that structure, but instead by showing that the structure cannot
occur in any optimal description. An example is Basic Syllable Theory: in some languages, onsets are
required, while in others they are optional. If the grammar is defined with a parameter that determines
acceptance oejection of syllables without onsets, a subset relation results. In Basic Syllable Theory,
every input is assigned a description, and grammars wéighre onsets assign descriptions which only
contain syllables with onsets.
4.6.3 Principles and Explanatory Adequacy

The learning algorithm operates in the space of stratified hierarchies of constraints. However,
the typological predictions made in Optimality Theory are based on the presumption that well formed
grammars must correspond to total rankings of the constraints. The discussion of ties above demonstrates
that many possible constraint hierarchies which are not consistent with any total ranking are not learnable.
Furthermore, the proof of correctness for Constraint Demotion only applies if all of the data are consistent
with some total ranking. Because ties in a constraint hierarchy can have effects other than multiple
descriptions with non-identical constraint violatidyimg for optimality, it is not known for certain if all
hierarchies inconsistent with any total ranking are unlearnable by Constraint Demotion. What is known
is that for such a hierarchy to possiblylearnable, it must be the case that there is not a single input
which has multiple descriptions with non-identical constraint violations which tie for optimality.

This property is a consequence of a principle implicit in the learning algorithm. This principle
states that the learner should assume that the observed descrigpiimas for the corresponding input,
and that it is th@nly optimal description. This principle resembles other proposed learning principles,
such as Clark’s Principle of Contrast (E. Clark 1987) and Wexlerigueness Principle (Wexler 1981).
Optimality Theory permits a particulanigorous formal statement of this kind of principle with respect

to the acquisition of core grammar.

107

This suggests the following account of cross-linguistic variation. Optimality Theory provides
the following two principles of universal grammar:
(108) Grammaticality is defined in terms of optimization over a large space of candidates, with respect

to violable universal constraints.
(209) When universal constraints conflict, that conflict is resolved via strict domination.
The learning algorithm contributes the following principle of learning:
(110) Presume that any observed description is the only optimal description of its underlying form.
It then is in large part a consequence of these principles that the only well-formed adult grammars will be
those that are consistent with at least one total ranking of the universal constraints.

Even though the set of target languages is generated from the set of totally ranked hierarchies of
the universal constraints, the hypothesis space employed by the CD lelywiitigra is the larger space
of stratified hierarchies. It is worth emplzsg that the learning algorithm is not merely tolerant of a
hypothesis space of stratified hierarchies; the larger hypothesis space is important to the functioning of
the algorithm. That learning can be much less difficult when the hypothesis space is lather thaet
space is a theme of work in Contgtional Learning Theory (Pitt & Valiant 1988, Kearns & Vazirani
1994).

This draws into focus an important but occasionally overlooked fact: the set of learnable
grammars is a property of a learning system, not of a hgpistBpace. Limiting the hypothesis space to
the space of observed grammars does makevtia matter to prove that unobserved grammars are not
learnable by the system, but it is not the only way to achieve such a result. The fact that hypotheses in
a hypothesis space can be unlearnable has been the subject of much work iritieésobbiét relations,
local maxima). However, most work in the principles and parameters framework assumes a hypothesis
space equivalent to the set of observed grammarshandhttempts to construct learning systems which
guarantee that all the hypotheses are learnable. By contrast, the account of cross-linguistic variation given
above assumes a larger hypothesis space, and then attempts to guarantee that all and only those hypotheses

which correspond to observed grammars are learnable.

108
4.7 Learnability and Linguistic Theory

In the principles and parameters framework, cross-linguistic variation is accounted for by a set
of parameters, where a specific grammar is determined by fixing each parameter to one of its possible
values. Every possible combination of parameter settings is a possible grammar. Work on learnability in
this framework focuses on thelationship between data and the parameter values. This relationship is
usually discussed in terms of "triggers". A trigger is a datum (for example, a sentence for syntax) which
indicates the approjate value for a specific parameter (see, for example, the definitions of trigger in
Gibson & Wexler 1994). It is significant that a trigger provides information about the value of a single
parameter, rather thaalationships between the values of several parameters . This property is further
reinforced by a proposed constraint on learning, the Single Value Constraint (R. Clark 1990, Gibson &
Wexler 1994): sacessive hypotheses considered by a learner may differ by the value of at most one
parameter. The result is thktarnability concerns in this framework favor parameters which are
independent: they interact with each other as little as possible, so that the effects of each gattingeter
can be distinguished from the extts of the other parameters. In fact, this property of independence has
been proposed as a principle for grammars (Wexler & Manzini 1987). Unfortunately, this results in a
conflict between the goals of learnability, which favor independent parameters withegstffects, and
the goals of linguistic theory, whidavor parameters with wide-ranging effects and greater explanatory
power (see (Safir 1987) for a discussion of this conflict).

Optimality Theory may provide the opportunity for this conflict to be avoided. In Optimality
Theory, interaction leveen constraints is not only possible but mandatory. Cross-linguistic variation is
explained not by variation in the structure of individual constraints, but by variation in the relative ranking
of the same constraints. Cross-linguistic variation is only possible to the extent that constraints interact.

The Constraint Demotion learning algorithm not only tolerates constraint interaction, but is based upon

'Under the normal definitions of a trigger, a single datum can be a trigger for more than one
parameter, but is such independently. In such a case, the datum would not be interpreted as expressing
any relationship between the values of the two parameters.

109
it. Informative data provide information not about one constraint in isolation, but about the results of
interaction between constraints. Constraints which have wide-ranging effects benefit learnatiitye If
properties are successfully preserved in a more general account of language learning within Optimality
Theory, explanation and learnability will watbgether; they will both favor interacting constraints with
wide-ranging effects and explanatory power.

This possibility comes in virtue of the fact that Optimality Theory defines grammaticality in
terms of optimization over violable constraints. This central principle makes constraint interaction the
main explanatory mechanism. It provides the implicit negative data used by Constraint Demotion precisely
because it defines gmmaticality in terms of the comparison of candidate descriptions, rather than in
terms of the structure of each candidate description in isolation. Constraint Demotion proceeds by
comparing the constraint violations assessed candidate descriptions. This makes constraint interaction the
basis for learning.

By making constraint interaction the basis for both linguistic explanation and learning, Optimality
Theory creates the opportunity for the full alignment of these two goals. The discovery of sets of
constraints which interact strongly in ways that participate in diverse linguistic phenomena represents
progress for both explation and learning. Clearly, this is a desirable property for a theoretical
framework.

4.8 Other Work on Learnability in Optimality Theory

An alterrative approach to learning constraint rankings has been explored recently by
Pulleyblank and Turkel (1995a, 1995b). Their work applies a general approach to global optimization,
genetic algorithms, to the problem.

In recent work orsyntax and sentence pronunciation, Pesetsky (1993) has used a modification
of the standard Optimality Theory framework. In his modification, adult grammars can have tied
constraints. Further, ties between constraints are not interpreted in the way that Error-Driven Constraint
Demotion does. Instead, when a set of constraints are tied, all possible total rankings of that set are

considered, and the most harmonic description for eakingpaf the set is treated as equal with respect

110
to that set of constraints. Broihier (1995) has investigated some attempts to extend Constraint Demotion

to learn grammars with ties of this sort.

Chapter 5. Conclusions

This dissertation has investigated two major computational issues within the framework of
Optimality Theory. The results indicate how the computational challenges presented by the framework
can be addressed. This chapter summarizes the results presented in this dissertation, and suggests what
issues need to be investigated next.

5.1 Parsing
5.1.1 What Has Been Accomplished

The parsing algorithms presented in this dissertation efficiently compute the optimal structural
description of an input, for grammars which select the optimal description from an infinite set of candidate
descriptions. These algorithms are piayacorrect for grammars in which the input is a strictly ordered
sequence of elements, and the universal constraints are appropriately local. Chapter 2 presented an
algorithm for grammars in whiclBEN employs structures properly described by a formal regular
grammar; the parser hadime complexity linear in the length of the input. Chapter 3 presented an
algorithm for grammars in whicBEN employs structures properly described by a formal context-free
grammar; the parser has a time complexity cubic in the length of the input.

Perhaps the most important lesson of this vioripeople working in Optimality Theory is that
the prospect of an infinite candidate set generatgdiiy need not be feared. A grammar is a function,
not an algorithm. An algorithm need not mimic every aspect of the normal description of a grammar in
order to compute the function defined by that grammar.

Further, given a grammar satisfying the stated conditions, the algorithms do not succeed by
imposing limitations on the set of descriptions considered which are extrinsic to the grammar. The
algorithms have the entire infinite set of candidate descriptions available to them. The algorithms rely on
the same universal constraints which guarantee the existence of optimal descriptions in ldeefiisop
example, if the [EL constraints were removed from the Basic CV Syllable Theory, so that descriptions
of arbitrary size tied for optimality, then the parsing algorithms would never halt; they would keep
building and considering larger and larger partial descriptions without limit. The properties which

guarantee convergence of the algorithms are properties internal to the grammar.

112

A related point is the modular role of the language-specific constraint ranking in the operation
of the parser. The constraint ranking is consulted whenever several partial descriptions are compared. This
is the only way in which the ranking is used in the course of parsing. The rest of the operation of the
algorithm is independent of the particular ranking being used. Therefore, the structure of the parsing
algorithm does not need to be changed in response to cross-linguistic variation. Variation is restricted to
the constraint ranking, as it is in the linguistic theory itself.

5.1.2 The Next Steps

The most important formasues needing further investigation are the restrictions on the input
ordering and the locality of the constraints. Both of these restrictions are sufficient conditions for the
computability of Optimality Theoretic grammars; necessary conditions are not known. Nevertheless, these
restrictions play a significant role in the algorithms described in this dissertation. Just how crucial each
restriction is to the general dynamic programming approach needs to be better understood.

A more general issue is the relationship between the competence input/output mappings and the
performance processes of production and comprehension. The competence grammars of Optimality
Theory are typially described as taking underlying forms as inputs, and thus are more naturally related
to production processes. But it is premature to assume any kind of strict identity between competence
input/output mappings and production. Further, the computability of mappings from surface forms to
structural descriptions (the much more commonly investigated direction in natural language processing)
deserves much further investigation. In fact, in syntax the dynamic programming algorithms presented
here may extend more naturally when surface forms are used as input, because the input is then strictly
ordered.

5.2 Learnability
5.2.1 What Has Been Accomplished

The learnability work presented in this dissertation has solved a significant subproblem of the

general problem of tguage learning. That is the subproblem of inferring the grammar (here, the

constraint ranking) from hypothesized descriptions in Optimality Theory, a framework employing violable

113
constraints which interact strongly. The Constraint Demotion algorithms efficiently determine the ranking
given structural descriptions corresponding to positive data.

The Constraint Demotion gdrithms work solely on the basis of the formal structure of the
framework. They apply to any grammar in Optimality Theory. They demonstrate that the challenge of
learning grammars which employ violable constraints can be solved in Optimality Theory by using the
implicit negative evidence inherent in the framework. The algorithms have a worst case data complexity
quadratic in the number of constraintgating the factorial growth of the number of possible total
rankings.

5.2.2 The Next Steps

The obvious next step is to work on the other parts of the learning problem, and try to connect
them with Constraint Demotion. Other subproblems include hypothesizing structural descriptions from
information realistically available tte learner, and hypothesizing underlying forms from paradigmatic
sets of descriptions. This will likely require moving down from the level of the formal structure of the
framework, and working with specific Optimality Theoretic proposals for linguistic phenomena.

5.2.3 Theoretical Implications

Optimality Theory may provide the opportunity to avoid the conflict between learnability and
linguistic explanation faced by much work in the Principles and Parameters framework. The search for
triggers which indicate appropriate values for specific parameters favors parameters that interact with each
other as little as possible, so that the effects of each parameter setting can be distinguished from the effects
of the other parameters. In Optimality Theory, interaction between constraints is not only possible but
mandatory: cross-linguistic variation is only possible to the extent that constraints interact. With
Constraint Demotion, informative data provide information not about one constraint in isolation, but about
the results of interaction between constraints: constraint interaction is the basis for learning. If these
properties are successfully preserved in a complete account of language learning within Optimality
Theory, explanation and learnability will watbgether; they will both favor interacting constraints with

wide-ranging effects and explanatory power.

114
5.3 Other Future Work
Optimality Theory shres several underlying principles with connectionist theory, in particular
the use of violable constraints and the defining of grammaticality in terms of optimization. Many
interesting questions remain open about the possible relatisimtween the algorithms presented here
for Optimality Theory, and connectionist algorithms. The possibilities for embedding Optimality Theoretic

grammars within connectionist architectures are worthy of much future investigation.

Bibliography

Angluin, Dana. 1978. Inductive inference of formal languages from positive data. Information and
Control45:117-135.

Berwick, Robert. 1986. The acquisition of syntactic knowle@ganbridge, MA: MIT Press.

Broihier, Kevin. 1995. Optimality theoretic rankings with tied constraints: Slavic relatives, resumptive
pronouns and learnability. Ms., MIT.

Charniak, Eugene. 1993. Statistical language lear@agbridge, MA: MIT Press.

Chomsky, Noam. 1959. On certain formal properties of grammars. Information and Zob®ni167.

Chomsky, Noam. 1965. Aspects of the theory of syr@ambridge, MA: MIT Press.

Chomsky, Noam. 1981. Lectures on government and binddogdrecht: Foris Publications.

Clark, Eve. 187. The principle of contrast: A constraint on language acquisition. In Mechanisms of
language acquisitigred. B. MacWhinney. Hillsdale, NJ: Erlbaum.

Clark, Robin. 1990._Papers on learnability and natural selecfiechnical Reports in Formal and
Computational Linguistics, No. 1, Universite de Geneve.

Clark, Robin. 1992. The selection of syntactic knowledge. Language Acquisiigi49.

Clark, Robin and laiRoberts. 1993. A computational model of language learnability and language
change._Linguistic Inquirg24(2):299-345.

Clements, G. N and S.J. Keyser. 1983. CV phonolGgynbridge, MA: MIT Press.

Corman, Thomas, Charles Leiserson, and RonialelsR 1990._Introduction to algorithmSambridge,
MA: MIT Press.

Dresher, B. Elan, and Jonathan D. Kaye. 1990. A computational learning modelifcalrpabnology.
Cognition34: 137-195.

Ellison, T. Mak. 1994. Phonological derivation in Optimality Theory. Proceedings of the Fifteenth
International Conference on Computational Linguisti€¥07-1013.

Frank, Robert, and Shyam Kapur. 1994. On the us&@gers in parameter setting. Ms., University of
Delaware and University of Pennsylvania.

Gibson, Edward and Kenneth Wexler. 1994. Triggers. Linguistic Ing6i@).

Gleitman, Lila R. 1990. The structural sources of verb meaning. Language Acquis8i&®.

Gold, E.M. 1967. Language identification in the limit. Information and Coh€@@): 447-474.

Grimshaw, Jane. 1993. Minimal projection, heads, and inversion. Ms., Rutgers University.

Grimshaw, Jane. 1994. Lexical reconciliation. Lin§Aa411-430.

116
Grimshaw, Jane, and Vieri Samek-Lodovici. (in prep). Optimal subjects. Ms., Rutgers University.

Hillman, Abraham, Gerald Alexanderson, and Richard Grassl. 1987. Discrete and combinatorial
mathematics San Francisco, CA: Dellen.

Jakobson, Roman. 1962. Selected writings 1: Phonological stilitie$iague: Mouton.

Kay, Martin. 1980. Algorithmic schemata and data structures in syntactic processing. CSL-80-12,
October 1980.

Kearns, Michael J., and Umesh V. Vazirani. 1994. An introduction to computational learning theory
Cambridge, MA: MIT Press.

Lari, K., and S. J. Young. 1990. The estimation of stochastic context-free grammars using the inside-
outside algorithm. Computer Speech and Langda@s-36.

Legendre, Géraldine, William Raymond, arauPSmolensky. 1993. Analytic typology of case marking
and grammatical voice. Proceedings of the Berkeley Linguistics Society 19

Legendre, Géraldine, Colin Wilson, Paul Smolensky, Kristin Homer, and William Raymond. 1995.
Optimality in wh-chains. In_University of Massachusetts occasional papers in linguistics 18:
Papers in Optimality Theoreds. J. Beckman, S. Urbanczyk, & L. Walsh. Amherst, MA: GLSA,
University of Massachusetts. In press.

Lewis, Harry R., and Christos H. Papadimitriou. 1981. Elements of the theory of computation
Englewood Cliffs, New Jersey: Prentice-Hall, Inc.

McCarthy, John and Alan Prince. 1993a. Prosodic halggy |: Constraint interaction and satisfaction
Ms., University of Massachusetts, Amherst, and Rutgers University, New Brunswick, NJ. To
appear in the Linguistic Inquiry Monograph Series, Cambridge, MA: MIT Press.

McCarthy, John and Alan Prince. 1993b. Generalized alignment. Yearbook of Morphology9-9%3.

Pesetsky, David. 1993. Ms., MIT.

Pinker, Steven. 1986. Prodivity and conservatism in language acquisition. In Language learning and
concept acquisitigred. W. Demopoulos and A. Marras. Norwood, NJ: Ablex.

Pinker, Steven. 1987. The bootstrapping problem in language acquisition. In Mechanisms of language
acquisition ed. B. MacWhinney. Hillsdale, NJ: Erlbaum.

Pitt, L. and L. Valiant. 1988. Computationahltations on learning from examples. Journal of the ACM
35:965-984.

Prince, Alan and Paul Smolensky. 1991. Notes on connectionism and Harmony Theory in linguistics.
Techical Report CU-CS-533-91. Department of Computer Science, University of Colorado,
Boulder.

Prince, Alan and Paul Smolensky. 1993. Optimality Theory: Constraint interaction in generative grammar
Technical Report CU-CS-696-93¢epartment of Computer Science, University of Colorado at
Boulder, and Technical Report TR-2, Rutgers Center for Cognitive Sciencersutgversity,

117

New Brunswick, NJ. March. To appear in the Linguistic Inquiry Monograph Seriegricige,
MA: MIT Press.

Pulleyblank, Douglas, and William J. Turkel. 1995a. Traps in constraint ranking Segmer. presented
at Maryland Mayfest 95: Formal Approaches to Learnability.

Pulleyblank, Douglas, and William J. Turkel. 1995b. The logical problem of language acquisition in
Optimality Theory. Paper presented at Is the Best Good Enough: Workshop on Optimality in
Syntax, MIT.

Rabiner, L.R. 1989. A tutorial on hidden Markov models and selected applicatgpeeich recognition.
Proc. IEEE77(2):257-286.

Rizzi, L. 1982, Issues in italian syntdXordrecht: Foris Publications.

Safir, Ken. 1987. Comments on Wexler and Manzini. In Parameter seftingT. Roeper and E.
Williams, 77-89. Dordrecht: Reidel.

Samek-Lodovici, Vieri. 1995. Topic and focus effects on clause structure: An Optimality Theoretic
analysis. Ph.D. Dissertation in preparation, Rutgers University.

Sankoff, David and Joseph Kruskal. 1983. Time warps, string edits, and macromoleculeeomhend
practice of sequence comparisdReading, MA: Addison-Wesley.

Tesar, Bruce. 1994. Parsing in Optimality Theory: Aatyic programming approach. Technical Report
CU-CS-714-94, April 1994. Department of Computer Science, University of Colorado, Boulder.

Tesar, Bruce. 1995. Computing optimal forms in Optimality Theory: Basic syllabification. Technical
Report CU-CS-763-95, February 1995. Department of Computer Science, University of
Colorado, Boulder.

Tesar, Bruce, and Paul Smolensky. 1995. The learnability of Optimality Theory. Proceedings of the
Thirteenth West Coast Conference on Formal Linguisti2g-137.

Tesar, Bruce, and Paul Smolensky. (to appear). The learnability of Optimality Theory: An algorithm and
some basic complexity results. Linguistic Inquifyevision of Technical Report CU-CS-678-93,
October 1993. Department of Computer Science, University of Colorado, Boulder)

Valiant, L. 1984. A theory of the learnable. Communications of the 2AZ{1):1134-1142.

Wexler, Kenneth. 1981. Some issues in the theory of learnability. In The logical problem of language
acquisition eds. C. Baker and J. McCarthy, 30-52. Cambridge, MA: MIT Press.

Wexler, Kenneth and P. Culicover. 1980. Formal principles of language acquiSiioridge, MA:
MIT Press.

Wexler, Kenneth and M. Rita Manzini. 1987. Parameters and learnability in binding theory. In Parameter
setting eds. T. Roeper and E. Williams, 41-76. Dordrecht: Reidel.

