
Projekt PAPA
Arbeitsbereich NATS

Fachbereich Informatik
Universität Hamburg

Memo HH-XX
30 August 2003

Kilian Foth, Stefan Hamerich,
Ingo Schröder, Michael Schulz,
Tomas By

[X]CDG User guide

Version 1.3

Documentation for the CDG system

including the graphical interface XCDG

Contents

1 The cdg parser 4

1.1 Command line format . 4

1.2 Interactive commands . 5

1.2.1 The command ‘activate’ . 5

1.2.2 The command ‘anno2parse’ . 7

1.2.3 The command ‘annos2prolog’ . 7

1.2.4 The command ‘annotation’ . 7

1.2.5 The command ‘chunk’ . 8

1.2.6 The command ‘compareparses’ . 8

1.2.7 The command ‘compile’ . 8

1.2.8 The command ‘constraint’ . 8

1.2.9 The command ‘dbclose’ . 8

1.2.10 The command ‘deactivate’ . 9

1.2.11 The command ‘distance’ . 9

1.2.12 The command ‘edges’ . 9

1.2.13 The command ‘frobbing’ . 9

1.2.14 The command ‘gls’ . 10

1.2.15 The command ‘help’ . 16

1.2.16 The command ‘hierarchy’ . 17

1.2.17 The command ‘hook’ . 17

1.2.18 The command ‘incrementalcompletion’ 18

1.2.19 The command ‘inputwordgraph’ . 18

1.2.20 The command ‘isearch’ . 18

1.2.21 The command ‘level’ . 18

1

1.2.22 The command ‘levelsort’ . 19

1.2.23 The command ‘lexicon’ . 19

1.2.24 The command ‘license’ . 19

1.2.25 The command ‘load’ . 20

1.2.26 The command ‘ls’ . 20

1.2.27 The command ‘net’ . 20

1.2.28 The command ‘netdelete’ . 21

1.2.29 The command ‘netsearch’ . 22

1.2.30 The command ‘newnet’ . 24

1.2.31 The command ‘nonspeccompatible’ . 24

1.2.32 The command ‘parsedelete’ . 24

1.2.33 The command ‘parses2prolog’ . 24

1.2.34 The command ‘predict’ . 25

1.2.35 The command ‘printparse’ . 27

1.2.36 The command ‘printparses’ . 27

1.2.37 The command ‘quit’ . 27

1.2.38 The command ‘shift-reduce’ . 27

1.2.39 The command ‘renewnet’ . 28

1.2.40 The command ‘reset’ . 28

1.2.41 The command ‘section’ . 28

1.2.42 The command ‘set’ . 29

1.2.43 The command ‘showlevel’ . 34

1.2.44 The command ‘status’ . 34

1.2.45 The command ‘tagger’ . 35

1.2.46 The command ‘testing’ . 35

1.2.47 The command ‘useconstraint’ . 35

1.2.48 The command ‘uselevel’ . 35

1.2.49 The command ‘uselexicon’ . 36

1.2.50 The command ‘verify’ . 36

1.2.51 The command ‘version’ . 36

1.2.52 The command ‘weight’ . 36

1.2.53 The command ‘wordgraph’ . 37

1.2.54 The command ‘writeannotation’ . 37

2

1.2.55 The command ‘writenet’ . 38

1.2.56 The command ‘writeparses’ . 38

1.2.57 The command ‘writewordgraph’ . 38

1.3 Example session . 38

1.4 Grammar elements . 41

1.4.1 Levels of analysis . 41

1.4.2 Constraints . 42

1.4.3 Functions . 47

1.4.4 Predicates . 49

1.4.5 Lexicon entries . 52

1.4.6 Hierarchies . 54

1.4.7 Data maps . 55

1.4.8 Word graphs . 55

1.4.9 Annotations . 55

2 The Visualisator xcdg 59

2.1 Introduction . 59

2.2 Invocation . 59

2.3 The xcdg window . 60

2.4 The menu bar . 60

2.5 The CDG shell . 60

2.5.1 Additional Commands . 62

2.6 The Data Browser . 63

2.6.1 The Files Browser . 64

2.6.2 The Lattice Browser . 64

2.6.3 The Constraint Net Browser . 65

2.6.4 The Parse Browser . 65

2.6.5 The Levels Browser . 65

2.6.6 The Constraints Browser . 66

2.6.7 The Lexicon Browser . 66

2.6.8 The Hierarchy Browser . 66

2.7 The Tree Editor . 67

2.7.1 The Tree Editor Menu . 67

2.7.2 The Tool Bar . 69

2.7.3 The Conflict List . 70

2.7.4 The Tree Window . 70

2.8 User and Expert Mode . 74

3

Chapter 1

The cdg parser

This chapter describes the use of the CDG (constraint dependency grammar) parsing system.
It is based on the DAWAI reports HH-1 to HH-4 (Schröder, 1997c; Schröder, 1997a; Schröder,
1997d; Schröder, 1997b).

The parsing theory that the software is based on is not explained here; it is assumed the
reader is familiar with it. Maruyama (1990a), Maruyama (1990b), Maruyama, Watanabe
and Ogino (1990), Menzel (1994), Menzel (1995), Harper et al. (1993), Harper et al. (1994),
Harper and Helzerman (1994), Schröder (1995) as well as Schröder (1996) and particularly
Heinecke et al. (1998) describes comprehensively parsing by constraint analysis. The precise
syntax of the inputs to the system is described in section 1.4.

1.1 Command line format

The program ‘cdg’ is interactive and supports only a few command line options.

At present the following options are available:

• The option ‘-q’ turns off additional messages that are not required in non-interactive
mode. This option corresponds to the interactive command ‘set verbosity off’.

• The option ‘-d’ turns on the display of deleted values in the output of the ‘net’ com-
mand. This option corresponds to the interactive command ‘set showdeleted on’.

• The option ‘-s’ switches on the use of statistical parameters Warning: This is not
officially supported, nor further documented.

• The option ‘-e’ prevents the initialization of edges during the production of constraint
nets, to increase the speed. Warning: This option should only be used if the search is
started with the command ‘netsearch’. Otherwise the behaviour is undefined.1

1The options ‘-s’ and ‘-e’ were tailored for a specific application and have not generally been tested under
other conditions.

4

• The option ‘-m’ changes the behavior of the system during search in constraint net-
works: when one solutions is found, all level values in the net that are not part of the so-
lution are deleted; if several solutions are found, then all level values that are not part of
any solution are deleted. This is indicated by the status line search modifies net: yes.

• The option ‘-n’ corresponds to the command set normalize on.

• The option ‘-i name’ sets the name of the initialization file to ‘name’ (default name:
.cdgrc).

• The option ‘-x’ corresponds to the command set xml on.

At start-up, the program first loads the initialization file, whose name is normally .cdgrc

but can be changed with the option ‘-i’. The file is searched for in the current directory,
and then the user’s home directory. If the initialization file is found, then its contents are
executed, line by line, as if they had been entered interactively.

Then all files whose names were given on the command line are loaded. The following
example illustrates the command:

% cdg test/menzel

CDG parser

Ingo Schröder ingo.schroeder@informatik.uni-hamburg.de

Type ‘help’ for help.

file ‘test/menzel’ loaded: 12/2/8/10/0/0/0

cdgp>

The numbers after the message that the file was loaded, indicate, from left to right, the
numbers of constraints, level definitions, lexicon entries, word graphs, annotations, hierarchy
definitions, and the statistical parameters.

1.2 Interactive commands

The available commands are listed in the table on page 6 and described below in alphabetical
order.

1.2.1 The command ‘activate’

The command ‘activate’ (re-)activates the specified constraint classes, so that they are used
in subsequent computations. If no parameters are given, all known classes are activated.

See also the command ‘deactivate’.

cdgp> activate map

5

Input load Load files

inputwordgraph Specify word graph

newnet Create constraint net from word graph

renewnet Reset constraint nets

netdelete Delete constraint nets

parsedelete Delete dependency analyses

reset Reset the system

Actions netsearch Search for solutions of constraint net

incrementalcompletion Search for dependency analyses of word graph

frobbing Heuristic search for solutions of c. net

gls Transformation-based search for solutions of c. net

Settings set Control various parameters

net Toggle use of specified constraint net

useconstraint Toggle use of specified constraints

activate Activate constraint classes

deactivate Deactivate constraint class

weight Change the weights of constraints

uselevel Toggle use of specified levels

levelsort Set level sort order

Output compareparses Compare two dependency analyses

verify Compare dependency analyses to annotations

printparse Print one dependency analysis

printparses Print all dependency analyses for one c. net

Nice output writewordgraph Print word graphs

writenet Print constraint net

writeparses Print all dependency analyses for one c. net

writeannotation Write best parse of a net to disk

annos2prolog Write all annotations to a file in Prolog format

parses2prolog Write all parses to a file in Prolog format

Diagnostics constraint Show constraints

lexicon Show lexicon entries

wordgraph Show word graphs

annotation Show annotations

hierarchy Show hierarchies

level Show levels

section Show constraint classes

anno2parse

status Show information about the system

edges List edges in constraint net

distance Show distances in a constraint net

nonspeccompatible

hook Control certain output

showlevel Toggle display of levels

Program Control quit Terminate

6

1.2.2 The command ‘anno2parse’

TBD

1.2.3 The command ‘annos2prolog’

Writes all currently loaded annotations to the specified file in Prolog format as per the
following (pseudo-)BNF. The number of annotations that were written to the file are printed
on the screen.

<File> ::= { <Annotation> }*

<Annotation> ::= annotation(<Id> , <LaId> , <Words>).

<Words> ::= <Prolog list of Word>

<Word> ::= word(<From> , <To> , <String> , <Specs>)

<From>,<To> ::= <Prolog integers>

<Id>,<LaId>,<String> ::= <Quoted Prolog atoms>

<Specs> ::= <Prolog list of Spec>

<Spec> ::= tag(<Attribute>, <Value>)

| dep(<Level>, <Label>, <Position>)

<Attribute>,<Value>,<Level>,<Label> ::= <Quoted Prolog atoms>

<Position> ::= <Prolog integer, starting at 1>

The lattice label (LaId) identifies the word graph, as in the output from parses2prolog

(section 1.2.33). There will always be exactly one dep/3 term per level in each annotation/3
structure.

1.2.4 The command ‘annotation’

The command ‘annotation’ lists loaded analyses. With no parameter, all loaded analyses are
displayed. Any parameters to the command are interpreted as identification of the analyses
to be shown.

cdgp> annotation n001k/000/2

n001k/000/2 :

‘ja prima dann lassen Sie uns doch noch einen Termin ausmachen

wann waere es Ihnen denn recht’ :

wann:

cat/PWAV

syn->AMOD->2

waere:

7

cat/VFIN

syn->VFIN->0

es:

cat/PPERIR

syn->SUBJ->2

ihnen:

cat/PPERIR

syn->OBJD->2

denn:

cat/ADV

syn->AMOD->2

recht:

cat/ADJD

syn->PRED->2

1.2.5 The command ‘chunk’

Exercises the chunker defined by ‘chunkerCommand’ on the specified wordgraph and prints
out the result.

1.2.6 The command ‘compareparses’

The command ‘compareparses’ compares two dependency analyses and reports detailed in-
formation about the differences. The two analyses are specified by name. If the second name
is missing, the dependency analysis that was produced last is used as point for comparison.

1.2.7 The command ‘compile’

The command ‘compile’ translates the loaded Constraint grammar into machine code, for
efficiency. This command has not been implemented yet.

1.2.8 The command ‘constraint’

The command ‘constraint ’ lists the loaded constraints. The parameters indicate which
constraints to list. If no parameters are given, all constraints are listed.

cdgp> constraint se2

{ X } : se2 : sem : 0.700000 :

(((X.level = SEM & X^word = fressen) & X@prop = animal) -> X.label = AG);

1.2.9 The command ‘dbclose’

This command cancels the effect of ‘uselexicon’. Note: Lexicon items that were already
loaded from disk remain in memory. Only future queries are affected.

8

1.2.10 The command ‘deactivate’

The command ‘deactivate’ takes a constraint class as parameter. Members of that class are
not used in subsequent computations. If no parameters are given, all known classes are
deactivated.

See also the command ‘activate’.

cdgp> deactivate map

1.2.11 The command ‘distance’

The command ‘distance’ shows a matrix of the approximate distances between the word
forms in a constraint net.

cdgp> distance net0

die Frau sieht die Tochte

die +0001 +0002 +0003 +0004

Frau -0001 +0001 +0002 +0003

sieht -0002 -0001 +0001 +0002

die -0003 -0002 -0001 +0001

Tochte -0004 -0003 -0002 -0001

1.2.12 The command ‘edges’

The command ‘edges’ lists some or all of the edges in a constraint net. It takes one non-
optional parameter, identifying the constraint net, and two optional parameters, specifying
the vertex indexes which are shown, for example, by the command ‘net’.

cdgp> edges net0 0 4

pferde(0,1)-SYN ---> gras(2,3)-SYN

start v stop >| SUBJ/fressen OBJ/fressen

SUBJ/fressen | 0.000000e+00 3.000000e-01

OBJ/fressen | 1.000000e-01 0.000000e+00

1.2.13 The command ‘frobbing’

The command ‘frobbing ’ starts a heuristic search for solutions in a constraint net by trans-
formation of incorrect value assignments. This procedure sacrifices completeness to gain
speed, and it is not guaranteed that a solution is found.

The parameters are key=value pairs with the following meaning:

9

Key Meaning Default value
agenda <num> agenda size of local search 3000

batch <yes|no> skip interactive part no

beam <num> beam width for local evaluation unlimited
execute <string> commands for manual ””
freeze <yes|no> freeze results of phase 1? yes
greedy <yes|no> always take global improvements? yes
method <name> frobbing method combined

maxsize <name> maximal subproblem size 30
minsize <name> minimal subproblem size 6
net <name> net to search newest constraint net
parse <name> parse to frob newest parse
pressure <num> enforced minimum score 0.9
strict <yes|no> isolate subproblems totally? yes
subproblem <name> fragmentation method ””

Specifying the search method explicitly is not very useful, since the default method is nearly
always the best. The other methods are experimental (Foth, 1999).

The method manual lets the user transform dependency analyses interactively. Usually
(unless batch is used) this mode is entered after the time limitation of another search
method has been reached. The command ‘q’ terminates interactive processing and returns
the control to the main program. The command ‘h’ gives an overview of commands available
during manual frobbing.

1.2.14 The command ‘gls’

This command applies the GLS solution procedure to a constraint net. GLS is transformation-
based and uses local search with hill climbing to avoid extreme points in the search space
when converging. As in frobbing (section 1.2.13) dependency structures are transformed if
constraints are violated. While frobbing is based on taboo search (Glover, 1989; Glover,
1990), GLS uses a weight-based control heuristic. Characteristics of extreme points in the
weights are stored and this information is used to compute the weighing function of the
PCSPs. This lets the local search break out of extreme points and continue the search in
more promising regions of the search space.

In the current implementation, GLS allows several different GLS heuristics to scan the
search space independently. This procedure is called MGLS (multiple steered local search)
and assigns each parameterized heuristic to an agent using its own ‘GLS search net.’ The
set of all agents of a MGLS is called the ‘GLS pool.’

Unfortunately, real concurrency has not yet been implemented, and the system simulates
concurrency in its own run time environment by giving individual agents time slices according
to the round-robin principle.

The fundamental algorithms used here are described in (Voudouris, 1997). A detailed de-
scription of the conversion and extensions can be found in (Schulz, 2000).

The command ‘gls’ has the following syntax:

cdgp> gls -?

INFO: gls [<netId>] [<options>]*

<netId> : name of constraint net

10

-c, --cutoff [<x>]+ : maximum costs of one hard violation

-co, --costs [<x>]+ : maximum allowed augmented costs

-coop, --cooperate : networks learn from each other

-comp, --compete : networks don’t learn from each other

-cmp, --compare <name> : compare function ‘badness’ or ‘costs’

-prio, --priority [<n>]+ : cycles spent on a network per timeslice

-d, --debug <n> : debug level

-dt, --detour [<n>]+ : maximum allowed cycles to spend on worse bindings

-from, --from-cycle [<n>]+ : start computing at the specified cycle

-fup, --force-pruning [<n>]+ : detour length after which pruning is forced

-i, --interrupt [<n>] : interrupt gls after given number of cycles

-iup, --initial-unary-pruning : pruning fraction in init phase

-g1, --guide1 [<x>]+ : strength of penalization

-g2, --guide2 [<x>]+ : strength of reinforcement

-pup, --prolong-unary-pruning : pruning fraction in prolongation phase

-n, --normalize [<x>]+ : normalization factor

-s, --statistics <filename> : generate statistics and print them into a file

-t, --time [<n>]+ : maximum milliseconds available to solve the problem

-tup, --termination-unary-pruning : pruning fraction in termination phase

-to, --to-cycle [<n>]+ : stop computing at the specified cycle

-tol, --tolerance [<x>]+ : tolerated utility of a binding to be repaired

-u, --utility [<x>]+ : minimal utility of a binding to be repaired

-up, --unary-pruning [<x>]+ : pruning fraction applied in any phase

-v, --version : show version of gls

-?, -h, --help : this text

<n> : integer

<x> : float

[<p_i>]+ : iterated parameters; parameters at position i are

assigned to net i; if there are more parameters

than nets then new nets are created with default

parameters set to the most previously created net

in the pool

The parameters of the command can be divided into five categories:

1. Selection function parameters:

(a) Threshold value -cutoff

(b) Normalization -n

(c) Penalty weight -g1

(d) Reinforcement weight -g2

(e) Tolerance -tol

(f) Comparison function -cmp

2. Combined control heuristics

(a) Simple steered local search

(b) Multiple steered local search

i. Cooperative, parallel -coop

ii. Competing, parallel -comp

iii. Serial -from, to

iv. Prioritized -prio

3. Termination criteria

11

(a) Maximum combined cost -co

(b) Minimal usefulness -u

(c) Time -t

(d) Cycles from, to

4. Extended heuristics

(a) Unary pruning -up

i. Unary pruning in the initialization phase

ii. Unary pruning in the prolongation phase

iii. Unary pruning in the termination phase

(b) Limitation of the transformation paths -dt

5. Debugging and statistics

(a) Level -d

(b) GLS command mode -i

(c) Generation of statistical data -s

Examples

Here follows some examples of the different parameters. Assume a constraint net net0 was
produced from a word graph using the newnet command (see section 1.2.30). If net0 were
the last constraint net produced, then the net identifier (<netid>) can be omitted from the
‘gls’ command.

a) Default parameters and GLS agent:

cdgp> gls

INFO: renewing net ‘net0’

PROFILE: it took 170ms to establish the pool

--

settings:

--

net : net0

wordgraph : n001k001-1

debug level : 1

compare function : badness

interruption : no

parallelity : single

--

0

--

cutoff : 1.000e+01

penalty guide : 1.000e+00

reinforcement guide : 0.000e+00

normalization(beta) : 1.000e+00

pruning fraction : 0%/0%/0%

force unary pruning : 0

priority : 1

from cycle : 0

to cycle : (unbound)

12

max time : 1 m 40 s

max detour : (unbound)

max costs : 1000

min utility : (unbound)

tolerance : 0 %

--

* 0 : 2 : 260ms : util=3.845e-01/1.000e+04/3.845e-01 : score= 4/20/2.112e-05 ...

... : costs= 94.96/ 94.96/135.53

* 0 : 13 : 400ms : util=3.998e-01/1.000e+04/5.036e-01 : score= 4/20/7.943e-05 ...

... : costs= 83.70/ 83.70/178.61

* 0 : 16 : 490ms : util=4.158e-01/1.000e+04/5.357e-01 : score= 3/20/1.105e-07 ...

... : costs=103.73/104.73/178.61

* 0 : 17 : 580ms : util=4.616e-01/1.000e+04/5.357e-01 : score= 3/20/1.920e-05 ...

... : costs= 85.00/ 86.00/178.61

INFO: net 0 finished initialization

* 0 : 22 : 680ms : util=4.849e-01/4.849e-01/5.357e-01 : score= 1/26/5.270e-08 ...

... : costs= 94.20/ 94.20/178.61

* 0 : 42 : 830ms : util=6.191e-01/4.791e-01/6.191e-01 : score= 0/24/8.651e-06 ...

... : costs= 56.21/ 56.21/178.61

INFO: net 0 finished prolongation

* 0 : 59 : 980ms : util=4.504e-01/4.504e-01/6.191e-01 : score= 0/17/3.757e-01 ...

... : costs= 9.50/ 13.50/178.61

0 : 2382 : 1820ms : util=7.594e-01/4.504e-01/8.366e-01 : score= 0/17/3.757e-01 ...

... : costs= 9.50/924.50/977.76

INFO: further usage of net 0 too expensive

INFO: best parse found is ‘parse7’ with score 3.757e-01

statistics:

total : 1840 ms 2437 cycles 2990 repairs 2438 penalties

solution : 980 ms 59 cycles 53.26 % 3.757e-01 score

soft solution : 830 ms 42 cycles 45.11 % 8.651e-06 score

benchmark : 1324 c/sec 1625 r/sec 1 r/c

blind alleys : 0

detour : 2379 max 20 needed

costs : 1005.76 max 178.61 needed

utility : 8.366e-01 max 4.504e-01 needed 4.504e-01 min

The first part of the output above (starting with settings:...), the current parameters
of the GLS are listed in two tables: one for parameters common to the GLS pool, and
one with one column per GLS agent, showing agent specific parameters.

Up to five different debug levels, with increasing verbosity, can be selected with the
option -d <n>. The comparison function is indicated by ‘compare function: badness,’
and can be selected with the option -cmp <name>. There are two possible functions
badness and costs for comparing weights in the dependency analysis. The default
value is badness. The weighing function compares each local extreme, into which the
search converges, with the best previous dependency analysis in the GLS pool. The
line ‘interruption: no’ indicates that the algorithm has not been interrupted. During
analysis it is possible to interrupt and go into GLS command mode by pressing Ctrl-C.
The option -i <n> makes the system stop and enter GLS command mode automatically
after the specified number of cycles. The line parallelity : single describes the type
of the GLS pool. If there is more than one GLS agent, the method for combining the
heuristics can be selected with the options -coop and -comp (see examples d) and e)). If
neither is specified the agents co-operate. For now, it is only possible for all GLS agents
to either co-operate or compete.

13

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1.0

K
o
s
te

n

Score

β = 3.0

β = 0.1

Figure 1.1: Conversion of scores into costs

In the second part of the ‘settings’ the parameters of each GLS agent is shown in a
separate column. All GLS agent parameters are listed, with the initial values. The effect
of the parameters cutoff and normalization on the conversion of scores into costs is
shown in figure 1.1, and can be written mathematically as follows.

costs = |tanh(log(score) · β)| · γ

The normalization factor is β, and γ is the cutoff. The normalization factor influences the
heuristic selection of violated constraints to be repaired in each cycle. If β ≤ 1, the search
will be concentrated to areas of the search space with strong constraint violations, since
large addends of the costs of an injury are to due rather to individual strong Constraints.

If several weak constraints are violated, the normalization will decrease the combined
weight. Setting β ≥ 1 has opposite effect: weak constraints are satisfied first, until only
strong violations remain. To sum up, an agent with a small normalization factor will
quickly obtain a solution with no hard constraint violations, but will find it harder to
remove the remaining soft violations; with a large normalization factor it is the other
way around. Values 0.4 ≤ β ≤ 0.7 givers a good average of both these effects.

Other important parameters that control a GLS agent, are -g1 (λ1) and -g2 (λ2). They
adjust the influence of the weighted terms of the augmented cost function, which has the
following form:

costsaug = costs + λ1 · w1 − λ2 · w2

The GLS heuristics increases the weight w1 to lower the preference for the associated
dependency structures.2 If a dependency structure is used, which is in a local extreme

2At present only individual dependency edges have weights.

14

point into which the search converges, then weight w2 is increased, in order to heighten
the preference for the used structures.

Time limitations can be set for each agent. The start and end cycle within which an
agent is active can be specified with -from and -to; the maximum time that the agent
has at its disposal with -t. The option -tt specifies the maximum augmented costs
of a dependency analysis, and the option -u limits the minimum usefulness granted to
an agent. By default GLS uses a maximum time of 100000 milliseconds. The default
value of maximal augmented cost is to 1000. Reasonable values are grammar dependent
in each case and should always be determined by hand. All other parameters of a GLS
agent are for the time being unused.

The output produced by GLS during transformation can be configured with the system-
wide switch ‘progress’ (see section 1.2.42). A propeller-like animation and statistics
about the current search condition can be produced, and extreme points in the search
space are indicated with a star (*) at the beginning of the status line, which has the
following parts:

(a) Marking or animation at the start of line; Stars (*) indicate an improved dependency
analysis.

(b) Identification of the active GLS agent.

(c) Time used by the algorithm.

(d) Usefulness of the active agents, divided into current, minimal, and maximal useful-
ness (found so far).

(e) Quality of the search state, divided into number of hard and weak conditions vio-
lated, and the score without considering hard violations.

If an agent terminates, the reason is reported. In the example above, the line

INFO: further usage of net 0 too expensive

says that the augmented cost of the current search state exceeds the limit. The line

INFO: best parse found is ‘parse7’ with score 3.757e-01

indicates that the condition was integrated into the system as a ‘parse’ and is available for
further use after the GLS module has terminated. Not only these dependency analyses
are retained, but all intermediate solutions that are produced. Finally, some statistics are
printed of the performance profile of the GLS module. There are three lines of particular
interest.

total : 1700 ms ...

solution : 910 ms ... 53.53 % ... 3.757e-01 score

first solution : 780 ms ... 45.88 % ... 8.651e-06 score

The processing took 1700 milliseconds in total. The first intermediate solution, with no
hard constraint violations, was found after 45.88% of the time. The final dependence
analysis was determined after 53.53% of the time. The remaining time was used to fulfill
the stated termination criteria.

b) Integration of agent heuristics

15

cdgp> gls -g1 3 -g2 0.03 -n 0.6 -dt 1000

The penalty weight adjustment parameter -g1 3, gives the control heuristics a relatively
strong influence over the local gradients of the augmented cost function. The adjustment
parameter -g2 0.03 strengthens the variable allocations used in a local extreme point.
(?) The parameter -dt 1000 sets an upper limit to the number of iterations of the
GLS heuristics. If this limit is reached without finding a better solution, the GLS agent
returns the best state found.

c) Unary pruning in GLS

cdgp> gls -n 0.6 -up 2

The parameter -up 2 means that the lowest 2% of each domain are deleted, if a local
extreme point is found. Since GLS sorts the domains using the augmented cost function,
more promising values are found in the upper range of a domain and more expensive
values in the lower part. Unary pruning is a particularly useful heuristic for problems
with very large search spaces.

d) Two co-operating GLS agents

cdgp> gls -g1 0.5 4 -g2 0.03

When two or more values are given to a parameter, a separate agent is started for each.
In the example above, two agents are used: agent 0 with the cost function reduced by
half (-g1 0.5), and agent 1 with the cost function increased by a factor four (-g1 4).
One effect of this is that agent 0 needs a larger number of cycles to reach the same
domain configuration as an agent 1, and the two agents will use completely different
routes through the search space.

e) Two competing GLS agents

cdgp> gls -n 0.01 0.6 -comp

The parameter -comp prevents the distribution of data about the search results between
the agents in the pool. It is unclear if this is useful or not.

f) Two sequential GLS agents

cdgp> gls -n 0.01 0.6 -from 0 9999 -t 1000 99000

It is possible to run agents sequentially, by giving them non-overlapping time limits.
Here, agent 0 (-n 0.01 -from 0 -t 1000) runs alone, since agent 1 (n 0.6 -from 9999

-t 99000) begins running only at cycle 9999. If no agent is running, the next agent in
line is started. Agent 1 thus begins his search prematurely, when agent 0 stops, although
the cycle 9999 has not been reached.

1.2.15 The command ‘help’

The parameters to the command ‘help’ are names of other commands, whose help text is
shown. If no parameters are given, help for all the commands is provided.

16

1.2.16 The command ‘hierarchy’

Shows some or all hierarchy definitions that are loaded. If no parameters are given, all
definitions are listed, otherwise only those specified.

cdgp> hierarchy ont

ont ->

top(

animate(

human

animal

)

inanimate(

thing

building

)

)

;

1.2.17 The command ‘hook’

This command is not crucial for the normal use of cdg. It used to turn on and off certain
functions in the system, mainly for presentation purposes.

The most important hook functions are printf and flush, which control the standard
output. In the line oriented cdg this is the terminal from which cdg was started. In xcdg it
is a special window of the graphical interface.

The other hooks that are available at present are mostly for communication with the graph-
ical interface.

Syntax: hook [on|off|reset | <HookName> [on|off|reset]]

All the hook functions (except printf and flush which are treated separately) can be
switched on/off with hook on|off. Individual functions can be controlled by specifying
their name as parameter. Their counters, which keep track of the number of calls, can also
be reset.

cdgp> hook

No Name State Count

00 buildnodes disabled 0

01 eval disabled 0

02 netsearch disabled 0

03 printf enabled 3672

04 flush enabled 100

05 agenda disabled 0

hooking disabled.

17

1.2.18 The command ‘incrementalcompletion’

This instruction starts an incremental search for dependency analyses of the word graph that
is indicated as parameter. In each iteration the structure of the previous found sentence
prefix is used as reference point for the further search.

The incremental search is configurable through the CDG variable icparams.

1.2.19 The command ‘inputwordgraph’

This command is used to define linear word graphs on the command line. The entered
sentences are automatically designated wordgraph0, wordgraph1, etc. and can be used im-
mediately in the further processing.

cdgp> inputwordgraph die Katze jagt den Hund

INFO: wordgraph id: wordgraph0, #arcs: 5

cdgp>

Note that you need to separate punctuation marks from normal words with whitespace in
order to have them recognized as separate tokens. Alternatively, you can set the variable
tokenizer to specify a more intelligent program that tokenizes the line properly.

1.2.20 The command ‘isearch’

This command has been superseded by the command ‘incrementalcompletion’.

1.2.21 The command ‘level’

The command ‘level’ lists some or all loaded level definitions. If no parameters are given it
lists all, otherwise only those specified.

cdgp> level

list of level declarations

0 shown used SYN # VFIN SUBJ OBJA PMOD PN DET AMOD GMOD ADV JUNK;

1 shown used SEM # ROOT AGENT THEME LOCATION DIRECTION PREP DUMMY;

number of binary constraints between values of given levels:

| 0 1

----|---------

0 | 28 6

1 | 6 4

Level SYN uses 5 features: syn:gen syn:pers syn:num syn:cat syn:case

Level SEM uses 1 feature: sem:cat

18

For each level it is indicated whether it is used and/or shown (cf. the commands ‘showlevel’

and ‘uselevel’), the label of the level, and the characteristics that defines it. Then comes a
table indicating how many binary constraints there is between every pair of levels. Finally,
the word attributes used are also listed, for each level.

1.2.22 The command ‘levelsort’

This command defines the order of the levels in the grammar, used for sorting the constrain
nodes. This is used to optimize the run time behaviour of the search. Sorting can be turned
off with the command ‘set sortnodes off’. If the command ‘levelsort’ are to be used to sort
the nodes, then the command ‘set sortnodes prio’ should be given first. It is better to sort
more independent and important variables (or constraint nodes) before purely technically
motivated levels. Thus it makes more sense to find the syntactic assignment of all nodes,
before instantiating the mirror planes of the syntax. Without sorting, all the levels are
analysed for one word before moving on to the next word, so if there is a hard conflict on
the syntax level, all the other levels for the earlier word were analysed unnecessarily. In
other words sorting the levels permits earlier recognition of conflicts.

When the grammar files are loaded, the levels are initially sorted after the number of con-
straints per level, which gives an optimal sort order in many cases. In other cases, it is a
poor choice with a negative impact on the search performance.

The command ‘levelsort’ takes as parameters a complete list of all level names, in the desired
order. If given with no parameter, it lists the active sort order.

cdgp> levelsort

INFO: order of levels: SYN DET VC1 VC2 DOM SEM

cdgp> levelsort SYN SEM DOM DET VC1 VC2

INFO: order of levels: SYN SEM DOM DET VC1 VC2

cdgp>

1.2.23 The command ‘lexicon’

The command ‘lexicon’ lists some or all of the loaded lexicon entries. If no parameters are
given, all entries all listed; otherwise only those specified as parameters. Either lexicon
names, or word forms can be specified. In the latter case all the entries for the word, if it is
ambiguous, are listed.

cdgp> lexicon Katze

Katze_nomsg := Katze : [syn:[cat:noun, num:sg, case:nom, pers:3, gen:fem]];

Katze_accsg := Katze : [syn:[cat:noun, num:sg, case:acc, pers:3, gen:fem]];

Katze_datsg := Katze : [syn:[cat:noun, num:sg, case:dat, pers:3, gen:fem]];

Katze_gensg := Katze : [syn:[cat:noun, num:sg, case:gen, pers:3, gen:fem]];

1.2.24 The command ‘license’

This command displays the software license of the system.

19

1.2.25 The command ‘load’

The command ‘load’ loads one or more files with constraints, level definitions, lexicon entries,
word graphs, analyses, hierarchy definitions and statistical parameters. The different types
of data can be mixed arbitrarily. The respective number of inputs are shown during loading,
in the order given above. If any errors occur while loading, then none of the inputs are
accepted. Warnings are only for information.

If the name of an input file ends in .m4, then the file contents are first processed by the
pre-processor m4 and afterwards by cdg.

If a grammar structure is loaded that has the same type and designator as a structure
already in memory, then the older version is over-written.

cdgp> load test/all

file ‘test/all’ loaded: 12/2/13/3/2/0/0

If a loaded file contains #pragma commands, they are executed only after the load has
succeeded. This is so that an input file can specify both a grammar element and a command
that references it.

1.2.26 The command ‘ls’

The command ‘ls’ corresponds to the operating system command ‘ls -laF’.

cdgp> ls /home/ingo/dawai/test/

total 118

drwxr-x--- 2 ingo nats 512 May 15 10:43 ./

drwxr-x--- 13 ingo nats 512 May 15 17:28 ../

-rw-r----- 1 ingo nats 5048 May 7 09:46 all.cdg

-rw-r----- 1 ingo nats 3316 May 13 14:13 berlin-sorten.cdg

-rw-r----- 1 ingo nats 4245 May 12 09:57 berlin.cdg

-rw-r----- 1 ingo nats 5039 May 13 09:33 dom.cdg

-rw-r----- 1 ingo nats 4489 May 7 09:46 fail.cdg

-rw-r----- 1 ingo nats 2431 May 15 10:43 frau.cdg

-rw-r----- 1 ingo nats 2787 May 7 09:46 menzel.cdg

-rw-r----- 1 ingo nats 989 May 7 09:46 mini-menzel.cdg

-rw-r----- 1 ingo nats 2139 May 2 16:51 parkplatz.cdg

-rw-r----- 1 ingo nats 4250 May 6 17:50 parkplatz2.cdg

1.2.27 The command ‘net’

The commands ‘net’ activates one or more constraint nets. If no parameters are given, all
nets are activated, otherwise, only those specified as parameters.

cdgp> net net0

--

id: net0

state: 0

20

nodes:

0 die_sg_fem_nom(0,1)-SYN 0:

1 die_sg_fem_acc(0,1)-SYN 2:

DET-Frau_sg_acc(1,2)[1]

DET-Tochter_sg_acc(4,5)[1]

2 Frau_sg_nom(1,2)-SYN 1: SUBJ-sehen_tr_sg_3_pres(2,3)[1]

3 Frau_sg_acc(1,2)-SYN 1: OBJ-sehen_tr_sg_3_pres(2,3)[1]

4 sehen_tr_sg_3_pres(2,3)-SYN 1: ROOT-NIL[1]

5 die_sg_fem_nom(3,4)-SYN 0:

6 die_sg_fem_acc(3,4)-SYN 2:

DET-Frau_sg_acc(1,2)[0.05]

DET-Tochter_sg_acc(4,5)[1]

7 Tochter_sg_nom(4,5)-SYN 1: SUBJ-sehen_tr_sg_3_pres(2,3)[1]

8 Tochter_sg_acc(4,5)-SYN 1: OBJ-sehen_tr_sg_3_pres(2,3)[1]

#nodes: 7/9

#paths: 4

values: #min 1, #max 2, #total 9, average 1.29

#edges: 64

--

For those nodes in the net that are ambiguous, the number of lexemes represented by the
node are given in braces (‘{}’):

[...]

10 krankenhaus_nom(1-2)/SYN 3:

SUBJ-->liegt_3_sg(2,3)[1]

SUBJ-->liegt_2_pl(2,3)[0.007]

PN-->in(3,4)[2.5e-06]

11 krankenhaus_acc(1-2)/SYN 3:

SUBJ-->liegt_3_sg(2,3)[0.05]

SUBJ-->liegt_2_pl(2,3)[0.00035]

PN-->in(3,4)[5e-05]

12 krankenhaus_dat(1-2)/SYN 3:

SUBJ-->liegt_3_sg(2,3)[0.05]

SUBJ-->liegt_2_pl(2,3)[0.00035]

PN-->in(3,4)[0.001]

=⇒ 6 krankenhaus{3}(1-2)/SEM 4: ⇐=

AGENT-->liegt_3_sg(2,3)[0.0121]

THEME-->liegt_3_sg(2,3)[1]

AGENT-->liegt_2_pl(2,3)[0.0121]

THEME-->liegt_2_pl(2,3)[1]

21 liegt_3_sg(2-3)/SYN 1: VFIN-NIL[1]

22 liegt_2_pl(2-3)/SYN 1: VFIN-NIL[1]

=⇒ 26 liegt{2}(2-3)/SEM 1: ROOT-NIL[1] ⇐=

[...]

1.2.28 The command ‘netdelete’

The command ‘netdelete’ deletes one or more constraint nets from the system. If no param-
eter is given, all nets are deleted, otherwise only those that are specified.

cdgp> netdelete net0

21

1.2.29 The command ‘netsearch’

The command ‘netsearch’ performs a search in the specified constraint net. For the time
being, the following options are available.

• ‘branchbound’: a best-first search where partial solutions with a lower score than the
best total result so far, are rejected (branch and bound). The two additional param-
eters are the maximum size of the agenda, and an absolute threshold for evaluations.
Note: If this search method is used with constrains that have a cost larger than one,
the result is undefined.

This is the standard search method.

• ‘fullsearch’: This search method is similar to ‘branchbound’, except that no partial
solutions are eliminated.

cdgp> netsearch net0 branchbound 1000

INFO: agenda size set to 1000

INFO: solution with score 1.000e+00 found

INFO: the search took 53 steps

INFO: net: net0, wordgraph: KORR/1

INFO: agenda size: 33/1000, 1 solution(s) with score 1.000e+00:

--

+----- compared to annotation ‘|’ label, ‘-’ dependency

|

| +--- modifier ‘-’ lexical entry, ‘*’ word form

| |+-- label

| ||+- modifiee ‘-’ lexical entry, ‘*’ word form

| |||

00 #5 der_mas_sg_nom(0-1)/SYN--DET-->parkplatz_nom(1-2) (1.000e+00)

01 #20 parkplatz_nom(1-2)/SYN--SUBJ-->liegt_3_sg(2-3) (1.000e+00)

02 #35 liegt_3_sg(2-3)/SYN--VFIN-->NIL (1.000e+00)

03 #40 hinter(3-4)/SYN--PMOD-->liegt_3_sg(2-3) (1.000e+00)

04 #61 der_fem_sg_dat(4-5)/SYN--DET-->fleischerei(5-6) (1.000e+00)

05 #68 fleischerei(5-6)/SYN--PN-->hinter(3-4) (1.000e+00)

INFO: #unary best: 6/6 6 0 0 0 0 0 0 0 0 0

--

INFO: net: id net0, wordgraph KORR/1

#nodes 15, #edges 210

#evaluations: 0 unary, 0 statistics, 0 binary

#values: min 1, max 7, total 70, average 4.67

cache: size 70, #hits 116, 1.7 per each

When the search has finished, the best scoring solutions are listed. For each of them, all
connections are listed, and for each connection is listed its sequence number, the arc data,
and the unary score. The arc data consists of the label and position of the sub-ordinated
lexeme, the level name, the arc label, and the label and position of the super-ordinated
lexeme (or NIL if the arc points to a root).

After the list of connections it is shown how many of them had the highest unary score (in
the example, all of them), and after that comes information about the underlying constraint
network.

22

If the solution violates any constraints, then these are enumerated after the list of connec-
tions. The output

syn_det_adj_numerus(1.000e-01): 00-01

means that the bindings 00 and 01 violates the binary constraint syn_det_adj_numerus

with a value of 0.1.

A constraint can only be violated once by any particular set of edges. Given the following
basic constraint

// A verb can not have two complements.

X:SYN, Y:SYN : verb_arity_two(?) : syn_verb : 0.95 :

X^syn:cat=verb

& X^id=Y^id

& distance(X@id,X^id) > 0

& distance(Y@id,X^id) > 0

-> X@id=Y@id;

and the sentence ‘Ich dich sehe,’ there is only one violation of the constraint, and the total
score is only decreased once, even though both pairs of edges, (0, 1) and (1, 0), violates the
constraint.

INFO: net: net1, wordgraph: wordgraph0

INFO: agenda size: 4/1000, 1 solution(s) with score 4.750e-01:

--

+----- compared to annotation ‘|’ label, ‘-’ dependency

|

| +--- modifier ‘-’ lexical entry, ‘*’ word form

| |+-- label

| ||+- modifiee ‘-’ lexical entry, ‘*’ word form

| |||

00 #0 ich(0-1)/SYN--SUBJ-->sehe(2-3) (1.000e+00)

01 #4 dich(1-2)/SYN--OBJA-->sehe(2-3) (5.000e-01)

02 #6 sehe(2-3)/SYN--VFIN-->NIL (1.000e+00)

INFO: #unary best: 3/3 3 0 0 0 0 0 0 0 0 0

syn_obja_pos(5.000e-01): 01

verbzweitstellung(9.500e-01): 00-01

--

If several equivalent solutions were found, then the differences between successive solutions,
or between solution and annotation, is shown in the columns in front of the connections.

If the command line option ‘-m’ is given to the program, then those connections in the
constraint network the were not selected are deleted after the search has finished.

23

1.2.30 The command ‘newnet’

The command ‘newnet’ creates a new constraint net from a word graph, whose label must
be given as a parameter. Information is displayed about lexeme-graphs, the label of the new
net, the number of nodes and edges, and the scores of unary, statistic and binary constraints,
as well as the domains of the nodes.

cdgp> newnet test1

INFO: lexem graph: #nodes 9, min 0, max 5, #paths 16

INFO: net: id net0, #nodes 9, #edges 64

#evaluations 869/0/224

values: #min 0, #max 2, #total 9, average 1.00

cache: size 86, #hits 1728, 20.1 per each

For efficiency, the computed scored for the constraints are held in a cache. The final line in
the output gives statistic data about the use of this cache.

1.2.31 The command ‘nonspeccompatible’

This commands identifies constraints that might show undefined behavior if a dependency
analysis with under-specified nodes is evaluated. At present such structures are created by
the command ‘isearch’ only.

1.2.32 The command ‘parsedelete’

Deletes parses. If the first parameter is -w, and the second is the name of a word graph, then
all parse structures for that word graph are deleted. Structures derived from annotations
are not deleted unless a third parameter -f is also given.

1.2.33 The command ‘parses2prolog’

Writes all currently existing parses to the specified file in Prolog format as per the following
(pseudo-)BNF. The number of annotations that were written to the file are printed on the
screen.

<File> ::= { <Parse> }*

<Parse> ::= parse(<Id>,<LaId>,<Words>,<Levels>,<Labels>,<Nvs>,<VSs>,<Nvl>,<VLs>).

<Id>,<LaId> ::= <Quoted Prolog atoms>

<Words> ::= <Prolog list of Word>

<Word> ::= word(<From> , <To> , <String> , <Description>)

<From>,<To> ::= <Prolog integers>

<String>,<Description> ::= <Quoted Prolog atoms>

24

<Levels>,<Labels> ::= <Prolog list of quoted atoms>

<VSs> ::= <Prolog list of integers>

<VLs> ::= <Prolog list of quoted atoms>

<Nvs>,<Nvl> ::= <Prolog integers>

The lattice label (LaId) identifies the word graph, as in the output from annos2prolog

(section 1.2.3). The two integers <Nvs> and <Nvl> gives the lengths of the lists <VSs> and
<VLs>. These two numbers will always be the number of words (Words) times the number
of levels (Levels).

1.2.34 The command ‘predict’

This command adds an external program to be called whenever a parsing problem is created.

The command takes two arguments: the name of a knowledge source and the complete
invocation that will be executed. The name should be a descriptive string, but is not
otherwise used by CDG. The invocation need not contain the full path to the program if it
can be found in the PATH environment variable.

Whenever a new constraint net is created, the specified program will be run on the list of
words (and syntactical categories if taggerCategoryPath is set) of the word graph in ques-
tion. Its output will be scanned for predictions that are then available for use in constraints
via the ‘predict’ function.

Example: a part-of-speech tagger could be registered by the command

predict tagger my-tagger.sh

When a new constraint net is created from the sentence ‘Sag mir die Wahrheit!’, this com-
mand will be executed on a file with the contents

sage

mir

die

Wahrheit

!

and will (hopefully) reply with

sage VVIMP 1.000

mir PPER 1.000

die ART 1.000

Wahrheit NN 1.000

! $. 1.000

25

After this, the formula predict(X@id, tagger, VVIMP) will evaluate to 1 when applied to
the first word in the lexeme graph, while the formula predict(X@id, tagger, VVFIN) will
evaluate to 0.

A predictor can request more information from the program than just the sequence of words.
Any additional arguments to the ‘predict’ command are interpreted as feature requests. For
instance, a predictor could be interested in the base form of each word, and the category
that POS tagging predicted for it. Such a predictor can be registered with the command

predict attacher attach.pl cat base

and might then receive the input

sage VVIMP sagen

mir PPER -

die ART -

Wahrheit NN Wahrheit

! $! -

cdg computes the strings that are passed to the predictor in the following way:

• If the request is ‘cat’, it searches the predictions that were already made for each
word. If a prediction is found whose value is a number, the prediction whose value is
the highest number is returned. This can be used in combination with previous POS
tagging to determine the probable category of a word.

• All other strings are interpreted as attributes of the CDG lexicon. All lexicon items
that are available for the word are checked; if one is found that has the requested
attribute, its value for that attribute is printed. If no such lexicon item can be found,
the string ‘-’ is printed.

• If the ‘cat’ request was given, lexicon items whose value for the attribute taggerCategoryPath
matches the preferred category are preferred when deciding between different possible
values of the current request.

Example: Assume that POS tagging has been performed, and a predictor requests
the base form (‘base’) of the word ‘gefällt’. Assume further that the lexicon contains
different items with that reading, a finite form derived from ‘gefallen’ and a participle
derived from ‘fällen’. If POS tagging has established that the word is a finite verb, the
correct value ‘gefallen’ can be printed rather than the less probable ‘fällen’.

The mechanism can be used to attach arbitrary information to a sentence, if it is available.
A hypothetical perfect analyser could be registered with

predict oracle magic.sh

and might reply with

sage label S parent 0

mir label OBJD parent 1

die label DET parent 4

Wahrheit label OBJA parent 1

! label ROOT parent 0

26

Such an oracle can be approximated e.g. by supertagging.

If several predictors are registered via ‘predict’, they will be called in the order in which they
were registered.

To remove a predictor again, specify ‘off’ as the second parameter. (You cannot use a script
called ‘off’ to generate predictions, sorry.)

1.2.35 The command ‘printparse’

This command displays the specified dependency analysis in textual form. Syntax:

printparse [-f log|xml|cda] [<parse-id>]

Without any arguments it prints the most recently created parse, i.e. created using a solver
(netsearch, frobbing, gls . . .). The <parse-id> identifies a specific parse (like parse0,
parse1 . . .) that is to be shown. The option -f allows to choose between three output
formats:

• log: human readable output format (default)

• xml: print the parse using xml markup

• cda: format to reuse parses as annotations

Note, that the printparse command will output xml markup when the global xml variable
is set (see 1.2.42) even though -f xml is not used.

1.2.36 The command ‘printparses’

This command displays all the analyses of the specified constraint net, in textual form.

1.2.37 The command ‘quit’

The command ‘quit’ terminates the program.

cdgp> quit

bye

%

1.2.38 The command ‘shift-reduce’

This command starts a shift-reduce parser that tries to construct a valid structure on the
defined main level (auxiliary levels are computed in isolation as needed).

The parameters are key=value pairs with the following meaning:

27

Key Meaning Default value
beam <num> agenda size of local search 1

net <name> constraint net to use ””
policy <name> arbitration policy table

corpus <num> weight of corpus information 0.5

Defined values for policy are:

• exact:RLslrS: The exact action at the corresponding point in the program is used
(where r=REDUCE, R=RIGHT, s=shift, L=LEFT). Implies beam_width == 1.

• best: prefer the transitions that result in the best Badness.

• nivre: prefer transitions in the order LEFT–RIGHT–REDUCE–SHIFT.

• table: the transition is chosen that occurred most often in similar parse states in the
reference corpus.

• hybrid: the judgements of best and table are combined in non-obvious ways.

Shift-reduce parsing is highly experimental, but not under development; therefore there is
little point in using it.

1.2.39 The command ‘renewnet’

This command resets a constraint net to the original condition. All computed solutions
are removed, all deleted elements are restored, and all parameters are given the original
values. (This is sometimes useful after applying procedures that change the internal state
of a constraint net, such as ‘frobbing’, or if too many values were pruned away.)

cdgp> newnet test1

INFO: lexem graph: #nodes 9, min 0, max 5, #paths 16

INFO: net: id net0, #nodes 9, #edges 64

#evaluations 869/0/224

values: #min 0, #max 2, #total 9, average 1.00

cache: size 86, #hits 1728, 20.1 per each

cdgp> pruning net0

cdgp> renewnet net0

1.2.40 The command ‘reset’

This command returns the system to the starting conditions. All grammar definitions and
all computed analyses are removed from memory.

1.2.41 The command ‘section’

This command gives an overview of the defined constraint classes. See also the commands
‘activate’ and ‘deactivate’.

28

cdgp> section

active , 0 constraint(s), default

active , 5 constraint(s), syn

active , 5 constraint(s), sem

active , 2 constraint(s), map

1.2.42 The command ‘set’

This command allows control over CDG variables. The following variables are available:

• ‘CC’

• ‘CFLAGS’

• ‘INCLUDES’

• ‘LD’

• ‘LDFLAGS’

• ‘LDLIBS’

These variables correspond to shell variables used in compiling CDG constraints to C
code.

• ‘acoustics’: Setting this variable currently has no effect.

• ‘anno-categories’: This is a comma-separated list of features that are considered im-
portant by the grammar writer. They influence the behaviour of CDG in two places:

1. when renaming homonyms in the lexicon, the values of these features are used
preferably to construct unique names for each entries. This means that the com-
mand set anno-categories case,number,gender ensures that your determin-
ers will be renamed to der_nom and der_dat and not after some other feature.

2. when creating annotations, the values of these features are always recorded for
each word along with the word form, unless they are absent from the word.

• ‘annodirs’: This variable specifies directories where annotation files are stored. If
you put the annotation ‘foobar’ into the file ‘foobar.cda’ and point this variable to this
directory, it will be autoloaded, e.g. when you issue the command anno2parse foobar.
More than one directory can be given, separated with commas; they will be searched
in the specified order, and if the search in one directory is successful, later ones will
not be searched.

Files whose names end in this string are also detected, so you can have ‘automatic-
foobar.cda’ and ‘gold-foobar.cda’ side by side, and they will both be loaded when
appropriate.

To avoid creating directories with millions of entries, annotations may be kept in
numbered subdirectories instead of the directory itself, in batches of 10,000. If the
name of an annotation contains a decimal number, e.g. 528754, then the subdirectory
‘052’ of ‘annodirs’ will also be searched. (To deal with more than 10,000,000 sentences,
please extend the program.)

29

Autoloading of annotations works only when a particular annotation is explicitly
named; the command annotation s1 will autoload ‘s1.cda’ if necessary, but mere
annotation will only display all annotations presently in RAM; it will not autoload
all available annotations.

• ‘autocompare’: If set, all intermediate solutions of ‘netsearch’ will immediately be
evaluated for their recall.

• ‘cache’: Controls whether, during repeated evaluation of the same constraints, the
computation is actually repeated, or the result are computed once and then stored in
a cache. Use of the cache is normally switched on.

• ‘capitalizable-categories’: This should be a comma-separated list of lexical categories.
The items should be possible values for the feature given by ‘taggerCategoryPath’. If
set, words of these categories can be retrieved from the lexicon in their normal form
even when they appear capitalized in the input. For German, this often occurs with
ADJA words (and sometimes ART).

• ‘chunker’: If set, the chunk parser defined by ‘chunkerCommand’ will be applied to every
lexeme graph created. Its results will be accessible through the function ‘chunk head’

and its associated features in the constraint language.

• ‘chunkerCommand’: The shell command to call the desired chunk parser.

• ‘chunkerMode’: If set to real, the chunker as defined by ‘chunkerCommand’ will be
called on every lexeme graph. If set to fake, chunk information will be inserted by
reading the corresponding annotation, i.e., faked. If set to eval, the real chunker will
be called and evaluated against the annotation when the ‘chunk’ command is used.

• ‘compound-categories’: This should be a comma-separated list of lexical categories.
The items should be possible values for the feature given by ‘taggerCategoryPath’. If
set, even compounds that are formed unmarked (without a hyphen) can be looked up
in the lexicon by finding the simplex form if it belongs to one of these categories. For
example, ‘Großwesir’ will be handled by looking up ‘Wesir’ and copying its features.

See ‘deduceCompounds’ for detecting marked compounds.

• ‘debug’: Controls whether or not messages that have the tag DEBUG are shown. DEBUG
messages are more detailed than INFO and give internal information that the normal
user is not supposed to need for operating the program. Valid values are on and off.
Default is off.

• ‘deduceCompounds’: If set, lexicon lookup is allowed to substitute base forms for
marked compounds. This means that the query ‘lexicon queen-empress’ will succeed
even if ‘queen-empress’ is not in the lexicon, by looking up ‘empress’ and assuming
that the longer word carries the same features. The word ‘actor/producer’ is likewise
deduced from the word ‘producer’.

This only works for compounds with a hyphen or a slash in them; see ‘compound-

categories’ for detecting unmarked compounds.

• ‘edges’: This variable can be set to on, off, all, or few. It controls the production
of edges between the nodes of a constraint network. The complete investigation of a
constraint network is possible when this variable is set to all. Note: currently no
solution methods use constraint edges, therefore there is no reason ever to set this
variable.

30

• ‘encode-umlauts’: If this Boolean variable is set, text typed by the user on the command
line is subjected to the following substitutions:

”a ⇒ ä
”o ⇒ ö
”u ⇒ ü

”A ⇒ Ä

”O ⇒ Ö

”U ⇒ Ü
”s ⇒ ß

This allows you to type proper German umlauts even if your terminal doesn’t pass
eight-bit characters.

• ‘error’: Controls whether messages that have the tag ERROR are displayed or not. Valid
values are on and off. The default is on. ERROR messages should not be suppressed
since they indicate if an action is aborted.

• ‘eval’: This variable is not used.

• ‘evalmethod’: If set to interpreted (the default), constraints are evaluated by walking
the internal representation of their logical formulas. If set to compiled, the compiled
machine code is executed instead. Note: The constraint compiler is largely inoperable,
and where functioning does not actually speed up evaluation, therefore it makes no
sense to set this variable.

• ‘featureHierarchy’: This variable should be set to the name of a defined hierarchy of
values. When comparing the analysis of an utterance to an annotation, this hierarchy
is used to check any partially specified values in the analysis.

Say that an annotation specifies an attribute of gender=masc for an adjective, but
the lexicon only contains entries with the features fem and not_fem to save space,
because the masc and neut forms are identical, and the parser chose the not_fem

reading. Normally the comparison would count this as a mismatch. But if you point
featureHierarchy to the name of a hierarchy which makes this relation explicit, like
this,

Features ->

Gender -> fem neut masc,

not_fem -> neut masc;

then the verification engine allows not_fem as a less specified form of masc.

• ‘hint’: This variable is not used.

• ‘icparams’: Specifies the behavior of the command ‘incrementalcompletion’ in more
detail. The value must be a string which can contain different flags and options.

Option Meaning
-l Set the main analysis level
-f Set the name of the log file
-a Set the agenda size for the search phase
-1 – -5 Set individual heuristics in different classes

31

This variable can for example be set as follows:

set icparams ’-l SYN -a 10000 -1 1 -2 1’

• ‘ignorethreshold’: ‘frobbing’ does not try to repair conflicts whose score exceeds this
value. Therefore it should be set to a value between that of your error constraints and
your diagnostic constraints.

• ‘info’: Controls whether messages with the tag INFO are shown or not. Valid values
are on and off. The default is on.

• ‘locale’: The value of this variable is used as the LC_CTYPE for string operations that
cdg performs. If, for instance, you parse raw German text, you will need to set this
to de_DE or something similar so that cdg will know that ‘Über’ at the beginning of a
sentence may be an instance of ‘über’.

• ‘normalization’: If set to off, partial results in the search are only compared on the
basis their values. If set to linear, square, depth, or breadth, longer partial solutions
are given a higher score. Only affects the ‘netsearch’ command.

• ‘peekvaluemethod’: If set to compiled (the default), the features of a lexicon item are
pre-computed into a lookup table. If set to interpreted, they are found by descending
into the structure of the lexicon item in memory, which takes somewhat longer. Note:

although the possible values are the same, this has nothing whatsoever to do with the
‘evalmethod’ variable. In particular, pre-computed feature lookup can be used with
compiled as well as with interpreted constraints. It is fully functional and gives a
small but consistent speedup at no price. Therefore there is no reason ever to set this
variable.

• ‘preprocessor’: This variable contains the absolute path names of the pre-processor
used by the command ‘load’. Only files with the suffix ‘prepsuffix’ are pre-processed.
Default values are /opt/bin/m4 under Solaris, and /usr/bin/m4 under Linux. Since
the options -p and -S are given to this program, other pre-processors are not suitable.

• ‘prepsuffix’: Only files that end with this suffix are processed by the ‘preprocessor’.

• ‘profile’: Controls whether or not additional information about the time requirements
of individual actions are reported. The measurement accuracy is only 10ms. Possible
values for this variable are on and off. Default is off.

• ‘progress’: Controls whether messages that have the tag PROGRESS are shown. The
default is off.

• ‘prolog’: This variable has no effect.

• ‘searchmodifiesnet’: Controls whether searching a net may change it or not. Valid
values are on and off. Default is off.

• ‘searchresult’: Controls whether results are printed immediately after completing the
search of a constraint network. The default value is on. See also the command
printsolutions.

• ‘shift-reduce-table’: This is the name of the file used by ‘shift-reduce’ with the policy
table.

32

• ‘showdeleted’: This variable corresponds to the command line option ‘-d’ and controls
whether the display of a constraint net (see the command ‘net’) includes deleted values,
or not. If they are included, they are surrounded by square brackets.

• ‘sortnodes’: Controls whether or not the nodes are sorted when the command ‘newnet’

constructs a new net. Possible values are off, prio, and smallest. With prio

the order given by the command ‘levelsort’ is used. The value smallest means that
the nodes are sorted according to increasing domain size, i.e. the nodes with fewer
possibilities comes first. Default is off.

• ‘statistics’: Corresponds to the command line option ‘-s’ and controls the use of sta-
tistical parameters. Should not be used.

• ‘subsumesWarnings’: Controls the printing of warnings, if the function of ‘subsumes’

causes a type error. Can be set to full or sloppy.

• ‘taggerCategoryPath’: The name of the feature that specifies the part of speech for
lexicon items. For instance, if your lexicon items look like this

ich := [syn:[cat:pron, num:sg, pers:1, case:nom],

sem:[cat:ICH]];

then ‘taggerCategoryPath’ should be set to syn:cat. POS tagging only works when
this variable is set.

• ‘taggerCommand’: The shell command to call the desired POS tagger. It must be a
filter (read from STDIN and print to STDOUT).

• ‘taggerIgnoreImpossible’: If set, the POS scores assigned to categories that are not
actually possible according to your lexicon are ignored. (This will issue warnings
saying ‘Your lexicon does not allow ‘furl’ to be a verb’, but otherwise it has no effect
unless ‘taggerNormalizeToOne’ is also set.)

• ‘taggerNormalizeToOne’: If set, POS scores are normalized so that the highest score
assigned becomes 1. (Usually taggers emit true probabilities, so that even the preferred
value has a score lower than 1.) This is the recommended setting.

• ‘templates’: Controls the use of lexicon templates. If set to ‘never’, templates are never
used even if they are defined. If set to ‘always’, all matching templates will always
auto-generate lexicon items. If set to ‘ifneeded’ (the default), a matching template will
be used if there is no ordinary lexicon present for a form; but if there is even one normal
item, templates will not be used even if they would match. If set to ‘bycategory’, a
matching template will be used if there is no ordinary item of the same category. This
only works if ‘taggerCategoryPath’ is set, otherwise the behaviour reverts to ‘ifneeded’.

• ‘timelimit’: Indicates the number of milliseconds after which the search for a depen-
dency analysis is aborted. The value zero means unlimited.

• ‘tokenizer’: If this variable is set to a string, arguments to the Command ‘inputword-

graph’ are piped through a call to that program before being translated into arcs in the
lexeme graph. The program must be a filter (read from STDIN and print to STDOUT)
and print one tokenized word per line.

33

For instance, in an utterance such as “Stop!”, cdg would näıvely assume that it con-
tains only one word because there is no whitespace in it. A proper tokenizer would
recognize four words instead. This makes it easier to cut and paste normal text into
‘inputwordgraph’.

• ‘unaryFraction’: This variable can take a value between 0 and 1. Normally it has the
value 1. If it is set to a smaller value, then a limited pruning is done already when the
constraint network is constructed. In each constraint node, all values that fall below
a certain threshold are deleted. This threshold is the product of (1−unaryFraction)
and the best value in the node.

• ‘usenonspec’: Controls whether dependency edges that are explicitly underspecified
w.r.t. their regent are built into constraint nets or not.

• ‘verbosity’: Corresponds to the command line option ‘-q’ and controls whether ad-
ditional information is printed. (Its value is actually the bitwise superimposition of
the internal representation of those output flags that are currently set, e.g. ‘INFO’,
‘WARNING’ and ‘ERROR’, but you should set these flags under their symbolic name
instead.)

• ‘warning’: Controls whether messages that have the tag WARNING are printed, or not.
Possible values are on and off. The default is on. The difference between WARNINGs
and ERRORs is that execution is aborted when the latter, but not the former, occur.

• ‘xml’: Controls the printing of structured output in XML format. This output goes to
log files, not the screen. The default value is off.

cdgp> set verbosity on

1.2.43 The command ‘showlevel’

Display of the levels that are given as parameters to this command is toggled on or off.
When the display of a level is ‘off’ it is not included when information about the analysis is
printed. This command has no effect on the internal use of the level in computations.

See also the command ‘uselevel’.

cdgp> showlevel SYN

INFO: level ‘SYN’ isn’t shown now

1.2.44 The command ‘status’

The command ‘status’ prints information about the system status.

cdgp> status

constraints: 10

level declarations: 1

lexical entries: 7

wordgraphs: 1

annotations: 0

34

hierarchies: 0

parameters: 0

constraint nets: 0

verbosity: 1319

show deleted values: no

use statistics: no

search modifies net: no

normalize scores: no

subsumes warnings: full

build edges: yes

unary pruning factor: 1.000000

caching: yes

sort nodes: no

preprocessor: /opt/bin/m4

1 loaded file(s):

/home/ingo/dawai/test/frau.cdg

1.2.45 The command ‘tagger’

With the argument on, this command switches the POS tagger on, and with the argument
off it switches the tagger off. The variable ‘taggerCommand’ must have a suitable value.

1.2.46 The command ‘testing’

This command executes code that is, by definition, temporary and of no interest whatsoever
to the user.

1.2.47 The command ‘useconstraint’

This command toggles the use of the specified constraints on or off. The effect of setting
the use of a constraint ‘off’ is as if had never been defined.

cdgp> useconstraint syn_circle’

INFO: constraint ‘syn_circle’ isn’t used now

1.2.48 The command ‘uselevel’

This command toggled the use of the specified levels on or off. The effect of setting the use
of a level ‘off’ is as if had never been defined.

See also the command ‘showlevel’.

cdgp> uselevel SYN

INFO: level ‘SYN’ isn’t used now

35

1.2.49 The command ‘uselexicon’

This command directs cdg to an external database of lexicon items. The parameter must
be a string foo, and the file of CDG input and the index into this file (created with the
bundled indexer tool) will then be searched as foo.cdg and foo.db.

Giving this command multiple times is not cumulative; only the input file given last is
searched. See ‘closedb’ on closing the external data base.

1.2.50 The command ‘verify’

Compares the parse specified, or the last parse created if there is no parameter, to the
annotation with the same label. Four correctness measures are used:

• how many dependency edges have been established perfectly?

• how many dependency edges have been established perfectly except for the lexical
reading of the regent?

• how many dependency edges have been established perfectly except for lexical read-
ings?

• how many dependency edges have been established perfectly except for lexical readings
and labels?

1.2.51 The command ‘version’

The command ‘version’ prints the version number of the program.

cdgp> version

CDG parser v0.10beta (Build 8)

Ingo Schröder ingo.schroeder@informatik.uni-hamburg.de

Type ‘help’ for help.

1.2.52 The command ‘weight’

With no argument, displays all constraint weights.

With one argument, displays the weight of the specified constraint.

With two arguments, sets the weight of the specified constraint to the second argument. If
the first argument is not the name os a constraint, it may also be the name of a constraint
section; in this case all constraints from that section change their weights.

With three arguments, the first must be the name of a constraint, the second the string
absolute and the third a penalty. The specified constraint will have its penalty changed to
this constant penalty, even if it was variable before.

36

cdgp> weight cycle

cycle: 0.000e+00

cdgp> weight cycle 1

cdgp> weight cycle

cycle: 1.000e+00

cdgp>

1.2.53 The command ‘wordgraph’

The command ‘wordgraph’ lists some or all loaded word graphs. If no parameters are given,
all loaded word graphs are listed (but not those that would be autoloaded if they were named
explicitly).

cdgp> wordgraph

heiseticker-s1 : Konkursgerüchte, drücken, Kurs, der, Amazon-Aktie;

heiseticker-s2 : Begleitet, von, Marktgerüchten, über, den, bevorstehenden, Konkurs, von, Amazon, ,,

heiseticker-s3 : An, der, Nasdaq, rutschte, das, Papier, am, gestrigen, Mittwoch, kurz, sogar, unter,

...

If parameters are given, only those word graphs are shown whose label was explicitly given.

cdgp> wordgraph heiseticker-s1

heiseticker-s1 : Konkursgerüchte, drücken, Kurs, der, Amazon-Aktie;

cdgp>

If a parameter is not the name of a word graph, word graphs whose name includes the
parameter are shown instead.

cdgp> wordgraph s1

heiseticker-s1 : Konkursgerüchte, drücken, Kurs, der, Amazon-Aktie;

cdgp>

If the first parameter is ‘-c’, then all word graphs which contain the second parameter as a
word are shown.

cdgp> wordgraph -c Apple

heiseticker-s2908 : Quicktime-Hersteller, Apple, hatte, nach, Erscheinen, der, ersten, Beta-Version,

heiseticker-s2914 : Doch, viele, Hersteller, wie, Apple, ,, Flash, und, Adobe, haben, ihre, Software,

heiseticker-s3209 : Apple, iBook, :;

...

1.2.54 The command ‘writeannotation’

Finds the best analysis of the named constraint net and writes it to disk in a format suitable
for later CDG input.

37

1.2.55 The command ‘writenet’

This command produces a LATEXrepresentation of the specified constraint network, and
stores it in the specified file.

1.2.56 The command ‘writeparses’

Produces a LATEXrepresentations of all dependency analyses of the specified constraint net-
works, and stores them in the specified file.

1.2.57 The command ‘writewordgraph’

Produces a LATEXrepresentation of the specified word graphs, and stores them in the specified
file.

1.3 Example session

Here is shown an example of how an utterance can be analysed with the ‘cdg’ system.

% cdg

CDG parser

Ingo Schroeder ingo.schroeder@informatik.uni-hamburg.de

Type ‘help’ for help.

cdgp> load test/menzel

file ‘menzel.cdg’ loaded: 12/2/8/11/0/0/0

cdgp> status

constraints: 12

level declarations: 2

lexical entries: 8

wordgraphs: 11

annotations: 0

hierarchies: 0

parameters: 0

constraint nets: 0

verbosity: 1319

show deleted values: no

use statistics: no

search modifies net: no

normalize scores: no

subsumes warnings: full

build edges: yes

unary pruning factor: 1.000000

caching: yes

sort nodes: no

38

preprocessor: /opt/bin/m4

1 loaded file(s):

menzel.cdg

First, a file is loaded, that contains constraints, level definitions, lexicon entries, and word
graphs from Menzel (1995).

cdgp> wordgraph M/1/1

M/1/1 : M/1/1 :

0 1 pferde 0.000000

1 2 fressen 0.000000

2 3 gras 0.000000

cdgp> newnet M/1/1

INFO: lexem graph: #nodes 3, min 0, max 3, #paths 1

INFO: net: id net0, #nodes 6, #edges 18

#evaluations 230/0/188

values: #min 1, #max 2, #total 10, average 1.67

cdgp> net net0

--

id: net0

state: 0

nodes:

0 pferde(0,1)-SYN 2: SUBJ-fressen(1,2)[1] OBJ-fressen(1,2)[1]

1 pferde(0,1)-SEM 2: AG-fressen(1,2)[1] PAT-fressen(1,2)[0.7]

2 fressen(1,2)-SYN 1: ROOT-NIL[1]

3 fressen(1,2)-SEM 1: ROOT-NIL[1]

4 gras(2,3)-SYN 2: SUBJ-fressen(1,2)[0.03] OBJ-fressen(1,2)[1]

5 gras(2,3)-SEM 2: AG-fressen(1,2)[0.1] PAT-fressen(1,2)[1]

#nodes: 6/6

#paths: 1

values: #min 1, #max 2, #total 10, average 1.67

#edges: 18

--

Then, a constraint net is created, and its label (net0) returned. The six constraint nodes
can produce a solution, since they were not all eliminated by violating unary constraints
with a score of 0.0. The constraint network has 18 edges: from each node there is one edge
to a node with the same lexeme and a different level, and two edges to nodes with different
lexemes and the same level. There were 230 evaluations of unary constraints, and 188 of
binary ones; no statistic evaluations were made. With six nodes and ten values, there are
between one and two values per node with an average of 1.67.

cdgp> netsearch

INFO: using most recently created net ‘net0’

INFO: solution with better score 1.000e+00 found

INFO: agenda size: 5/1000, 1 solution(s) with score 1.000e+00:

--

+--- modifier ‘-’ lexical entry, ‘*’ word form

|+-- label

39

||+- modifiee ‘-’ lexical entry, ‘*’ word form

|||

00 pferde/SYN(0-1)->SUBJ->fressen(1-2)

01 pferde/SEM(0-1)->AG->fressen(1-2)

02 fressen/SYN(1-2)->ROOT->nil

03 fressen/SEM(1-2)->ROOT->nil

04 gras/SYN(2-3)->OBJ->fressen(1-2)

05 gras/SEM(2-3)->PAT->fressen(1-2)

INFO: #violated constraints: 0/0

--

The command ‘netsearch’ starts a global search for the best solution. A solution is found,
above, with a score of 1.0.

The command ‘netsearch’ is the safest way of testing a constraint grammar. The ‘classical’
method of making the nodes and edges consistent also works, however, as can be seen from
the following.

cdgp> newnet M/1/1

INFO: lexem graph: #nodes 3, min 0, max 3, #paths 1

INFO: net: id net1, #nodes 6, #edges 18

#evaluations 230/0/188

values: #min 1, #max 2, #total 10, average 1.67

cdgp> nodeconsistency net1 absolute 0.2

INFO: limit value set to 0.200000

cdgp> net net1

--

id: net1

state: 0

nodes:

0 pferde(0,1)-SYN 2: SUBJ-fressen(1,2)[1] OBJ-fressen(1,2)[1]

1 pferde(0,1)-SEM 2: AG-fressen(1,2)[1] PAT-fressen(1,2)[0.7]

2 fressen(1,2)-SYN 1: ROOT-NIL[1]

3 fressen(1,2)-SEM 1: ROOT-NIL[1]

4 gras(2,3)-SYN 2: [SUBJ-fressen(1,2)[0.03]] OBJ-fressen(1,2)[1]

5 gras(2,3)-SEM 2: [AG-fressen(1,2)[0.1]] PAT-fressen(1,2)[1]

#nodes: 6/6

#paths: 1

values: #min 1, #max 2, #total 8, average 1.33

#edges: 18

--

In making the network node-consistent, two possible solutions were eliminated. The nodes
with the indexes 4 and 5 now have only one possible value each.

cdgp> arcconsistency net1 rowcolumn 0.4

cdgp> net net1

--

id: net1

state: 6

nodes:

40

0 pferde(0,1)-SYN 2: SUBJ-fressen(1,2)[1] [OBJ-fressen(1,2)[1]]

1 pferde(0,1)-SEM 2: AG-fressen(1,2)[1] [PAT-fressen(1,2)[0.7]]

2 fressen(1,2)-SYN 1: ROOT-NIL[1]

3 fressen(1,2)-SEM 1: ROOT-NIL[1]

4 gras(2,3)-SYN 2: [SUBJ-fressen(1,2)[0.03]] OBJ-fressen(1,2)[1]

5 gras(2,3)-SEM 2: [AG-fressen(1,2)[0.1]] PAT-fressen(1,2)[1]

#nodes: 6/6

#paths: 1

values: #min 1, #max 1, #total 6, average 1.00

#edges: 18

--

As expected, the remaining ambiguity is removed by transferring the net into an edge-
consistent condition. The one remaining solution is the desired result.

1.4 Grammar elements

A constraint grammar can consist of lexical entries, level declarations and constraints, hi-
erarchy definitions, and data maps.3 Unless at least one level of analysis is declared, no
parsing is possible. The utterances to be analysed come in the form of word graphs and
annotations with category symbols and dependencies.

In addition to grammar elements, input files may contain cdg commands to be executed
at load time. Any line beginning with ‘#pragma ’ is interpreted as a cdg command. For
instance, a grammar of German would say

#pragma set locale de_DE

to ensure that it is always run with the correct locale set.

The Tables 1.1 to 1.8 specify the syntax of the inputs. Block comments begin with ‘/*,’ end
with ‘*/,’ and can be nested. Line comments begin with ‘%’ or ‘//’ and continue to the end
of the line. Symbols are either sequences of alphabetical characters, numbers, underscore,
and characters with the eight bit set, or sequences of arbitrary characters enclosed in single
(’) or double (") quotation marks.4

Quoted strings can span more than one line if the end of each line is marked with a backslash
(\).

1.4.1 Levels of analysis

Level declarations are written like this:

SYN # ROOT, SUBJ, OBJ;

SEM # ROOT, AG, PAT;

3There are also statistical parameters which should not be used.
4In earlier versions only seven bit characters were permitted. Since umlauts could not then be written, the

double quotation mark (") was also allowed. Strings were thus sequences of the characters [a-zA-Z0-9_"].
This prevented the use of " as a string delimiter, so the character ’ could not be allowed in a string. In the
current version all printable characters can occur in strings. The old behavior can be activated by changing
the specification of libcdg in the rule for producing scanner.l in the Makefile, according to the comment.

41

Number ::= [0-9]+

| [0-9]*.[0-9]+

String ::= ’[^\n’]*’

| "[^\n"]*"

| [_a-zA-Z\x80-\xff][a-zA-Z_0-9\x80-\xff]*

Table 1.1: Lexical units (defined by regular expressions)

A level declaration can be have properties with extra information:

Pragmatik [schwierig=ja, wichtig=ja] # label1, label2, label3;

These are pairs of strings, and are currently used in only one way by the software: if a level
carries the property ‘mainlevel’, then that level is displayed by xcdg as a tree with all other
edges as additional arcs.

BUG: Explain what ‘mirror’ levels are and how to specify them.

1.4.2 Constraints

Here are some example constraints:

// Kongruenz Subjekt - Verb

{X} : sy2 : syn : 0.1 :

X.level=SYN & X.label=SUBJ -> X@num=X^num;

// Korrespondenz Subj. - Ag. und Obj. - Pat.

{X:SYN, Y:SEM} : ss1 : map : 0.2 :

X^id=Y^id & X@id=Y@id ->

(X.label=SUBJ & Y.label=AG) | (~X.label=SUBJ & ~Y.label=AG);

A constraint begins with the declaration of the variables that it concerns. Unary and binary
constraints are allowed, but no constraints of higher arity. The name of a constraint variable
is arbitrary, but X and Y are recommended. In binary constraints, the two variables are
separated with a comma (or something else, see below).

InputSeq ::= empty
| InputSeq LexicalEntry ‘;’
| InputSeq LevelDecl ‘;’
| InputSeq Constraint ‘;’
| InputSeq WordGraph ‘;’
| InputSeq AnnoEntry ‘;’
| InputSeq Hierarchy ‘;’
| InputSeq Parameter ‘;’

Table 1.2: Input syntax (EBNF)

42

Label ::= String

LabelList ::= LabelList ‘,’ Label

| Label

LevelDecl ::= LevelId ‘[’ PropertyList ‘]’ ‘#’ LabelList

| LevelId ‘#’ LabelList

LevelId ::= String

Property ::= String ‘=’ String

PropertyList ::= PropertyList ‘,’ Property

| Property

Table 1.3: Level declarations (EBNF)

Instead of just the variable name, a constraint can be confined to variables of a particular
level by adding :<levelname> to the variable name. The effect of {X:SYN} rather then just
{X} is exactly as if the constraint body were prefixed with X.level=SYN ->, but the former
way is more efficient to evaluate.

A variable declaration can be confined further by replacing the colon with another connector
(e.g. {X!<levelname>}) that symbolizes the direction of an edge. If a variable declaration
uses such a direction indicator, then the constraint is applied only to those edges that fulfill
the condition. For all other edges the constraint is automatically fulfilled. The following
two constraints are thus equivalent:

// JUNK immer unter ROOT // JUNK immer unter ROOT

{X:SYN} : syn_junk : 0.0 : {X!SYN} : syn_junk : 0.0 :

Attr ::= String

| Number

AttrValue ::= Attr ‘:’ Value

Conjunction ::= Conjunction ‘,’ AttrValue

| AttrValue

Disjunction ::= Disjunction ‘—’ Value

| Value

LexicalEntry ::= Word ‘:=’ Value

LexicalEntry ::= Word ‘= ’ Value

Word ::= String

Value ::= String

| Number

| AttrValue

| ‘¡’ ValueList ‘¿’
| ‘[’ Conjunction ‘]’
| ‘(’ Disjunction ‘)’
| ‘#’Number‘(’ Disjunction ‘)’

Word ::= String

ValueList ::= ValueList ‘,’ Value

| Value

Table 1.4: Lexicon entries (EBNF)

43

~root(X^id) -> X.label!=JUNK; X.label!=JUNK;

Again, the only difference is that the second constraint is more efficient, since in many cases
it is not evaluated at all.

The following table lists all direction indicators:

Indicator Meaning Equivalent to

X|FOO X points to NIL root(X^id)

X!FOO X does not point to NIL ~root(X^id)

X/FOO X points to the right distance(X^id,X@id) < 0

X\FOO X points to the left distance(X^id,X@id) > 0

X:FOO No restriction true

The connexion between two edges can also be restricted in a similar way. These two con-
straints are equivalent:

// Es gibt nur einen Artikel. // Es gibt nur einen Artikel.

{X:SYN, Y:SYN} : syn_det_zahl : 0.0 : {X:SYN/\Y:SYN} : syn_det_zahl : 0.0 :

X^id = Y^id -> ~(X.label=DET & Y.label=DET);

~(X.label=DET & Y.label=DET);

The following connexion indicators are available for this purpose:

Indicator Meaning Equivalent to

X:FOO/\Y:BAR X and Y have the same regent X^id=Y^id

X:FOO\/Y:BAR X and Y have the same dependent X@id=Y@id

X:FOO||Y:BAR X and Y have no common words X^id!=Y^id & X^id!=Y@id &

X@id!=Y^id & X@id!=Y@id

X:FOO\Y:BAR X is below Y X^id=Y@id

X:FOO/Y:BAR X is above Y X@id=Y^id

X:FOO==Y:BAR X and Y are structurally the same X^id=Y^id & X@id=Y@id

X:FOO~=Y:BAR X and Y are structural inverses X^id=Y@id & X@id=Y^id

X:FOO, Y:BAR No restriction true

Both the direction and the connexion indicators can also be used in the constraint body, so
these two constraints, for example, are equivalent:

// Subjekt steht vorn // Subjekt steht vorn

{X:SYN} : syn_subj : 0.0 : {X:SYN} : syn_subj : 0.0 :

X.label = SUBJ -> distance(X^id,X@id) < 0; X.label = SUBJ -> X/;

Again, it is a good idea to use the connexion indicators in the constraint signature rather
than in the body where possible.

The next item after the variable declaration is the constraint name. Constraint names must
be unique within a grammar, or one of the constraints will be overwritten with a warning.

After the constraint name, a constraint section can be specified. When more than one
constraint is member of a section, all of them can be turned off or on at once with the
commands ‘activate’ and ‘deactivate’.

The last item before the constraint body is the declaration of its weight. If no weight is
specified in the constraint, it is set to a default of 0. The weight can be specified by an
expression that is evaluated.

44

// Je weiter entfernt, desto schlimmer

{X/SYN} : syntax : [1 / distance(X^id, X@id)] :

X.label = DET ->

distance(X@id, X^id) < 3;

The constraint body is a logical formula that must evaluate to a Boolean value. The following
operators and junctors are available:

Operator Meaning
() grouping
~ logical not
& logical and
| logical or
-> logical implication
<-> logical biimplication
+ arithmetic plus
- arithmetic minus
* arithmetic multiplication
/ arithmetic division
= equality
!= inequality
< numeric smaller
> numeric greater
<= numeric smaller or equal
>= numeric greater or equal
.label label of an edge
.level level of an edge

In addition, direction and connexion indicators (see above) can be applied to constraint
variables; they then function as boolean expressions.

Equality and inequality are defined both on strings and numbers. Note that = and != are
not exactly contrary: if at least one of their operands is undefined (e.g. an access to a
feature that the lexicon item does not contain, or any access to the regent of a NIL edge),
both operators always return false. This means that the two formulas X@foo != bar and
~(X@foo = bar) are not completely equivalent: if X@foo is not defined, the first will return
false, but the second will return true. In other words, the undefined value is neither equal
nor unequal to anything, not even itself.

The usual evaluation rules apply — times binds stronger than plus, and binds stronger than
or, null may not be divided by, etc. The operators .label and .level can be applied
to constraint variables and return the label or the name of the level of the corresponding
dependency edge as a string.

Formulas can evaluate to booleans, numbers, and strings (although the latter two cases are
actually ‘terms’ rather than ‘formulas’ internally). String and number literals can be written
directly without quoting. Boolean literals take the form true and false.

To access features of the words under consideration, the operators ^ (symbolizing an up
arrow) and @ (symbolizing nothing in particular) are used. The term X@foo evaluates to the
value of the feature ‘foo’ of the word at the lower end of edge X. The term X^foo does the

45

corresponding thing for the upper word. Thus, the formula X^case = X@case postulates
case agreement between regent and dependent.

Where features are declared as nested values, they are accessed via the : operator. If a
grammar sorts its features into syntactic and semantic, the case feature might be accessed
as X@syn:case or even X@syn:morph:case.

Several additional pieces of information about each word can be queried with the same
syntax, i.e. they act like features that are automatically defined for each word, but dependent
on the token rather than the type.5 The following pseudo-features exist:

pseudo-feature meaning
id identity
word phonetic form
from start of timespan
to end of timespan
info Verbmobil info field
chunk start previous chunk boundary
chunk end following chunk boundary
chunk type type of current chunk

The identity operation is used to pass a word to functions and predicates that expect lexeme
nodes; it is only necessary because X@ itself is not a valid term.

The ‘word’ pseudo-feature returns the form of the current word as specified in the lexi-
con. This may differ from the form that was specified in the lattice because cdg tries to
undo beginning-of-sentence capitalization and UPPER CAPS EXPRESSIONS when build-
ing parse problems. This means that a constraint can safely demand X@word = und and be
sure that it will always succeed on that word, even if the actual reading was ‘Und’ or ‘UND’.

‘from’ and ‘to’ return the start and end points of the time interval that the specified word
occupies in the lattice. Currently these time points are always truncated to integers at load
time, and they are always the first n integers in lattices that do not specify time information.
It is guaranteed that for successive words, one word’s ‘to’ is equal to the next word’s ‘from’.

‘info’ returns the Verbmobil comment string if one was specified in the lattice, or causes an
error otherwise.

The chunk-related pseudo-features return information that was computed by a chunk parser
if one was active while the lexeme graph was created. The exact values returned depend on
the chunk parser. In a typical NP, the three return values might be 3, 5, and ‘NP’.

When an error of any type occurs during evaluating a formula, evaluation is stopped and
the entire constraint fails immediately. Errors can occur

• when applying an operation to formulas that do not have a suitable type

• when accessing the upper word of a NIL dependency edge

• when querying a feature that the current word does not have

• upon arithmetic error

All formulas are guaranteed to be evaluated left to right, and short-circuit where possible.

5There is no sound reason why some accesses are defined as pseudo-features and others as built-in func-
tions; in fact, since the pseudo-features pollute the namespace for real features, a case could be made that
all of them should be built-in functions. Feel free to unify the input language.

46

1.4.3 Functions

The following functions (Function in table 1.5) are defined.

• ‘abs’: Returns the absolute value of the specified number.

{X} : ’Adverbs are positioned close to the verb.’ : 0.5 :

X.label=AMOD -> abs(distance(X@id, X^id)) < 4;

• ‘acoustics’: Takes a lexeme node and returns the score that the speech recognizer
assigned to this reading. (This is the number that can be specified after the time
information in the long form of a lattice definition.) If no number is specified there or
the lattice has been declared in the short form, the result is always 1.

{X} : Recognizer : [acoustics(X@id)] :

acoustics(X@id) = 1.0;

• ‘distance’: Takes two lexeme node labels and returns the distance between them.

{X, Y} : ’Subjects come before objects.’ :

X.label=SUBJ & Y.label=OBJ -> distance(X@id, Y@id) > 0;

• ‘exp’: Takes a number x and returns the value ex.

{X!SYN} : ’prefer short edges’ : [exp([1 - abs(X@to-X^to)] / 10)] :

abs(X@to-X^to) < 2;

• ‘height’: Takes a lexeme node n and returns the maximal height of a subtree whose
root is n.

{X!SYN} : ’prefer short edges’ : [exp([1 - abs(X@to-X^to)] / 10)] :

abs(X@to-X^to) < 2;

• ‘lookup’: This function takes to or more strings and returns user-defined data. The first
string must be the name of a user-defined map. The following strings are combined to
form a key into this map, and the corresponding value is returned.

For instance, German contains many verbs that take separable prefixes, and many
different prefixes, but not all verbs take all prefixes. Whether or not a prefix subordi-
nation is allowed therefore depends on two separate data items. With a suitable data
map (in fact, the one given as an example below), the condition can be expressed like
this:

{X!SYN} : ’falsches AVZ’ : init : 0.0 :

X.label = AVZ

->

exists(X^infinitive) &

lookup(AVZ, X@word, X^infinitive) = ok;

• ‘match’: This function takes three parameters: the name of a defined hierarchy, a
value list, and a string. The elements of the value list must be alternating strings and
numbers. Each string in the list is checked to see if it subsumes the third parameter.
If that is the case, the following number is returned as the result. Otherwise 0 is
returned. This function can be used in the following way:

47

sehr := sehr :

[cat: ADV,

modifies: <Adjektiv, 1, Verb, 0.9>

];

{X!SYN} : ADV_match : [match(Kategorien, X@modifies, X^cat)] :

X@cat = ADV

->

match(Kategorien, X@modifies, X^cat) = 1.0;

The second parameter can, instead of a list, be a single string. In this case the function
behaves exactly like the predicate ‘subsumes’.

• ‘max’: Takes two or more numbers and returns the largest.

• ‘min’: Takes two or more numbers and returns the smallest.

{X:SYN, Y:SYN_ND} : np_mod : syn_nd : 0.0 :

X@id=Y@id & ~root(Y^id) & ~root(X^id) ->

max(Y@to, Y^to) <= X^from | min(Y@from, Y^from) >= X^to;

• ‘parens’: This function returns the level of parentheses (introduced by round or square
brackets) that a word is in.

• ‘parent’: This function returns the timepoint of the regent of a given word:

{X:SYN,Y:SYN} : Idiom : 0.1 :

X^word = auf & X@word = Vordermann & Y@word = bringen

->

parent(X^id) = Y@to;

Obviously this is only useful to find the parent of the regent of a particular edge
X; the parent of its dependent is already available via the ^ operator, so instead of
parent(X@id), always write simply X^id.

The name of a unary constraint can be given as a second argument; the function
will then ascend the syntax tree recursively until it encounters an edge that does
not satisfay this constraint. If no unary constraint of that name exists, the second
argument is taken to be a label of the level that the edge belongs to; the search then
continues as long as intermediate edges carry this label.

• ‘phrasequotes’: Similar to ‘quotes’, this function returns the number of quotation marks
that a word is marked by, but it regards only such quotation that is not also marked
with commas. (This kind of quotation may be an indicator of nominalization.)

• ‘predict’: This function lets you access predictions that were made by external com-
ponents on the basis of the sequence of words in the input. The first parameter is
the word to which the requested prediction was attached; this is typically a term such
as X@id. The second parameter is the name of the predictor whose output should be
read, and the third parameter is the requested key. The return value is the value that
the predictor predicteed for that key. Depending on what property was previously
assigned, the result may be a number or a string.

A common use of this functionality is via the integrated POS tagger interface. If a
POS tagger was active when the lexeme graph was built, then each word will carry

48

a prediction about how likely the tagger said its category was. The keys into this
table are the syntactic categories used by the tagger, and the values are the respective
probabilities that it predicted. For instance, a token with the reading ‘der’ might carry
a prediction of 1.0 for the key ‘ART’ and of 0.1 for the key ‘PRELS’.

The usual way to use this score is to demand that it should be as high as possible.
Here’s how to integrate the POS tag score into a grammar with a cutoff of 0.1:

{X:SYN} : tagger : [min(0.1, predict(X@id, POS, X@cat))] :

predict(X@id, POS, X@cat) = 1.0;

Another predefined key for each word is the syntactic category that it really has.
This can only be determined when the taggerCategoryPath variable is set and an
annotation can be found for the lattice in question that specifies this attribute. For
instance, the same token ‘der’ in the example above might carry a property ‘cat’ with
the value ‘ART’. Reading this property is of course only allowed to measure the effect
that perfect part-of-speech tagging would have on a a grammar.

• ‘quotes’: This function returns the number of quotation marks that the word is nested
into. This will usually be 0 or 1.

The counting is only approximately accurate for various reasons:

– If an entire paragraph of text is quoted, but is modelled as individual word graphs,
the second and following sentences will have no quoting information associated
with them, since the computation only regards one word graph at a time.

– When sentence and quotation boundaries differ, opening and closing quotations
may be confused. However, neighbouring punctuation is used as a heuristic that
usually chooses the right alternative.

1.4.4 Predicates

Predicates differ from functions only in that they return Boolean values rather than strings
or numbers. The following predicates (Predicate in table 1.5) are defined:

• ‘between’: Takes two lexeme nodes and a string and returns TRUE if the two words are
separated by at least one instance of a punctuation character contained in the string.

{X!SYN} : ’comma needed for subclauses’ : 0.1 :

X.label = SUBC

->

between(X@id,X^id,",");

• ‘chunk head’: Takes a lexeme node and returns TRUE if chunk information is present
and the chunk parser designated this word as the head of its chunk.

• ‘compatible’: Takes three parameters: the name of one hierarchy and two types. It
returns ‘true’ if one of the types subsumes the other in the hierarchy.

49

• ‘connected’: Takes two lexeme nodes and returns TRUE if they are both part of the
same tree.

• ‘cyclic’: Takes the name of a level and returns TRUE if the dependency structure on
that level is cyclical.

• ‘exists’: Takes one parameter and checks if it contains a valid combination of attribute
values. Because of short-circuit evaluation, this function can be used to avoid errors
due to missing features:

{X} : ’Subjects are nominative’ :

X.label = subject

->

exists(X@case) & X@case = nom;

• ‘has’: takes a lexeme node identification and a string. It then determines whether on
the ‘current’ level (the level of the edge used to access the word), at least one edge
with the specified label exists that modifies this node.

This constraint posits that any noun has a determiner:

{X:SYN} : ’Nouns have determiners’ :

X@cat = NN -> has(X@id,DET);

The second argument may also be the name of a unary constraint; in this case, the
constraint is called on each candidate edge and the has succeeds if it succeeds at
least once. (This iteration short-circuits like a logical and, i.e. after one application
succeeds, the helper constraint is not called again.)6

If there is a third argument, it must be the name of a hierarchy which should be used
for label matching. Thus, a constraint can say ‘has(X@id,OBJA_OBJC,Labels)’, and
(assuming a fitting ‘Labels’ hierarchy) either OBJA or OBJC will satisfy the predicate.
This allows several calls to the simple form of ‘has’ to be merged into one.

If there is a fourth argument, the search is conducted recursively. The value of the
argument is a node in the previously specified hierarchy. This node subsumes all the
labels which are allowed on the path through the tree. So to express that anything
which has a relative pronoun in its scope is a relative clause, you can say

X@cat = vfin & has(X@id, find_prel, Labels, AUX)

->

X.label = REL

This constraint forces a verb to be a relative clause if one word in its VP has a relative
pronoun as a subordinate, but not if verb in a subordinated clause has a relative
pronoun, because then at least one label other than AUX will intervene.

If there is a fifth and sixth argument, they should be numbers and will then constrain
the range of time points within which a fitting edge will be searched.

Using this predicate in a constraint has far-reaching consequences. It turns local con-
straints into global constraints, which in some circumstances are more expensive to
evaluate. It is included because the only alternative way of providing this important
functionality is writing auxiliary levels which on the whole are just as expensive, but
less intuitive for modeling.

6Obviously the second version is allows everything the first does and much more. The first version is
retained both for backward compatibility and because it is clearer to read in simple cases.

50

• ‘is’: takes a lexeme node identification and a string. It then determines whether on
the ‘current’ level (the level of the edge used to access the lexeme node), the label of
this node is the specified string or not.

{X/SYN/\Y/SYN} : Vorfeld :

X^cat = VVFIN -> ~is(X^id,ROOT);

It is not useful to use is on an expression such as X@id, since the label of X is already
accessible as X.label; but by using it on X^id, the label of the unnamed (but unique)
edge above X and Y can be checked.

As with has, the second argument may also be the name of a unary constraint rather
than an edge label; in this case, the constraint is called on the tested edge, and the is

returns thhe result of this invocation.

A third and fourth parameter can also be specified, just like for has; the third specifies
a hierarchy within which the second parameter will be used as an inner node for
‘subsumes’ checks instead of equality tests. The fourth specifies another inner node in
the same hierarchy whose descendants are to be skipped recursively. For instance, if co-
ordinations are chained with the label ‘COORD’, then case agreement of structurally
distant conjuncts can be checked by saying

{X!SYN} : ’Subjekt-Kasus’ :

X.label = COORD &

is(X^id, SUBJ, Label, COORD)

->

X@case = nom;

Formally, use of the predicate ‘is’ turns a local constraint into a global constraint
just like ‘has’ does, but since the condition that it represents can often be checked in
constant rather than linear time, it is usually no more expensive than a normal local
constraint.

• ‘nonspec’: Takes a lexeme node specification and returns TRUE if it resolves to a NIL
binding or to an explicitly underspecified binding.

• ‘occur’: Takes a string as a parameter and checks whether this word form occurs
anywhere in the current sentence.

• ‘print’: Takes any number of parameters (numbers and strings), prints them on the
standard output, and returns ‘true.’

{X} : Ausgabebeispiel :

X@cat=Verb ->

root(X^id) &

print(’Hurra, Wurzel gefunden: ’, X@word) &

print(’ von ’, X@from, ’ bis ’, X@to);

• ‘root’: Takes one lexeme node identification and returns ‘true’ if it is the root node.

{X} : ’Verben an die Wurzel’ :

X@cat=Verb -> root(X^id);

• ‘spec’: The opposite of ‘nonspec’.

51

• ‘start’: Takes one lexeme node and returns ‘true’ if it is at the beginning of a word
graph (i.e. if it starts at the earliest possible time point).

• ‘stop’: Takes one lexeme node and returns ‘true’ if it is at the end of a word graph
(i.e. if it ends at the latest possible time point).

• ‘subsumes’: Takes three parameters: the name of a defined hierarchy and two character
strings. It returns ‘true’ if the first string subsumes the second in the hierarchy.

ontology -> top(animate(human, animal), inanimate);

{X} : ’Subjekt von sehen ist belebt.’ :

X^word=sehen & X.label=SUBJ ->

subsumes(ontology, animate, X@semtype);

• ‘under’: Takes two lexeme nodes and returns ‘true’ if the first word is directly or
indirectly subordinated under the second one.

1.4.5 Lexicon entries

Lexicon entries have the following formats:

auto :=

[cat:noun, num:sg,

prop:thing

];

’O Neal’ :=

[syn: [cat:name,

subcat:none,

agr:’3sg’

],

sem:foo:bar:baz

];

sich :=

[syn:[cat:pron, num:(sg|pl), pers:3, case:(dat|acc)],

sem:[cat:NIL]

];

The lexicon entries do not contain full feature structures, as in unification based grammars.
Co-reference and unification is not supported.

Embedded items in the feature structure can be referred to by giving all the attributes. The
expression X@syn:cat, for example, if X@ points to the lexeme sich as above, returns the
value pron. Each attribute can only occur once in the structure.

Lists of values (enclosed by ‘¡’ and ‘¿’) can only be accessed with the function ‘match’ and
not directly (cf. section 1.4.3).

Disjunctions are equivalent to writing a separate lexicon entry for each combination of
values. The last example above is thus an abbreviation for four different entries for ‘sich.’
Disjunctions can be recursively embedded:

52

der :=

[syn:[cat:def_article,

([num:pl, gen:(mas|fem|neu), case:gen] |

[num:sg, ([gen:mas, case:nom] |

[gen:fem, case:(gen|dat)])])

],

sem:[cat:NIL]

];

Disjunctions can be coupled together using indexes.

Tor :=

[syn:[cat:noun, gen: #1(neu|mas)],

sem:[cat: #1(BUILDING|PERSON)]

];

The condition above has two cases, not four. There is one case with syn:gen = neu and
sem:cat = BUILDING; one with syn:gen = mas and sem:cat = PERSON. In the current im-
plementation only index numbers 1–9 are supported.

When multiple lexicon entries describe the same orthographic form, they will be given
automatically generated labels. These labels are printed on screen if the command set

debug on has been given.

INFO: grapheme graph: #nodes 1, min 0, max 1

treffen ===> treffen_ø

treffen ===> treffen_1

treffen ===> treffen_3

INFO: lexem graph: #nodes 3, min 0, max 1, #paths 3

In this example, the lexicon contains three entries for the word ‘treffen.’ The automatic
renaming suggests that one stands in the first person, one in the third person, and that for
one the person is unspecified. Which features are preferably used in this renaming step can
be influenced by setting the CDG variable anno-categories.

It is also possible to write templates that generate lexical entries for unknown words as
needed. Instead of giving the exact form of a word, only a regular expression is given with
the operator =~. If an unknown word is encountered that matches the template, a lexical
entry is generated automatically as if it had been there all along. Here is how to provide for
all possible arabic numerals with only one lexical template:

’^[+-]?[0-9]+$’ =~

[cat:CARD,

case:bot,

person:third,

number:pl,

gender:bot,

sort:number];

Use of templates is governed by the setting of the ‘templates’ variable.

53

In addition to the template mechanism, cdg has a few more tricks up its sleeve when finding
lexical entries. First of all, when a capitalized word cannot be found and circumstances lead
it to suspect (such as at the beginning of a sentence) that its citation form is actually lower
case, the lower case form is looked up instead. Likewise, UPPER-CAPS words are tried
in their lower case versions if they are not found. Furthermore, words from the categories
named in ‘capitalizable-categories’ can be found even if they are actually capitalized in the
input.

Also, lexical entries can be accessed directly from disk without loading the entire list into
RAM. If the ‘uselexicon’ command is given, lexical entries are also looked up in the specified
database. This avoids huge memory consumption when using a real-word lexicon. The
external data base and its index must have been generated properly with the indexer

command available in the cdg package.

Finally, if deduceCompounds is set, cdg tries to detect explicitly compounded words. Then,
if there is no entry for ‘T-Aktie’ but one for ‘Aktie’, a lexicon entry for ‘T-Aktie’ will be
auto-generated when the need arises. The new entry has all the features of the old one
except that its phonetic form is different.7

Unmarked compounds such as ‘Stammaktie’ can also be detected if compound-categories
is set. It must be a comma-separated list of categories that are expected to form unmarked
compounds. For the STTS tagset a value might be ‘NN,ADJA,ADJD’.

1.4.6 Hierarchies

The term ‘hierarchy’ is not accurate. Both genuine hierarchies (trees) and directed acyclic
graphs can be defined.

types ->

top(concrete(animate(animal, plant), inanimate),

abstract(concept, event)

);

Verben ->

Verb -> Vollverb Auxiliarverb Modalverb,

Verb -> finit infinit Partizip,

INF <- Vollverb infinit,

FIN <- Vollverb finit,

PPP <- Vollverb Partizip,

VMODINF <- Modalverb infinit,

VMODFIN <- Modalverb finit,

VMODPPP <- Modalverb Partizip,

VAUXINF <- Auxiliarverb infinit,

VAUXFIN <- Auxiliarverb finit,

VAUXPPP <- Auxiliarverb Partizip

;

The two nodes ‘top’ and ‘bot’ are pre-defined as the top and bottom nodes in each hierarchy.
Therefore ‘top’ can not be subsumed by any other node, and ‘bot’ can not subsume another.

7Note that this kind of semantics is appropriate for German but not necessarily for other languages.

54

1.4.7 Data maps

Data maps are defined with the => operator. They can be accessed with the lookup()

function. Here is the beginning of a map that specifies the valence frames depending on the
base verb and prefix:

AVZ =>

ab arbeiten => A,

auf arbeiten => A,

aus arbeiten => A,

ein arbeiten => A,

heraus arbeiten => AC,

mit arbeiten => ’-’,

nach arbeiten => ’A?’,

weiter arbeiten => ’-’,

zusammen arbeiten => ’-’,

...

;

1.4.8 Word graphs

Here come two possible word graphs. The format is very similar to that used in Verbmobil.
Conversion between the two formats is trivial.

’M/1/1 Kette’ :

pferde,

fressen,

gras;

’M/1/1 Graph’ :

0 1 pferde 0.1,

0 1 er 0.05,

1 2 fressen 0.3,

1 2 befestigt 0.1,

2 3 gras 0.4;

The word graphs, of which there can be more than one per sentence, have the labels
‘M/1/1 Kette’ and ‘M/1/1 Graph’.

1.4.9 Annotations

Annotations are the manually specified correct analyses for the inputs. The following ex-
ample shows an utterance with syntactic categories and syntactic level dependencies.

’M/1/1’ : ’M/1/1’ <->

0 1 pferde

cat/noun

SYN->SUBJ->2

55

SEM->AG->2,

1 2 fressen

cat/verb

SYN->ROOT->0

SEM->ROOT->0,

2 3 gras

cat/noun

SYN->OBJ->2

SEM->PAT->2

;

The first identifier is the name of the annotation, the second is the name of the lattice that
it refers to. There can be more than one annotation for the same lattice.

Is important that the annotations and the word graphs fit each other exactly, i.e. that both
the start and end points, and the word forms are the same. Otherwise no comparison is
possible.

56

Attr ::= String

| Number

Connexion ::= ‘,’ |‘/\’ |‘\/’ |‘——’ |‘==’ |‘∼=’ |‘\’ |‘/’
ConstraintId ::= String

Constraint ::= ‘{’ VarList ‘}’ ‘:’
ConstraintId ‘:’ [[Section] ‘:’ Penalty ‘:’]
Formula

Direction ::= ‘:’ |‘—’ |‘\’ |‘/’ |‘!’ |
Formula ::= Term Relation Term

| Formula Junctor Formula

| Predicate ‘(’ TermList ‘)’
| Variable Connexion Variable

| Variable Direction

| ‘∼’ Formula

| ‘(’ Formula ‘)’
| ‘true’
| ‘false’

Function ::= String

Junctor ::= ‘&’ |‘|’ |‘->’ |‘<->’
Operator ::= ‘+’ |‘–’ |‘*’ |‘/’
Path ::= Path ‘:’ Attr

| Attr

Penalty ::= Number

| Term

Predicate ::= String

Relation ::= ‘=’ |‘>’ |‘<’ |‘>=’ |‘<=’ |‘!=’
Section ::= String

Term ::= Variable ‘ˆ’ Path

| Variable ‘@’ Path

| Variable ‘.label’
| Variable ‘.level’
| Term Operator Term

| Function ‘(’ TermList ‘)’
| ‘[’ Term ‘]’
| String

| Number

TermList ::= Term

| TermList ‘,’ Term

Variable ::= String

VarInfo ::= Variable Direction String

VarList ::= VarInfo

| VarInfo Connexion VarInfo

Table 1.5: Constraints (EBNF)

57

AnnoId ::= String

Arc ::= Stars From To Word [Penalty]
| Stars Word

ArcList ::= ArcList ‘,’ Arc

| Arc

From ::= Number

Penalty ::= Number

Stars ::= ‘*’ [Stars]
To ::= Number

Word ::= String

WordGraph ::= WordGraphId ‘:’ AnnoId ‘:’ ArcList

WordGraphId ::= String

Table 1.6: Word graphs (EBNF)

AnnoId ::= String

Annotation ::= From To Word SpecSeq

AnnoEntry ::= AnnoId ‘¡-¿’ AnnoList

AnnoList ::= AnnoList ‘,’ Annotation

| Annotation

DepKind ::= String

From ::= Number

Label ::= String

Position ::= Number

Specification ::= TagKind ‘/’ TagName

| DepKind ‘->’ Label ‘->’ Position

SpecSeq ::= empty
| SpecSeq Specification

TagKind ::= String

TagName ::= String

To ::= Number

Word ::= String

Table 1.7: Annotations (EBNF)

Hierarchy ::= Id ‘− >’ Sort

| Id ‘− >’ SubsumptionList

Sort ::= String ‘(’ SortList ‘)’
| String

SortList ::= Sort

| SortList ‘,’ Sort

SubsumptionList ::= SubsumptionList ‘,’ Subsumption

| Subsumption

Subsumption ::= String ‘− >’ TypeSeq

| String ‘< −’ TypeSeq

TypeSeq ::= TypeSeq String

| String

Table 1.8: Hierarchy definitions (EBNF)

58

Chapter 2

The Visualisator xcdg

2.1 Introduction

xcdg is a graphical shell around the cdg functionality. In principle, it duplicates the entire
command set of the command-line parser cdgp and adds methods for displaying and editing
syntax trees graphically. The main new features are

• visualization of defined hierarchies and dependency trees

• editing of dependency trees

• interactive grammar evaluation (changes to a dependency tree are immediately resub-
mitted to the active grammar)

2.2 Invocation

To call the graphical parser xcdg, specify the ‘-x’ option to the program cdg. Alternatively,
the graphical parser is called if the program is called under the name ‘xcdg’ (e.g. by linking
it to that name).

X11 resources for the program are read from a file called Cdgrc. For instance, these resources
specify the color scheme of dependency trees:

*ParseTree.nodeColor: gray50

*ParseTree.lineColor: black

*ParseTree.vlineColor: gray

*ParseTree.fontFamily: Helvetica

*ParseTree.fontSizes: -7 -9 -10 -12 -14 -16 -18

*ParseTree.wordColor: black

*ParseTree.labelColor: black

*ParseTree.highlightColor: white

*ParseTree.errorColor: red

59

Usually the program uses the version of Cdgrc in the directory where xcdg is installed. To
use different resources, create your own version of that file and load it in your .xcdgrc via
the ‘options’ command (see 2.5.1).

Upon startup, xcdg loads the file .xcdgrc and runs all commands in it. This file is searched
first in the current directory and then in the home directory of the user. xcdg does not run
the user’s .cdgrc file by default. To have this happen, you can the ‘run’ command in the
.xcdgrc file (see 2.5.1).

The following command-line options are unique to xcdg:

• -grammarpath <path> sets a path to load grammars from. All this does is to set the
default value in file selection dialogs.

• -noinit inhibits processing of ~/.xcdgrc.

• -user specifies starting up in ‘user mode’ (see 2.8).

2.3 The xcdg window

The xcdg window (see Figure 2.1) combines a data browser with the normal cdg command
prompt. (Either component can be switched off via the ‘Window’ menu.) A menu bar gives
access to some global settings, and an echo area below the shell displays context-sensitive
help and progress information. The light bulb in the bottom right corner blinks when the
program is engaged in a long computation. Usually such computations can be interrupted
by pressing Control-C in the shell.

2.4 The menu bar

The menu bar provides access to some but not all settings of the program. The ‘File’ menu,
as usual, deals with loading input and operating the program itself. The ‘Settings’ menu
contains tick boxes that duplicate the ‘set’ command. The ‘Window’ menu allows display
of only the data browser or the shell.

BUG: setting variables via ‘set’ in the shell does not always propagate properly

to the status of the tick boxes! In general, the menu system is a hasty shell

around functionality already present elsewhere, and often inconsistently done.

Use typed commands preferably.

2.5 The CDG shell

The shell window displays informational, warning, debug, and error messages of the program
and receives typed input from the user. The shell window operates in almost but not quite
the same way as the command-line version of cdg. Here is a list of differences:

• cdgp uses the readline library for command editing, while xcdg uses a custom imple-
mentation built around Tcl strings. This means that details of the keybindings differ
slightly:

60

Figure 2.1: The xcdg window

– The TAB key does not always generate exactly the same set of possible comple-
tions

– typing ahead during a computation is not possible

– many advanced features of readline such as ‘upcase-word’ are missing altogether

• Arguments that contain whitespace must be quoted with single quotes. Double quotes
are not supported and lead to misparsed command lines.

• Also, the syntax "a as an input method for ä is not available. You must type actual
umlauts (with a nationalized keyboard, or with the Compose key).

• The type designators ‘INFO’, ‘WARNING’ etc. are highlighted in various colors to
indicate the status of messages.

• The shell sometimes does not display a prompt when it would be expected, for instance
immediately after starting up.

• The command ‘help’ does not exist.

61

• Commands have return values that can be used as the arguments to another com-
mand. Together with Tcl’s square brackets for command evaluation this allows nested
commands such as net [newnet T0] with the same meaning as newnet T0 followed
by net.

• Several commands can be juxtaposed with the semicolon. This commandline works in
XCDG, but not in cdgp:

cdg> newnet ; netsearch ; verify

• Some additional commands are available (see below).

2.5.1 Additional Commands

In comparison to the command-line tool, there are additional commands that can be exe-
cuted. Most of them are simply Tcl commands that can be evaluated in the Tcl interpreter;
for instance, ‘cd ..’ changes the working directory to the parent directory, and ‘clear’ erases
the output of all previous commands. Consult the Tcl documentation for full details on Tcl
commands.

• The command ‘deleteparse’ removes a parse from the system just like the ‘Delete’
button in the parse browser.

• The command ‘options’ takes the name of a file as an argument and sets X resources
as specified by that file.

• The command ‘run’ takes the name of a file as an argument and executes all xcdg
commands found in that file.

• The most important new command is ‘showparse’. In its most basic form, it takes
the name of an existing parse and displays it graphically in a window of its own (see
2.7). If no parse of that name is known, the argument is interpreted as the name of an
annotation instead, and if an annotation of that name exists it will be converted to a
parse and then displayed. This works even if the annotation has to be autoloaded first;
in particular, it will settle for an annotation name of which the given name is merely
a suffix. In other words, if you distribute your treebank over numerical subdirectories
as explained in 1.2.42, it suffices to type ‘showparse s123’ in order to display the
annotation with the name ‘WSJ-s123’.

In addition to the parse or annotation names, a set of dependency edge numbers can
be specified which should be highlighted in the display. For instance, the command
‘showparse Tree1:10,20,30’ would display the annotation ‘Tree1’ and highlight the
edges number 10, 20, and 30 (counted from the first word and then from the first
level). This will cause problems if your tree names contain colons; use the variable
‘colonInTreeNames’ to switch off this feature.

• The command ‘set’ works in the same way as described in 1.2.42, but there are various
additional variables controlling the behaviour of xcdg that can be set:

– colonInTreeNames: If set to 1, xcdg will not interpret colons in the arguments
to ‘showparse’ specially.

62

Figure 2.2: The data browser

– confirmexit: If set to 1 (default), xcdg will ask the user to confirm the ‘quit’

action, whether invoked by button, command or Control-D.

– editor: This is the invocation of the editor that is started when the ‘Edit’ button
is invoked in a data browser.

– grammarpath: sets the default path displayed in file selection dialogues.

– manywindows: If set to 1, parses of different sentences will open in different X
windows. Otherwise, all parses are put into the same X window on different tabs
of the same notebook. This is useful if you want to display all instances of a
phenomenon in a tree bank, as it prevents new windows from popping up for five
minutes and making your desktop unusable.

– trace: If set to 1, xcdg will display the full error messages that result from
erroneous commands in the shell. Usually these messages are filtered so that only
the most relevant information is printed.

2.6 The Data Browser

The data browser displays all grammar elements and computed structures, sorted by their
type (see Figure 2.2).

The data browser contains

• A register for selecting data types. Left-click a tab to switch to the corresponding
display.

• A series of buttons for quick command execution. Left-click a button to apply it to
the current selection (see below).

• A counter indicating how many instances of a data structure are currently loaded.

• An input box for specifying a selection of arguments for buttons.

63

• A table of loaded data structures. All known data structures are displayed ordered
alphabetically by their identifiers. Each line of the table corresponds to on data struc-
ture.

At any time, the selection contains the names of the selected lines of the table. Pressing a
button applies it to all items in the selection. This works even if the command-line equivalent
of that command does not allow multiple arguments. For instance, highlighting three lattices
and pressing the ‘New Net’ button creates three new constraint nets.

Left clicking into the table highlights a row and puts the name of the corresponding data
structure into the selection. By simultaneously pressing the Control key, more than one
row can be highlighted. By simultaneously pressing the Shift key, all rows between the
highlighted and the clicked row are highlighted. Finally, clicking the top left cell to the
table selects all available items.

Furthermore, by typing into the table the first item is selected whose name starts with the
typed string. For visual feedback, the typed string is displayed in the top right corner next
to the counter. The TAB key may be used to complete the typed string if the next possible
characters are uniquely defined. The ESC key cancels this mode of selection.

Finally, the selection may also be edited like normal text; if the highlighting of the table
and the selection disagree, the selection overrides the highlight state.

2.6.1 The Files Browser

This browser displays all files loaded with the ‘load’ command. It also shows how many
constraints, levels, etc. are loaded altogether. The files are represented by their file name
alone; the full path name is shown in the echo area when the mouse is moved over a row.

The buttons ‘Load’ and ‘Run’ load or run a file like the commands of the same name. Both
buttons do not work on the selection, since there is no point in loading an already loaded
file, or treating a CDG input file as a command list. Instead they open a file selection dialog
and operate on its result.

The ‘Reset’ button simply executes the ‘reset’ command.

The ‘Edit’ button edits the selected files with an external editor (use ‘set editor’ to select
your favorite editor).

The ‘Reload’ button first resets the program and then loads all files that were loaded before.

BUG: ‘reset’ is broken, and reloading files manually causes crashes. When it

doesn’t, it takes far longer than restarting xcdg. Never use ‘reset’ or ‘reload’.

2.6.2 The Lattice Browser

The lattice browser displays all loaded lattices (but not lattices that could be autoloaded if
needed). Each lattice specifies its name, length and sequence of words.

The ‘New’ button is inoperable; use ‘inputwordgraph’ in the shell instead.

The ‘New Net’ button executes the ‘newnet’ command. The unary pruning factor can be
specified in a separate dialog.

The ‘Annotations’ button finds all annotations of the selected lattice and displays them via
‘showparse’.

64

2.6.3 The Constraint Net Browser

The constraint net browser displays all computed constraint nets. Each net specifies its
name and various statistics such as the number of constraint nodes, solutions etc.

The ‘Delete’ button removes the selected net from memory (and from the display).

The ‘Search’ button executes the ‘netsearch’ command. Further parameters can be specified
in a separate dialog.

The ‘Frobbing’ and ‘Gls’ buttons execute the respective commands with no further argu-
ments. To pass additional arguments to the procedure you must use the shell.

2.6.4 The Parse Browser

The parse browser contains all parses present in the system. Each parse specifies a multitude
of statistics such as its name, time of creation, method of creation, score, etc.

Parses are typically created either when a solution method is applied to a constraint net
(for instance, ‘netsearch’), or from a pre-existing annotation (for instance, via ‘anno2parse’).
Parses computed form a constraint net are typically named parse0, parse1 etc. Parses
created from an annotation bear the same name as the annotation.

The ‘Delete’ button removes a parse from memory. If there is a tree editor currently dis-
playing the parse, the corresponding page is removed. If a tree editor becomes empty it will
be closed altogether.

BUG: This does not actually work; removing the first parse from a tree editor

leaves a tab that throws an error when clicked.

The ‘Tree’ button displays a parse graphically in a tree editor. If no tree editor exists into
which this parse would fit, a new editor is opened. If the parse is already visible, nothing
changes.

BUG: Pressing the ‘Tree’ button twice throws a ‘bad Notebook page index’

error.

2.6.5 The Levels Browser

The levels browser contains all defined levels of analysis. The levels are not sorted alpha-
betically, but appear in the order they were defined in. Each level specifies how many unary
and binary constraints concern it, what file it was defined in, etc.

The ‘Display’ button prints the definition of the level in the shell as the ‘level’ command
does.

The ‘Show’ button toggles the visibility of the level as the ‘showlevel’ command does.

The ‘Use’ button toggles the use of the level as the ‘uselevel’ command does.

BUG: Both buttons do not update the table. Pressing ‘Use’ really does switch

off a level, but the table keeps saying ‘used:yes’.

The ‘Edit’ button opens an editor on the definition of the level.

65

2.6.6 The Constraints Browser

The constraints browser displays all defined constraints ordered alphabetically by their
names. Each constraint specifies where it was loaded from, to which levels it applies, what
score it has and whether or not it is currently active.

The ‘Show’ button displays the constraint in the shell as the ‘constraint’ command does.

The ‘Edit’ button opens an editor on the definition of the constraint. Note that editing a
constraint does not load the new definition; it is usually faster to start xcdg again than to
load a new version of a defined constraint.

The ‘Weight’ button lets the user specify a new weight for that constraint, as the ‘weight’

command does.

The ‘Use’ button toggles use of the constraint as the ‘useconstraint’ command does.

The ‘Use Group’ button toggles use of the section of the constraint as the ‘activate’ and
‘deactivate’ commands do.

The ‘Use Level’ button toggles use of the level the constraint belongs to as the ‘uselevel’

does.

BUG: As with the levels browser, the ‘Use’ buttons do not update the table.

2.6.7 The Lexicon Browser

The lexicon browser displays all loaded lexicon items. Each lexicon item specifies its reading
and the files it was loaded from.

The ‘Display’ button displays the specified lexicon item in the shell. It does this by calling
the ‘lexicon’ command. Note that this will also display lexicon items that are not in the
browser, but are automatically generated by lexical templates. The templates themselves
are not displayed in the browser.

The ‘Edit’ button opens an editor on the definition of a lexicon item.

2.6.8 The Hierarchy Browser

The hierarchy browser does not contain a table, selection text box etc. Instead it displays
all defined hierarchies on the pages of a tab notebook. Hierarchies that are true trees are
displayed as trees. Hierarchies that are merely DAGs are displayed in parts, similar to
the output of the ‘hierarchy’ command; the left column of each grid display contains the
subsuming node and the right column contains the subsumed nodes. Touching any node
highlights the nodes that are connected with it (in either direction).

BUG: Non-tree hierarchies look terrible; however, no one has ever come up with

a better idea for displaying them.

66

Figure 2.3: A tree editor

2.7 The Tree Editor

Parses can be displayed and edited graphically in tree editors (see Figure 2.3). A tree editor
contains a menu of its own and a tab notebook of visualized parses. The tabs of the tree
editor carry numbers and can be used to switch between different parses. Note that each
parse has an embedded tab notebook whose tabs bear label names; these can be used to
switch between different levels of the same parse.

2.7.1 The Tree Editor Menu

The menu of the tree editor contains the following items:

• File

– Save: This writes the tree to disk as an annotation. The annotation created bears
the same name as the parse. The file bears the same name plus the extension
.cda.

– Save as...: This saves the tree under a different name that can be specified in a
file selection dialog. The extension .cda is added if it is not given.

67

– Print...: This creates a representation of the current state of the display as a
postscript file. The name of the postscript file can be chosen in a file selection di-
alog. All sorts of highlighting are faithfully reproduced in the resulting postscript
code.

– Close: This item closes the current tree editor (but not others that may be open).

– Quit: This item ends the entire xcdg session.

• Edit

– Undo/Redo: These items take back or repeat changes that the user previously
made to the tree.

– Mirror: This item tries to change edges on ‘mirror’ levels so that they correspond
to the edges of the main level (see section 1.4.1).

– Break cycles: If the current level of the tree has cycles in it, this item changes
edges in cycles to point to NIL until all cycles have been removed. It is undefined
which edges are changed.

– Parse again: This restarts the same parsing method that created the currently
displayed tree. (If the tree was loaded from disk rather than parsed, frobbing is
used.)

If the user has made changes to the tree, these changes are respected; that is,
if you change a label in the tree and invoke ‘Parse again’, XCDG will (try to)
compute the best analysis that uses this particular label for that word. Of course,
this may fail altogether if there is no such analysis.

• View

– Redraw: This item draws the tree anew. This undoes the effect of clicking on
constraints or highlighting edges via the extended ‘showparse’ command. Also,
if automatic redrawing after changes to the tree structure has been switched off,
this item will force a redraw.

– Eval: This item recomputes the conflicts that the current state of the tree causes
with the loaded grammar, and updates the conflict list. Note that this is usually
done automatically after each change to the tree; this menu item is only necessary
when you ave switched off automatic reevaluation in the Settings menu.

– Zoom in/Zoom out: These items display the tree larger or smaller. There are
seven zoom steps defined, with the middle one chosen by default.

– Show cycles: This item highlights all edges of the current level that are part of a
cycle. The ‘Break cycles’ item will change at least one of these edges.

– Verify: This item calls the ‘verify’ command on the underlying parse and high-
lights all edges, labels and lexical selections that differ from the annotation of
that lattice.

– Next: This item switches to the next tree in the tree editor. If invoked on the
last tree in a tree editor, it will try to find the lattice that follows the lattice of
the current tree in the lattice browser, create a tree for that lattice, and display
this tree in a new tab.

– Previous: This item switches to the previous tree in the tree editor. It does
nothing when invoked on the first tree in a tree editor.

68

• Settings

– Auto-redraw: This toggles the behaviour of the tree after an edge has been
changed. If on, the tree is automatically redrawn to look as nice as possible;
this is usually what you want. However, if many changes must be made to a huge
tree, the useless intermediate layout computations can take a long time, so it can
be useful to switch off the behaviour, make the changes, and then re-compute the
layout once. Note that even without auto-redraw the tree can be re-drawn with
View::Redraw.

– Auto-eval: This also toggles the behaviour of the tree after changes have been
made. If on, the grammar is automatically reevaluated, the list of conflicts is
updated, and the tree is painted anew if this feature is on. If off, the conflict list
remains unchanged and will probably become out of date with respect to the tree.
Even without auto-eval, an isolated evaluation can be forced with View::Eval.

– Paint Tree: If on, each edge of the tree is automatically highlighted in the color
that corresponds to the most serious constraint that it violates. This allows the
user to see immediately where the trouble spots of a tree structure might be.

– Horizontal/Vertical: These items toggle the layout of the tree itself and the list
of conflicts. A horizontal layout allows more detail to be displayed about each
conflict, but typically only shows the most serious conflicts. A vertical layout
shows more conflicts but in a much narrower column that typically has room
only for the name of each conflict; it is also better suited for displaying trees that
are too high for horizontal layout.

– Snap: These items control how an edge behaves that is dropped after a drag
gesture.

∗ to nearest node: the word is subordinated under the word whose node is
nearest to the mouse pointer.

∗ to previous mode: the subordination of the word remains the same as before.

∗ to best node: the word is subordinated under the word that yields the best
score for the resulting structure.

Note that in all cases an edge that is dropped directly onto another node will
snap to that node; the snap mode applies only to drop events between nodes.

2.7.2 The Tool Bar

Below the menu are some buttons for frequently required actions. They correspond to the
following menu items:

• Left arrow: View::Previous

• Right arrow: View::Next

• Floppy disk: File::Save

• Xeyes: Edit::Mirror

• Lens +: View::Zoom in

• Lens −: View::Zoom out

69

• Recycle arrow: Settings::Auto-redraw (this button is downlighted when automatic
redrawing is turned off)

• Paint brush: Settings::Paint tree

• Green arrow: Edit::Parse again

At the right end of the tool bar, the name and valuation of the underlying parse are displayed.
The valuation is not the same as the score of a parse; it consists of the number of hard
conflicts, the number of soft conflicts, and the product of the scores of all soft conflicts.
Thus, if there are two conflicts with the scores 0.0 and 0.5, the valuation of the parse is
1/1/0.5, while the score would be 0.0.

2.7.3 The Conflict List

The conflict list contains a record of all conflicts that a parse causes under the current
grammar. Each line of the list contains the name of the failed constraint, the penalty of this
conflict, and a representation of the dependency edges involved.

Note that a conflict is not the same as a constraint; it is the instantiation of a constraint in
a particular place in a tree. For instance, a constraint that disprefers distant subordinations
may well fail twice in different places in the same tree. With variable penalties, it may even
have different penalties in different conflicts.

The conflict list obeys the following mouse bindings:

• A left click on a line highlights the edges involved in the conflict in a color that
indicates the severity of the conflict. Penalties near 1 are symbolized by bright green,
while penalties near 0 are symbolized by bright red. Intermediate penalties lead to
intermediate colors between these two. The tree window is also scrolled so that the
edges of the conflict are visible as well as possible.

• A middle click opens a tool tip with the definition of the violated constraint.

• A right click behaves like a left click except that for a binary conflict, the second rather
than the first dependency edge is scrolled into view.

The entire conflict list is only present if a grammar is loaded that contains the same levels
as the parse. It is possible to run xcdg on a solitary annotation and nothing else and still
use ‘showparse’; the resulting tree can still be edited and saved, but not evaluated.

2.7.4 The Tree Window

The tree window contains a tab notebook with one page per level of the parse. (The tabs are
color-coded with the same scheme the edges of a clicked conflict.) Each level is represented
as a dependency tree with the root at the top.

BUG: If a dependency tree contains cycles, the display deteriorates to an ugly

bipartite graph. It should remain a normal tree and just draw the edge that

causes the cycle in a special way.

70

The words in the sentence that is described by the tree are notated at the bottom of the tree
in one line. Vertical projection lines connect each word with its corresponding inner node.
Note that the tree drawing algorithm is not perfect; a non-projective tree will always contain
at least one crossing between a projection line and a dependency edge, but a tree with such a
crossing need not necessarily be non-projective; it might just be a tree for which xcdg could
not figure out how to draw it without crossings. Thus, the lines are purely illustrative and
have no effect whatsoever on the valuation of a parse; conditions about projectivity must
be written into a constraint grammar explicitly.

If a level carries the ‘mainlevel’ property, then this level is treated specially: all non-NIL
subordinations on other levels are drawn as additional labelled arcs below the main tree.

The tree can be edited with mouse gestures or keyboard commands. Whenever a change
is made to the tree, the tree layout is recomputed for best effect (unless you switch the
recomputation off under Settings::Auto-redraw). Also, the current grammar (if any) is
evaluated on the resulting parse, and the conflict list is updated accordingly (unless you
switch the recomputation off under Settings::Auto-eval). The following mouse gestures are
available:

• Touching an element if the tree highlights it to show which element a mouse click would
apply to. Additionally, touching a dependency edge also highlights its accompanying
label; this can help debug the association when many long edges are very close together.
Touching a word will also open a tool tip that spells out the identifier of the word.
For instance, the word ‘der’ might bear the identifier ‘der_ART’ to distinguish it as an
article (as opposed to ‘der_PDS’, which signifies a demonstrative pronoun).

• Clicking on a word opens a menu of homonymous lexicon items. Each line of the
menu displays the identifier of a possible alternative reading. Selecting a line swaps
the lexical reading of the parse.

• Middle clicking on a word opens a tool tip that displays the full lexicon definition of
the current reading.

• Right clicking on a word selects the reading that leads to the best valuation of the
parse in the current context. This optimization takes into account only the reading of
the current word. If two lexical readings would have to be exchanged to reach a better
valuation, for instance in a long, misinflected NP, a right click on either of them may
not have the desired effect of choosing the globally optimal reading.

• Clicking on a word with the Shift key pressed opens a tool tip that lists all predictions
made about the selected word. For instance, this allows you to review all predictions
made by a POS tagger, and not only the best one.

• Clicking on a label opens a menu of alternative labels of the same level. Selecting one
of these labels immediately exchanges the label in the tree.

Note that it is possible to use the empty string as an edge label; such labels cannot be
touched or clicked, since they never receive mouseover events. You can change them
with a middle click on the corresponding edge, or via keyboard editing (see below).

If a parse is shown but the definition of the current level has not been loaded, xcdg
cannot determine the full set of alternative labels. Instead, it offers the user only those
labels that are actually present in this tree. There is no way of assigning any other
label in the tree editor; however, both the .cda and the .ps representations of trees
produced by the ‘Save’ and ‘Print’ can be easily edited if this is necessary.

71

• Right clicking on a label optimizes it in the same way as right clicking a word. Again,
only single label changes are considered; for instance, a change that would involve both
a new label and a new lexical reading is never considered.

• Clicking on an edge moves the top end of the edge under the mouse pointer to indicate
that the subordination is about to change. Clicking on the background canvas selects
the closest edge as if it had been clicked directly.

• Middle clicking on an edge opens the label menu as if its label had been clicked on.
This is useful for changing the empty label, which cannot be touched, to a non-empty
label.

• Dragging an edge prepares for a subordination change. The word and the node where
the edge would come to rest if dropped are highlighted at all times. Note that this
does not work in ‘snap to best’ mode, since the necessary computation would be too
slow to keep the interface responsive.

• Dropping an edge subordinates it under the place dictated by the drop policy specified
under ‘Settings’.

An edge can be subordinated under NIL by dropping it onto the node at the top of
another NIL edge. If there is no NIL edge in the current tree, this is not possible; in
this case, use Edit::Break cycles or keyboard editing.

• Right clicking on an edge chooses the best subordination for it under the current
circumstances. Again, this only considers alternative subordinations of the current
edge, not changes to its label or word, let alone other edges.

• Right clicking on an arc optimizes it in the same way as a normal edge. Note that
arcs cannot be dragged, and their labels cannot be edited at all; you must switch to
the corresponding level and edit them normally there.

• Dragging the middle mouse button scrolls the canvas. Note that this gesture can be
combined with normal dragging; this is necessary to move an edge between two regents
that do not fit into the viewport at the same time.

All menus opened by mouse gestures can be cancelled by pressing Escape. Also,
selecting an edge and then pressing Escape returns it to the previous regent no matter
what the drop policy is.

Trees can also be edited by keyboard commands alone. The following bindings are defined:

• Left/Right: These keys choose the word that the next keyboard editing command
will apply to. The selected word is highlighted as if it were touched by the mouse
pointer. Note that when a tree is first drawn, the first word is already selected but
not highlighted. The first press of ‘Right’ will select the second word of the tree.
Mouse editing actions also change the word selected for keyboard editing actions; this
allows you to interleave mouse and keyboard editing more naturally, since both have
advantages for particular tasks.

• Up: The word above the selected word is selected.

• Down: The word below the selected word is selected. If the selected word has more
than one dependent, nothing happens.

72

• Shift: The dependency edge of the selected word is highlighted.

• Shift+Left/Shift+Right: The selected word is subordinated one word further to the
left or right. A NIL binding can be created by moving the attachment point beyond
the first or last word of the sentence.

Note that the tree is not redrawn, and the grammar is not re-evaluated, until you
release the Shift key. This means that moving an edge n words to one sideis not n

times more expensive than moving it one word, but about the same. This behaviour
is unaffected by the Auto-Redraw and Auto-Eval settings.

• Shift+Up: The selected word is subordinated to the regent of its current regent. If its
regent is the root of the tree, the selected word also becomes a root.

• Shift+Down: The selected word is subordinated to a dependent of its current regent
(but never to itself). If the current regent has more than one other dependent, one is
chosen arbitrarily.

• Shift+Enter: The current word is subordinated to the optimal regent, as with an edge
right click.

• Control: The label of the dependency edge of the selected word is highlighted.

• Control+Up/Control+Down: The label of the current word is changed to the previous
or the next label in the set of possible labels for this level.

• Control+Home/Control+End: The first or last available label is chosen for the current
word.

• Control+Enter: The optimal label for this subordination is selected, as with a label
right click.

• Meta+Letter: This combination can be used to accelerate label selection. Letters and
digits typed with the Meta key pressed are interpreted as the prefix of the new label
that is selected when the Meta key is released. Thus, if your grammar contains the
labels BLINKY, INKY, PINKY and SUE, pressing Meta+p is enough to choose the
label PINKY. (Note that this prefix search is case insensitive.) With many labels,
this can be faster than scrolling through the choices with Control+Down. You can
accelerate longer prefixes by typing more than one letter before releasing the Meta
key.

• Alt: The tool tip of the selected word is opened.

• Alt+Up/Alt+Down: The previous or next alternative lexical reading is chosen for the
current word.

• Alt+Home/Alt+End: The first or last available lexical reading is chosen for the current
word.

• Alt+Enter: The locally optimal lexical reading is chosen as with a word right click.

With all key combinations, the effect of changing the tree does not take effect until the
modifier key is released; for instance, when changing the tree structure via Shift+Left the
tree is not redrawn, and the grammar is not re-evaluated until the Shift key is released. This

73

ensures that an edge can quickly be moved by more than one word without overhead for
unwanted intermediate trees.

The entire tree editor accepts the following additional key bindings:

• Control-R: Edit::Redo

• Control-Z: Edit::Undo

• Numeric −: View::Zoom out

• Numeric +: View::Zoom in

• Numeric Enter: toggle View::Horzintal/View::Vertical

• Shift+Tab: Switch to previous level

• Tab: Switch to next level

• c: View::Show cycles

• m: Edit::Mirror

• n: View::Next

• p: View::Previous

• q: File::Close

• s: File::Save

• v: View::Verify

2.8 User and Expert Mode

!WRITEME!

Bibliography

Foth, Kilian. 1999. Transformationsbasiertes Constraint-Parsing. Diplomarbeit, Fachbere-
ich Informatik, Universität Hamburg.

Glover, F. 1989. Tabu search - part I. ORSA Journal on Computing, 1(3).

Glover, F. 1990. Tabu search - part II. ORSA Journal on Computing, 2(1).

Harper, Mary P. and Randall A. Helzerman. 1994. Managing multiple knowledge sources in
constraint-based parsing of spoken language. Technical Report EE 94-16, School of Electrical
Engineering, Purdue University, West Lafayette, IN.

Harper, Mary P., L. H. Jamieson, C. D. Mitchell, G. Ying, S. Potisuk, P. N. Srinivasan,
R. Chen, C. B. Zoltowski, L. L. McPheters, B. Pellom and R. A. Helzerman. 1994. Inte-
grating language models with speech recognition. In Proceedings of the AAAI-94 Workshop
on the Integration of Natural Language and Speech Processing, pages 139–146.

74

Harper, Mary P., Leah H. Jamieson, Carla B. Zoltowski and Randall A. Helzerman. 1993.
Semantics and constraint parsing of word graphs. In Proceedings of the International Con-
ference on Acoustics, Speech and Signal Processing, pages 63–66, Minneapolis, MN.

Heinecke, Johannes, Jürgen Kunze, Wolfgang Menzel and Ingo Schröder. 1998. Eliminative
parsing with graded constraints. In Proceedings of the Joint Conference COLING/ACL-98,
Montréal, Canada.

Maruyama, Hiroshi. 1990a. Constraint dependency grammar. Technical Report RT0044,
IBM Research, Tokyo Research Laboratory.

Maruyama, Hiroshi. 1990b. Structural disambiguation with constraint propagation. In
Proceedings of the 28th Annual Meeting of the Association of Computational Linguistics
(ACL-90), pages 31–38, Pittsburgh, PA.

Maruyama, Hiroshi, Hideo Watanabe and Shiho Ogino. 1990. An interactive Japanese
parser for machine translation. In Proceedings of the 13th International Conference on
Computational Linguistics (COLING-90), pages 257–262, Helsinki.

Menzel, Wolfgang. 1994. Parsing of spoken language under time constraints. In A. Cohn,
editor, Proceedings of the 11th European Conference on Artificial Intelligence, pages 560–
564, Amsterdam.

Menzel, Wolfgang. 1995. Robust processing of natural language. In Proceedings of the 19th
German Annual Conference on Artificial Intelligence (KI-95), pages 19–34, Berlin.

Schröder, Ingo. 1995. Analyse natürlicher Sprache durch Beschränkungserfüllung. Studien-
arbeit, Fachbereich Informatik, Universität Hamburg.

Schröder, Ingo. 1996. Integration statistischer Methoden in eliminative Verfahren zur Anal-
yse von natürlicher Sprache. Diplomarbeit, Fachbereich Informatik, Universität Hamburg.

Schröder, Ingo. 1997a. Benutzerhandbuch des CDG-Parsers 0.2. Memo HH-2/97, Projekt
DAWAI, Fachbereich Informatik, Universität Hamburg.

Schröder, Ingo. 1997b. Benutzerhandbuch des CDG-Parsers 0.8. Memo HH-4/97, Projekt
DAWAI, Fachbereich Informatik, Universität Hamburg.

Schröder, Ingo. 1997c. Syntax der Eingaben in den CDG-Parser 0.2. Memo HH-1/97,
Projekt DAWAI, Fachbereich Informatik, Universität Hamburg.

Schröder, Ingo. 1997d. Syntax der Eingaben in den CDG-Parser 0.8. Memo HH-3/97,
Projekt DAWAI, Fachbereich Informatik, Universität Hamburg.

Schulz, Michael. 2000. Parsen natürlicher sprache mit gesteuerter lokaler Suche. Diplomar-
beit (in Vorbereitung), Fachbereich Informatik, Universität Hamburg.

Voudouris, Christos. 1997. Guided Local Search for Combinatorial Optimisation Problems.
Ph.D. thesis, Department of Computer Science, University of Essex, Colchester, UK.

75

