The Dependency Synthesisier Manual
Michael Daum

Natural Language Systems
Department of Informatics
University of Hamburg

micha@nats.informatik.uni-hamburg.de

October 20, 2004

Contents

1

2

SYNOPSIS
DESCRIPTION
OPTIONS

CONFIGURATION
4.1 Writing plugins oL oo

IMPLEMENTATION

5.1 Global Variables 0.
5.1.1 Variables set by command line parameters
5.1.2 Plugintables 0.
5.1.3 Variables used in the conversion processes
5.1.4 Storage for the negra sections

5.2 Data Structures Lo
5.2.1 A linear phrase structure representation
5.2.2 A recursive phrase structure representation
5.2.3 Dependency structureso

5.3 Functions L
53.1 debug()
5.3.2 readNegraTreebank()
5.3.3 readPennTreebank()
5.3.4 processSentence()
5.3.5 readOrigins()
5.3.6 readEditors()
5.3.7 readWordTags()
5.3.8 readMorphTags()
5.3.9 readNodeTags()
5.3.10 readEdgeTags()

5.3.11
5.3.12
5.3.13
5.3.14
5.3.15
5.3.16
5.3.17
5.3.18
5.3.19
5.3.20
5.3.21
5.3.22
5.3.23
5.3.24
5.3.25
5.3.26
5.3.27
5.3.28
5.3.29
5.3.30
5.3.31
5.3.32
5.3.33
5.3.34
5.3.35
5.3.36
5.3.37
5.3.38
5.3.39
5.3.40
5.3.41
5.3.42
5.3.43
5.3.44
5.3.45
5.3.46
5.3.47
5.3.48
5.3.49
5.3.50
5.3.51
5.3.52
5.3.93
5.3.54

readSecEdgeTags() 11

readNegraSentence() 11
escapeldentifier() 11
writeWordgraph() 11
mapCase() 11
mapGender() 11
mapNumber () 11
mapPerson() 11
mapTense() 11
mapDegree() 11
mapMood() 11
mapDefinite() 11
mapFlexion() 11
isIncluded() 11
getFeatures() L oo 11
writeLexiconEntry() 11
writeLevelDecl(), 11
isLeaf () 11
formatPhraseTree() 12
printPhraseTree() 12
computeExtents() Lo 12
insertInnerNode() 12
spliceWords 12
splitWord() 12
moveNode() 12
deleteNode() 12
moveEdge() oL 12
makePhraseTree() 12
convertDepTree() 13
convertPhraseTree() 13
markLexHeads() 13
getMinId() 13
getAllNodes() 13
writePhraseTree() 13
makeAllDeps() 13
makeDeps() 13
makeDependency() 13
getDominator() 13
findHeadChild() 13
writeAnnotation() 13
formatNodes() L. 13
makeSnapShot() Lo 13
depSnapShot() 13
main() 13

1 SYNOPSIS

Depsy

[-annos filename |
[-annoprefix string |
[-debug |
[-debug-label-table]
[-extralevels string |
[-index number |
[-input-format|if string]
[-levels filename]
[-lexicon filename]
[-man |

[Fmax|n int]
[-output-format|of string]
[-plugin filename]
[-prefix string |

[-range ”range-spec” |
[-syntax|help|?]
[-wordgraphs filename |

[tnputFilel inputFile2 ...]

2 DESCRIPTION

This tool is part of the CDG parsing suite. It translates annotations given in
the negra file format to cdg annotations, and thereby translate phrase structure
representations into dependency representations of the annotations. Addition-
ally it can generate a rudimentary lexicon and a level description in order to
load the generated data into the WCDG system.

For debugging purpose the phrase structures extracted from the negra format
are converted to a format resembling the Penn Treebank format which is much
easier to read. Note, that this output is not thought to be correctly with regards
to the Penn Treebank format definition but only to resemble to it. At least there
is additional information written, i.e. the node number linking back to the lines
in the negra format sentence (0-499 for leaves, 500- for inner nodes). The head
phrases analysed are marked as well using * at the lexical level and !! for the
inner nodes (see the function markLexHeads §5.3.41).

There are a couple of configurations which are possible in order to customize
the desired translation. Actually reducing the negra phrase structures to depen-
dency structures is not only a process of information reduction but also enriching
the annotation with information needed with respect to the target corpus. And
last not least, not all phrase structures are annotated with lexical heads.

3 OPTIONS

Depsy reads from STDIN or from the specified files (inputFilel inputFile2 ...)
and stores the results in one or more files in the format specified by --output-
format (default ’cdg’). To configure that tool you have to write a plugin that
you specify with the -plugin option. Results of are written to the files that
you specify with -annos, -lexicon, -levels and -wordgraphs. There are two
flavours of output format: ’plain’ and ’cdg’. The latter format is valid CDG
input to be used with the CDG parser developed by the same team. In general,
output-files that aren’t specified have no defined default value and thus no cor-
responding information is extracted. In what follows you get a detailed list of
all those parameters.

-annos filename

generate dependency trees and save them in filename.

-annoprefix string
(default "auto-s’)

This option lets you specify the prefix string to be added to the annota-
tion’s name.

-debug

switch on the debugging mode. The currently processed sentence and
other stuff is displayed on STDERR.

-debug-label-table

Display statistics about the label table. For each rule a sample of the
sentences in which the rule was used is given, plus the total number of
applications.

-extralevels string

This option can be set to a comma-separated string. It will cause the
output of Depsy to contain other levels than the SYN level. All subordi-
nations on these levels will be unlabelled NIL bindings, unless you change
them via dependency conversion rules.

-index number

specifies the sentence index which we start to number wordgraphs and
annotations. Note, that the Negra Treebank numbers sentences by itself
which has higher priority than the index that we might want to have giving
this index option. This is actually only usefull if there is no explicite
sentence numbering scheme and we have to deal with that ourselfts as it
is in the Penn Treebank.

-input-format string
TODO (default 'negra’)

-levels filename

generate a syntax level declaration including all needed labels. A level
declaration is going to be generated only if a filename is specified.

-lexicon filename

extract a rudimentary lexicon from the morphological annotations. This
basically serves the purpose to let you load the generated annotations
into your xcdg to display the annotations as graphical trees. If you don’t
specify an filename you will not get a lexicon.

-manmn

print out the complete manual of Depsy.

-max|n int
specify the maximum number of sentences that are converted. If no max-
imum is specified via this parameter we extract as many as possible.
-output-format string
TODO (default ’cdg’)

-plugin filename
TODO

-prefix string
TODO (default ’s”)
specify the prefix string to be used when naming annotations and word-
graphs.
-range ” range-spec”
specify a list of intervals of annotation ids to be processed. You might
specify an interval 1-625, which includes all annotations between 1 and
625 or any arbitrary numbers, you might say -400 specifying the first 400
annotations, or 10000- to process the annotations 10000 til the end. You
can combine comma separated a list of intervals, e.g. 1-10,50-70,1000-
-syntax|help|?

a short syntax summary message.

-wordgraphs filename

generate wordgraphs as linear cdg sentences in filename. If you don’t use
this option you will not get the cdg sentences.

4 CONFIGURATION

4.1 Writing plugins
A plugin basically must provide ... tabels that configure the behavior of Depsy.
These are:

%headTable

The purpos of this hashtable is to establish rules to detect lexical heads of
a phrase structure, an information which is not annotated in most cases.
This information is applied by the function markLexHeads §5.3.41.

%phraseConvTable

This hashtable maps node tags to a list of perl functions the purpose
of which is to always call these functions in the given order whenever we
come past the node tag. This happens in the function convertPhraseTree
§5.3.40 after the recursive phrase structure has been build and before the
dependency structure is extracted from that.

@labelTable

This is a priority list of in order to configure the label generation of the
dependencies. The @labelTable is used by the function makeDependency
§5.3.47.

%depConvTable

This hashtable maps dependency labels to a list of perl functions the
purpose of which is to always call these functions in the given order
whenever we come past the named label. This happens in the function
convertDepTree §5.3.39 after the dependency tree has been constructed.

%callbacks

This is the hash of known callbacks. Below is the list of all known call-
backs. Each callback points to a function which returns 0 or 1 depending
on success or failure. Every known callback is sensitive for this return
value.

readSentence (nodes)
called at the end of §5.3.12 after one sentence (between BOS and
EOS) has been parsed. nodes is a pointer to the hash to all nodes
that have been generated for that sentence. If this callback returns
0, processing of that sentence is aborted, and the next one is read in.

preProcess(edges)
Called before processSentence operates. The parameter is a pointer
to the root of the phrase tree.

postProcess(edges)
called at the end of §5.3.4. edges is a pointer to the list of all de-
pendency edges that have been constructed. The return code of the
callback becomes the return code of §5.3.4, that is treebank conver-
sion is aborted on 0 and continued on 1;

initialize()
called before starting to read the treebank.

finalize()
called at the end of the §5.3.54 routine.

writeLexiconEntry
called before writing a lexical entry in §5.3.26. This callback gets
a tree node as a parameter. See §5.3.25 on how to generate some
default lexicial features for the lexicon entry.
If this callback returns 0, then no lexical entry is printed. Maybe you
wanted to suppress some of these, maybe you generate lexical entries
by yourself in the LEX stream. Otherwise 1 should be returned.

5 IMPLEMENTATION
5.1 Global Variables

5.1.1 Variables set by command line parameters

All of the following variables are initialized by command-line parameters as far
as they are given in a specific call, leaving some variables undefined.

$debug (default 0)
This variable holds the debugging mode with values 0 or 1 switched on/off
by command-line parameter -debug as described in section §3. In debug
mode all debug messages are generated to STDERR.

$maxSentence
This variable is an integer value greater zero set by command-line param-
eter -max (or -n). No more than $maxSentence are generated by $Depsy.

@sentenceldRange
range-specification as described above for the command-line parameter
-range

$wordgraphsFile
This variable holds the filename where the constructed wordgraphs should
be written in. See ~wordgraphsFile in section §3

$lexiconFile
This variable holds the filename of the lexicon to be constructed. See
-lexicon in section §3

$annoFile
This variable holds the filename of the resulting annotations in cdg format.
See —annos in section §3

$levelDclFile
This variable holds the filename of the level declaration which might op-
tionally be build. See -levels in section §3 undef

$pluginFile
This is the filename of the plugin to be loaded.

$inputFormat
This Variable holds the format of the input to be read. Valid values are
”"penn” and ”"negra”.

$outputFormat
This Variable holds the format of the output to be written. Valid values
are "cdg” and ”"plain”.

fwgPrefix
This is the prefix string added to the names of the generated wordgraphs.

Y%iannoPrefix

This is the prefix string added to the names of the generated annotations.
wordgraphs.

5.1.2 Plugin tables
%headTable

See section Writing plugins.

@labelTable
See section Writing plugins.

%phraseConvTable
See section Writing plugins.

%depConvTable
See section Writing plugins.

%callbacks
See section Writing plugins.

5.1.3 Variables used in the conversion processes

$rootNode

pointer to the current rootNode of the phrase tree.

J%nrSentences
number of sentences processed so far. Its value is increased by processSen-
tence only.

%sentencelndex
current index of the sentence that is being processed. You can set the
initial value using option -index.

$extralevels

undocumentend feature

Q@extralevels

undocumentend feature

5.1.4 Storage for the negra sections

The following variables contain the eight negra tables ORIGIN, EDITOR, WORDTAG,
MORPHTAG, NODETAG, EDGETAG and SECEDGETAG as they are read from the input.

Q@origins

This list contains the ORIGIN negra table and contains the name and the
comment field of an origin-id. See the function readOrigins §5.3.5.

Y%editors

This hashtable maps editor ids to their login and their name. Actually
this information isn’t used anywhere. But as long as the negra sources
contain this info we eat them. See the function readEditors §5.3.6.

fwordTags

This hashtable maps a tag to its description. The rest of the available
information, i.e. the id and the flag, aren’t analyzed, besides the fact that
the actually used word tags in the sentences aren’t checked for existence
in this table. See the function readWordTags §5.3.7.

fmorphTags
This hashtable maps the morph tag ids to their realization. the %morphTags
are used for generating the features of a word in an annotation in getFeatures
§5.3.25. See the function readMorphTags §5.3.8.

%nodeTags
This hashtable maps the node tag to its human readable description, e.g.
"NP" => "noun phrase". It is of no actual use here also. See the function
readNodeTags §5.3.9.

%edgeTags
This hashtable maps the edge tag to its human readable description,
e.g. "NK" => "noun kernel modifier". Same usefulness as the above
%nodeTags (none). See the function readEdgeTags §5.3.10.

%secEdgeTags
TODO

%lexicon

TODO

%labels
TODO

$nolabelWarning

this flags the 'no label’ warning having occured

5.2 Data Structures

In this section we describe the most important data structures as they are used
in the implementation. Some data structures have already been described in
the section §5.1 as they are global variables used to store the negra input. But
after that we want to discuss at least the main data types that we are going to
stumble across in section §5.3. This is

e a linear representation

of the phrase structures as they are read in from the negra input file, called
%sentence (§5.2.1),

e which is the converted into a recursive data type

made out of so called %nodes (§5.2.2),

e and which are then converted into a list of dependency edges

that is some @deps, a list of dependencies (§5.2.3).

5.2.1 A linear phrase structure representation

TODO
See readNegraSentence §5.3.12 and makePhraseTree §5.3.38.

5.2.2 A recursive phrase structure representation

TODO: elaborate!!!

tree = {
parent => tree
children => <list of trees>,
nodeTag => <nodeTag>,
edgeTag => <edgeTag to parent>
id => <index of word in the sentence>

5.2.3 Dependency structures
5.3 Functions
5.3.1 debug()

print debug messages if the $debug flag is set.

5.3.2 readNegraTreebank()

This functions reads and processes the input which is suppposed to be in Negra
Export format.

5.3.3 readPennTreebank()

This functions reads and processes the input which is suppposed to be in Penn
Treebank format. It therefore uses a RecDescent grammar which calls pro-
cessSentence for each sentence.

5.3.4 processSentence()

This function is called whenever one sentence has been read from the input and
a recursive phrase data structure has been built in memory.

10

5.3.5 readOrigins()

5.3.6 readEditors()

5.3.7 readWordTags()

5.3.8 readMorphTags()

5.3.9 readNodeTags()
5.3.10 readEdgeTags()
5.3.11 readSecEdgeTags()
5.3.12 readNegraSentence()
5.3.13 escapeldentifier()

escape and quote a string only if necessary

5.3.14 writeWordgraph()
5.3.15 mapCase()
5.3.16 mapGender ()
5.3.17 mapNumber ()
5.3.18 mapPerson()
5.3.19 mapTense()
5.3.20 mapDegree()
5.3.21 mapMood()
5.3.22 mapDefinite()
5.3.23 mapFlexion()
5.3.24 isIncluded()

check if a number is included in a list of intervals, e.g. 1-2,5-10,12,18-

5.3.25 getFeatures()
5.3.26 writeLexiconEntry()
5.3.27 writeLevelDecl()

This function creates the level declaration if you specified the -levels filename.
By default one SYN level is constructed marked to be the mainlevel. It declares
all labels that have been found during tree conversion. (see %labels).

5.3.28 isLeaf()

Return true if a node in a phrase tree is a leaf node.

11

5.3.29 formatPhraseTree()

Format a phrase tree like this: [S [NP das]|[VP ist [ADJP gut]]] (but with more
newlines)

5.3.30 printPhraseTree()

Print bracketed representation of phrase tree on STDERR.

5.3.31 computeExtents()
Compute the linear extent of each constituent and propagate the info to $$x{min}
and $${max} for each node.

Leaf nodes have min == max == id. Inner nodes have the smallest interval
that encloses all leaves. This means that interleaved constituents have extents
that partially overlap.

5.3.32 insertInnerNode()

Insert a new inner node for TREE under PARENT with the values specified in
ATTS.

5.3.33 spliceWords

Manipulate phrase tree $tree so that leaves $x through $y turn into a new word
with the specified parameters.

5.3.34 splitWord()

Manipulate phrase tree $tree so that the leaf $w turns into $n new words.

5.3.35 moveNode()

Manipulate phrase tree $tree so that $node is no longer a child of its former
parent, but a child of $new_parent, all parent/child relations are consistent
again, extents are updated, and everybody is happy.

5.3.36 deleteNode()

Manipulate phrase tree $tree so that $node no longer exists.

5.3.37 moveEdge()

Manipulate a dependency tree so that edge $e points to $p, and the ->children
arrays are consistent.

5.3.38 makePhraseTree()

This function is used by readNegraTreebank() to construct a nested phrase data
structure from a linear sentence hash.

12

5.3.39 convertDepTree()

manipulate a dependency tree

5.3.40 convertPhraseTree()

manipulate an annotated phrase tree

5.3.41 markLexHeads()

5.3.42 getMinId()

5.3.43 getAllNodes()

5.3.44 writePhraseTree()

5.3.45 makeAllDeps()

wrapper for makeDeps: Magerman/Lin differences: - they dont construct NIL
dependencies - they can handle only a single rooted phrase tree / dependency
tree - we can optionally construct more than one level of description

5.3.46 makeDeps()

see (Magermann 1994, p.64-66) and (Lin 1995) returns the lexical head of the
analysed node as a side effect new dependency edges are asserted into deps
5.3.47 makeDependency()

5.3.48 getDominator()

given two nodes nl and n2 of a phrase tree return the ancestor of nl which
dominates n2

5.3.49 findHeadChild()

5.3.50 writeAnnotation()

5.3.51 formatNodes()

5.3.52 makeSnapShot ()

Create a PNG image of the current state of the phrase structure tree. This
is used strategically during phrase tree conversion to leave a trail of how the
transformation went.

5.3.53 depSnapShot ()

5.3.54 main()

This is the first function called comparable to the main() function in C and
elsewhere. It reads all command line parameters, opens the configuration files,
creates the initially empty output files and loops over all input that is given to
Depsy.

13

