
From Shallow to Deep Parsing Using Constraint Satisfaction
Jean-Marie BALFOURIER, Philippe BLACHE & Tristan VAN RULLEN

Laboratoire Parole et Langage
29, Avenue Robert Schuman

13621 Aix-en-Provence, France
{balfourier, blache, tristan.vanrullen}@lpl.univ-aix.fr

Abstract

We present in this paper a technique allowing to
choose the parsing granularity within the same
approach relying on a constraint-based
formalism. Its main advantage lies in the fact that
the same linguistic resources are used whatever
the granularity. Such a method is useful in
particular for systems such as text-to-speech that
usually need a simple bracketing, but in some
cases requires a precise syntactic structure.
We illustrate this method in comparing the results
for three different granularity levels and give
some figures about their respective performance
in parsing a tagged corpus.

Introduction

Some NLP applications make use of shallow
parsing techniques (typically the ones treating
large data), some others rely on deep analysis
(e.g. machine translation). The techniques in
these cases are quite different. The former
usually relies on stochastic methods, the later
on symbolic ones. However, this can constitute
a problem in the case of applications that
would need a shallow parse and in some case a
deep one. This is typically the case for text-to-
speech systems. Such applications usually rely
on shallow parsers in order to calculate
intonative groups on the basis of syntactic units
(or more precisely on chunks). But in some
cases, such a superficial syntactic information
is not precise enough. One solution would then
consist in using a deep analysis for some
constructions. No system exists implementing
such an approach. This is in particular due to
the fact that this would require two different
treatments, the second one redoing in fact the
entire job. More precisely, it is difficult to
imagine in the classical generative framework
to implement a parsing technique capable of
calculating chunks and, in some cases, phrases
with a possible embedded organization.

We present in this paper a formalism relying
on constraints that constitutes a possible
answer to this problem. This approach allows
the use of a same linguistic resource (i.e. a
unique grammar) that can be used fully or
partially by the parser. This approach relies on
the fact that (1) all linguistic information is
represented by means of constraints and (2) the
constraints are of regular types. The idea
consists then in implementing a technique that
can make use of some constraints in the case of
shallow parsing, and the entire set of them for
deep analysis. In our formalism, constraints are
organized into different types. Tuning the
granularity of the parse consists then in
selecting the types of constraints to be verified.
In the first part of this paper, we present the
property grammar formalism, its main
advantages both in terms of representation and
implementation. In the second part, we
describe the parsing technique and the different
approaches used for shallow and deep parsing.
We address in particular in this section some
complexity aspects illustrating the properties of
the parsing techniques and we propose an
evaluation over a corpus. In the third part, we
illustrate the respective characteristics of the
different approaches in describing for the same
example the consequences of tuning the parse
granularity. We conclude in presenting some
perspectives for such a technique.

1 Property Grammars

The notion of constraints is of deep importance
in linguistics, see for example Maruyama
(1990), Pollard (1994), Sag (1999). Recent
theories (from the constraint-based paradigm to
the principle and parameters one) rely on this
notion. One of the main interests in using
constraints comes from the fact that it becomes
possible to represent any kind of information

(very general as well as local or contextual
one) by means of a unique device. We present
in this section a formalism, called Property
Grammars, described in Bès (1999) or Blache
(2001), that makes it possible to conceive and
represent all linguistic information in terms of
constraints over linguistic objects. In this
approach, constraints are seen as relations
between two (or more) objects: it is then
possible to represent information in a flat
manner. The first step in this work consists in
identifying the relations usually used in syntax.

This can be done empirically and we suggest,
adapting a proposal from Bès (1999), the set
of following constraints: linearity, dependency,
obligation, exclusion, requirement and
uniqueness. In a phrase-structure perspective
all these constraints participate to the
description of a phrase. The following figure
roughly sketches their respective roles,
illustrated with some examples for the NP.

Constraint Definition
Linearity (<) Linear precedence constraints
Dependency (→) Dependency relations between

categories
Obligation (Oblig) Set of compulsory and unique

categories. One of these categories
(and only one) has to be realized in a
phrase.

Exclusion (�) Restriction of cooccurrence between
sets of categories

Requirement (⇒) Mandatory cooccurrence between
sets of categories

Uniqueness (Uniq) Set of categories which cannot be
repeated in a phrase

In this approach, describing a phrase consists
in specifying a set of constraints over some
categories that can constitute it. A constraint is
specified as follows. Let R a symbol
representing a constraint relation between two
(sets of) categories. A constraint of the form a
R b stipulates that if a and b are realized, then
the constraint a R b must be satisfied. The set
of constraints describing a phrase can be
represented as a graph connecting several
categories.

The following example illustrates some
constraints for the NP.

Linearity Det < N; Det < AP;
AP < N; N < PP

Requirement N[com] ⇒ Det
Exclusion N � Pro; N[prop] � Det
Dependency Det → N; AP → N; PP → N
Obligation Oblig(NP) = {N, Pro, AP}

In this description, one can notice for example
a requirement relation between the common
noun and the determiner (such a constraint
implements the complementation relation) or
some exclusion that indicate cooccurrency
restriction between a noun and a pronoun or a
proper noun and a determiner. One can notice
the use of sub-typing: as it is usually the case
in linguistic theories, a category has several
properties that can be inherited when the
description of the category is refined (in our
example, the type noun has two sub-types,
proper and common represented in feature
based notation). All constraints involving a
noun also hold for its sub-types. Finally, the
dependency relation, which is a semantic one,
indicates that the dependent must combine its
semantic features with the governor. In the
same way as HPSG does now with the DEPS
feature as described in Bouma (2001), this
relation concerns any category, not necessarily
the governed ones. In this way, the difference
between a complement and an adjunct is that
only the complement is selected by a
requirement constraint, both of them being
constrained with a dependency relation. This
also means that a difference can be done
between the syntactic head (indicated by the
oblig constraint) and the semantic one (the
governor of the dependency relation), even if
in most of the cases, these categories are the
same. Moreover, one can imagine the
specification of dependencies within a phrase
between two categories other than the head.

One of the main advantages in this approach is
that constraints form a system and all
constraints are at the same level. At the
difference of other approaches as Optimality
Theory, presented in Prince (1993), there exists
no hierarchy between them and one can
choose, according to the needs, to verify the
entire set of constraints or a subpart of it. In
this perspective, using a constraint satisfaction
technique as basis for the parsing strategy

makes it possible to implement the possibility
of verifying only a subpart of this constraint
system. What is interesting is that some
constraints like linearity provide indications in
terms of boundaries, as described for example
in Blache (1990). It follows that verifying this
subset of constraints can constitute a
bracketing technique. The verification of more
constraints in addition to linearity allows to
refine the parse. In the end, the same parsing
technique (constraint satisfaction) can be used
both for shallow and deep parsing. More
precisely, using the same linguistic resources
(lexicon and grammar), we propose a
technique allowing to choose the granularity of
the parse.

2 Three techniques for a same
formalism

We describe in this paper different parsing
techniques, from shallow to deep one, with this
originality that they all rely on the same
formalism, described in the previous section.
In other words, in our approach, one can
choose the granularity level of the parse
without modifying linguistic resources

2.1 Shallow parsing with Chinks and
Chunks
The first algorithm we implemented (used to
parse large corpora) relies on the Liberman and
Church’s Chink&Chunk technique (see
Liberman & Church (1992)) and on Di Cristo’s
chunker (see Di Cristo (1998) and DiCristo &
al (2000)).
The mechansim consists is segmenting the
input into chunks, by means of a finite-state
automaton making use of function words as
block borders. An improvement of the notion
of chunk is implemented, using conjunctions as
neutral elements for chunks being built.
This algorithm constitutes an interesting (and
robust) tool for example as basis for
calculating prosodic units in a Text-to-Speech
Synthesizer.

2.2 A more precise shallow parser
In this second technique, we increase the
quantity of grammatical information used by
the surface analyzer. In this perspective, while

preserving robustness and efficiency of the
processing, we make use of a grammar
represented in the Property Grammar
formalism described above. One of the main
interests of this formalism is that it doesn't
actually make use of the grammaticality
notion, replacing it with a more general
concept of characterization. It becomes then
possible to propose a description in terms of
syntactic properties for any kind of input
(grammatical or not).
Opening and closing chunks relies here on
information compiled from the grammar. This
information consists in the set of left and right
potential corners, together with the potential
constituents of chunks. It is obtained in
compiling linear precedence, requirement and
exclusion properties described in the previous
sections together with, indirectly, that of
constituency.
The result is a compiled grammar which is
used by the parser. Two stacks, one of opened
categories and a second of closed categories,
are completed after the parse of each new
word: we can open new categories or close
already opened ones, following some rules.
This algorithm being recursive, the actions
opening, continuing and closing are recursive
too. This is the reason why rules must have a
strict definition in order to be sure that the
algorithm is deterministic and always
terminates. This shallow parsing technique can
be seen as a set of production/reduction/cutting
rules.

• Rule 1: Open a phrase p for the current

category c if c can be the left corner of p.
• Rule 2: Do not open an already opened

category if the category belongs to the
current phrase or is its right corner.
Otherwise, we can reopen it if the current
word can only be its left corner.

• Rule 3: Close the opened phrases if the more
recently opened phrase can neither continue
one of them nor be one of their right corner.

• Rule 4: When closing a phrase, apply rules 1,
2 and 3. This may close or open new phrases
taking into consideration all phrase-level
categories.

2.3 Deep parsing with Property
Grammar

Deep analysis is directly based on property
grammars. It consists, for a given sentence, in
building all the possible subsets of juxtaposed
elements that can describe a syntactic category.
A subset is positively characterized if it
satisfies the constraints of a grammar.
These subsets are called edges, they describe a
segment of the sentence between two
positionss.

At the first step, each lexical category is
considered as an edge of level 0. The next
phase consists in producing all the possible
subsets of edges at level 0. The result is a set of
edges of level 1. The next steps work in the
same way and produce all the possible subsets
of edges, each step corresponding to a level.
The algorithm ends when no new edge can be
built.

An edge is characterized by:
• an initial and a final position in the sentence,
• a syntactic category,
• a set of syntactical features describing the

category
• a set of constituents: a unique lexical

constituent at the level 0, and one or several
edges at the other levels.

After parsing, a sentence is considered as
grammatical if at least one edge covering
completely the sentence and labelled by the
category S is produce. But even for
ungrammatical cases, the set of edges
represents all possible interpretations of the
sentence: the set of edges contains the set of
constraints that describe the input. By another
way, in case of ambiguity, the parser generates
several edges covering the same part and
labelled with the same category. Such similar
edges are distinct by their syntactical features
(in the case of an ambiguity of features) or by
their different constituents (typically an
ambiguity of attachment).

Several heuristics allow to control the
algorithm. For example, an edge at level n
must contain at least an edge at level n-1.

Indeed, if it would contain only edges at levels
lower than n-1, it should have been already
produced at the level n-1.

The parse ends in a finite number of steps at
the following conditions:
• if the number of syntactic categories of the

grammar is finite,
• if the grammar does not contain a loop of

production. We call loop of production, the
eventuality that a category c1 can be
constituted by an unique category c2, itself
constituted by an unique category c3 and so
until cn and that one of category c2 to cn can be
constituted by the unique category c1.

3 Compared complexity of these
algorithms

Of course, the difference of granularity of
these algorithms does have a cost which has to
be known when choosing a technique.
In order to study the complexity of the first two
algorithms, we parsed a french corpus of
13,236 sentences (from the newspaper Le
Monde), tagged by linguists (the CLIF project,
headed by Talana).

Chink/Chunk algorithm is a simple but
efficient way to detect syntactic boundaries. In
the average, best and worst cases, for M
sentences, each sentence consisting of Nw
words, its complexity has an order of
M*Nw*Constant. That is to say a linear
complexity.

Instructions / number of words
for Chink & Chunk (logarithmic scale)

With the shallow parser algorithm, we can
detect and label more syntactic and hierarchic

100

1000

10000

0 20 40 60 80 100 120 140

data: in the average, worst and best cases, for M
sentences, each sentence consisting of Nw
words; for a set of C precompiled categories,
its complexity has an order of
M*C*(Nw²+Nw)*Constant. That is to say
a polynomial complexity.

Instructions / number of words
for Shallow Parser (logarithmic scale)

For the evaluation of the deep parser
algorithm, we parsed a corpora of 620
sentences of the same corpus. Unlike the two
previous algorithms, the dispersal of results is
much more important.

Million instructions / number of words
for Deep Parser (logarithmic scale)

In the theory, the algorithm is of exponential
type but its progress is permanently
constrained by the grammar. This control being
heavily dependent from the grammatical
context, the number of instructions necessary
to parse two same size sentences can be very
different. Nevertheless, in the reality of a
corpus, the average complexity observed is of
polynomial type. So, if Nw is the number of

words of a sentence, the best estimate
complexity of its parse corresponds to a
polynom of order 2.4 (Nw2.4*Constant).

4 Different results for different
algorithms
Our parsers demonstrate the possibility of a
variable granularity within a same approach.
We illustrate in this section the lacks and assets
of the different techniques with the example
below (in French):

"Le compositeur et son librettiste ont su créer un
équilibre dramatique astucieux en mariant la
comédie espiègle voire égrillarde et le drame le plus
profond au cœur des mêmes personnages."

“The composer and his librettist succesfully
introduced an astute dramatic balance in marrying
the mischievous, ribald comedy with the deepest
drama for the same characters.”

4.1 Chink/chunk approach
[(sentence)
 [(chunk)Le compositeur et son librettiste
ont su créer]
 [(chunk)un équilibre dramatique astucieux]
 [(chunk)en mariant]
 [(chunk)la comédie espiègle]
 [(chunk)voire égrillarde]
 [(chunk)et le drame]
 [(chunk)le plus profond]
 [(chunk)au coeur des mêmes personnages]]

This first example shows a non-hierarchical
representation of the sentence, divided into
chunks. No linguistic information is given.

4.2 Shallow parsing approach
[(sentence)
 [(NP)Le compositeur
 [(AP) et]
 son librettiste]
 [(VP)ont su créer]
 [(NP) un équilibre
 [(AP)dramatique astucieux]]
 [(Compl)en
 [(VP)mariant]]
 [(NP)la comédie
 [(AP)espiègle voire égrillarde et]
 le drame
 [(Sup)le plus profond]]
 [(PP)au cœur de
 [(NP)les
 [(AP)mêmes]
 personnages]]]

0,1

1,0

10
,0

10
0,

0

1 0
00

,0

0 10 20 30 40 50 60 70 80 90 100

1000

10000

100000

1000000

0 20 40 60 80 100 120 140

This second example gives a hierarchical
representation of the sentence, divided into
grammatically tagged chunks. Because we
used a precompiled version of the grammar
(shortened) and because we forced some
syntactic choices in order to keep a determinist
and finishing parsing, it appears that some
errors have been made by the shallow parser:
Conjunctions are (badly) distinguished as
Adverbial Phrases. In spite of these gaps,
cutting is improved and most of the categories
are detected correctly.

4.3 Deep parsing approach
The last example (next figure) presents two of
the maximum coverages produced by the deep
parser. This figure, which illustrates the PP
attachment ambiguity, only presents for
readabiulity reasons the hierarchical structure.
However, remind the fact that each label
represents in fact a description which the state
of the constraint system after evaluation.

Le compositeur et sonlibrettisteont su créer un équilibredramatiqueastucieux en mariant la comédieespièglevoireégrillarde et le drame le plusprofond au_cœur des mêmes personnages

 S

 NP VP

 NP conj NP V V V NP

det N det N det N adj adj

 PP PP

 prep VP NP prep NP

 V NP conj NP det adj N

 det N AP det N Sup

 AP conj AP det adv adj

 adj adj

 PP

 prep VP NP

 V NP conj NP

 det N AP det N Sup PP

 AP conj AP det adv adj prep NP

 adj adj det adj N

5 Conclusion

The experiments presented in this paper show
that it is possible to calculate efficiently the
different kind of syntactic structures of a
sentence using the same linguistic resources.
Moreover, the constraint-based framework
proposed here makes it possible to choose the
granularity, from a rough boundary detection
to a deep non-deterministic analysis, via a
shallow and deterministic one. The possibility
of selecting a granularity level according to the
data to be parsed or to the targetted application
is then very useful.

An interesting result for further studies lies in
the perspective of combining or multiplexing
different approaches. It is for example
interesting to notice that common boundaries
obtained by these algorithms eliminates ill-
formed and least remarkable boundaries. At the
same time, it increases the size of the blocks
while maintaining the linguistic information

available (this remains one of the most
important problems for text-to-speech
systems). Finally, it allows to propose a
parameterized granularity in balancing the
relative importance of different competing
approaches.

References
Abney, S. (1991) "Parsing by chunks"., in Berwick,

R., Abney, S., Tenny, C. (eds.). Principle-based
Parsing, Kluwer Academic Publishers, 257-278.

Abney S. (1996) "Partial Parsing via Finite-State
Calculus'', in proceedings of ESSLLI'96 Robust
Parsing Workshop.

Abney, S. (1997) "Part-of-speech tagging and
partial parsing", in Young, S., Bloothooft, G.
Corpus-Based Methods in Language and Speech
Processing, Kluwer Academic Publishers, 118-
136.

Allen, J., Hunnincutt, S., Carlson, R., Granström, B.
(1979) "MITalk-79 : The 1979 MIT text-to-
speech system", in Wolf and Klatt (eds.), Speech

Communications, Papers Presented at the 97th
Meeting of the ASA: 507-510.

Allen, J., Hunnincutt, S., Klatt, D. (1987) "From
text to speech: The MITalk system", Cambridge
University Press.

Bès G. & P. Blache (1999) "Propriétés et analyse
d'un langage'', in proceedings of TALN'99.

Blache P. & J.-Y. Morin (1990) "Bottom-up
Filtering: a Parsing Strategy for GPSG", in
proceedings of COLING'90.

Blache P. & J.-M. Balfourier (2001) "Property
Grammars: a Flexible Constraint-Based
Approach to Parsing'', in proceedings of IWPT-
2001 .

Bouma G., R. Malouf & I. Sag (2001) "Satisfying
Constraints on Extraction and Adjunction'', in
Natural Language and Linguistic Theory, 19:1,
Kluwer.

Chanod J.-P. (2000) "Robust Parsing and Beyond'',
in Robustness in Language Technology, Kluwer.

Di Cristo P, (1998). Génération automatique de la
prosodie pour la synthèse à partir du texte. Ph.D.
thesis, Université de Provence, France.

Di Cristo A., Di Cristo P., Campione E, Veronis J,
(2000). A prosodic model for text to speech
synthesis in French.

Duchier D. & R. Debusmann (2001) "Topological
Dependency Trees: A Constraint -Based Account
of Linear Precedence'', in proceedings of ACL.

Grinberg D., J. Lafferty & D. Sleator (1995), A
robust parsing algorithm for link grammars,
CMU-CS-95-125, Carnegie Mellon University.

Kübler S. & E. Hinrichs (2001) "From Chunks to
Function-Argument Structure: A similarity-Based
Approach'', in proceedings of ACL-01.

Liberman, M., Church, K. (1992) "Text analysis
and word pronunciation in text-to- speech
synthesis", in Furui, S., Sondhi, M.M. (eds),
Advances in Speech Signal Processing , Dekker,
791-831.

Maruyama H. (1990), "Structural Disambiguation
with Constraint Propagation'', in proceedings of
ACL'90.

Pollard C. & I. Sag (1994), Head-driven Phrase
Structure Grammars, CSLI, Chicago University
Press.

Prince A. & P. Smolensky (1993) Optimality
Theory: Constraint Interaction in Generative
Grammars, Technical Report RUCCS TR2,
Rutgers Center for Cognitive Science.s

Sag I. & T. Wasow (1999), Syntactic Theory. A
Formal Introduction, CSLI

