
Using Constraint­based Modelling to Describe the Solution
Space of Ill­defined Problems in Logic Programming

Nguyen­Thinh Le, Wolfgang Menzel
University of Hamburg, Department of Informatics

Vogt­Kölln­Str. 30
D­22527 Hamburg, Germany

{le, menzel}@informatik.uni­hamburg.de

ABSTRACT
Intelligent Tutoring Systems have made great strides in recent
years. Many of these gains have been achieved for well-
defined problems. However, solving ill-defined problems is
important because it can enhance the cognitive, metacognitive
and argumentation skills of a student. In this paper, we
demonstrate how to apply the constraint-based modelling
approach to describe the solution space of ill-defined problems
in logic programming. This technology has been integrated
into a web-based ITS (INCOM) and has been evaluated with
student solutions from past examinations.

Keywords
ill-defined problems, error diagnosis, logic programming,
constraint-based modelling, ITS.

1. INTRODUCTION
Intelligent Tutoring Systems (ITS) have made great strides
in recent years. Many of these gains have been achieved
for well-defined problems such as geometry, Newtonian
Mechanics, and system maintenance [10]. However, by
solving ill-defined problems students can gain more
benefits:

1.Enhancement of cognitive skills: well-developed domain
knowledge is a primary factor in solving ill-defined
problems [5, 14]. In solving ill-defined problems, students
apply their domain knowledge in a meaningful way instead
of storing a chunk of concepts in a memory [22].

2. Enhancement of metacognitive skills: ill-defined
problems require solvers to control and regulate the
selection and execution of a solution process [5, 2, 4]. In
the ill-defined problem solving process, students employ
their meta-cognitive skills, such as changing strategies,
modifying plans and reevaluating goals in order to reach
an optimal solution [22].

3. Enhancement of argumentation skills: since ill-defined
problems require students to consider alternative solutions,
successful students can provide evidence for their solution
[19, 20]. Therefore, students gain practice justifying their
solution in a logical way to persuade others.

For this purpose, we focus our research on a web-based
programming ITS which supports students learning logic

programming by solving ill-defined problems. Prolog is
one of the most widely used logic programming languages.
Prolog is considered to be difficult to learn because of the
simple syntax and the concept of recursive programming
which is the most important programming technique [17].
In general, the domain of programming is infinite. For a
given programming task, there is no single solution, but
many strategies to design a solution. For a strategy, there
are many ways to implement them.

How can an ITS diagnose errors in the student solution for
an ill-defined problem? Over the last two decades,
numerous error diagnosis approaches in the domain of
programming languages have been devised, such as
program transformation [18, 23], program verification
[11], plan and bug library [21], model tracing [1] and
constraint-based modeling (CBM) [12]. Among these,
model tracing is used by cognitive tutors which are some
of the most successful ITS today [7]. However, those
approaches have been applied to problems with a lower
degree of ill-definedness. An ill-defined problem has not
only a simple correct solution, rather many or even
uncountably. In this paper, we introduce the CBM
approach to cope with the solution space for ill-defined
problems in logic programming.

In the next section, we review the characteristics of ill-
definedness in the literature and argue why logic
programming problems provided by INCOM are ill-
defined. The solution space for a programming problem in
Prolog is described in the third section. In the fourth
section, we introduce CBM and how we apply it to model
the solution space for a Prolog problem. The fifth section
illustrates the architecture of INCOM briefly. In the sixth
section we show our evaluation result. Our conclusions
and future works are summarized in the last section.

2. ILL-DEFINED1 PROBLEMS
In the literature, there is no formal definition what
constitutes a “well-defined problem”. Instead, we must be

1 In this paper we have chosen the term ill-defined problem.
The terms ill-structured and ill-defined are used
interchangeably in the literature. To avoid confusion, we will
use the former one.

content with requirements which have been proposed as
criteria a problem must satisfy in order to be regarded as
well-defined: 1) a start state is available; 2) there exist a
limited number of relatively easily formalized
transformation rules; 3) evaluation functions are specified
and 4) the goal state is unambiguous [6]. If one or several
of these conditions is violated, the problem is considered
ill-defined [13]. Most researchers agree that a design
problem is a representative of ill-defined problems [3],
because the start state is underspecified, there is no
predefined set of rules for completing the task, and it is
difficult to evaluate when a “best” result has been attained.
However, “the boundary between well-defined and ill-
defined problems is vague, fluid and not susceptible to
formalization” [15]. Thus, this vagueness and relativity
should simply reflect the continuum of degrees of
definiteness between the well-defined and ill-defined ends
of the problem spectrum. Those problems, which lie
somewhere in the middle between well-defined and ill-
defined ends, may have well-specified start and goal states,
but underspecified transformation rules or evaluation
functions because 1) there are multiple representations of
knowledge with complex interactions; 2) the ways in
which the rules apply vary across cases nominally of the
same type [16] and 3) there are only aesthetic value
judgments, but no quantitative measurements available.

Most programming problems, which are used to tutor
Prolog, are simple and might have well-defined start as
well as goal states. The problem text can be well specified
and a solution can be verified whether it solves the given
problem correctly. However, the activity of solving a
Prolog programming problem is a design problem. The
solution space is mainly spanned by using different Prolog
primitives or applying mathematical rules. Furthermore,
one can modularize a program in order to make the code
clearer, easy maintainable and reusable, but all these
criteria are highly subjective. That is why Prolog
programming problems are ill-defined. We provide
students with a series of problem tasks (Appendix A) to be
solved in free-form using our system INCOM.

3. SOLUTION SPACE FOR A LOGIC
PROGRAMMING PROBLEM
We consider only Prolog programs without cuts,
disjunctions or if-then-else operators. No assert, retract,
abolish or similar database-altering predicate can be used.
The set of built-in predicates which can be employed by
the programs are: =, =.=, =\=, ==, \==, >, >=, <, =<, =.., +,
-, *, /, ^ and ‘is’. Auxiliary predicates are provided
explicitly or can be defined by users.

To solve a logic programming problem, there are many
solutions. The solution space results from a variety of
Prolog primitives and a variety of programming techniques
which describe standard solution strategies. The solution
space is also determined by a set of general principles of
Prolog. Furthermore, it is restricted by an appropriate
predicate declaration which is developed interactively with

the student prior to the implementation itself. The
declaration information is used to gather the intention of
the student, and to understand subsequent implementation
of the student solution. In the following, we describe the
space of solutions for a given problem in more detail.

Solution space spanned by Prolog primitives: a
predicate is composed of a clause head and a clause body.
A clause body contains several subgoals. Table 1 shows the
possible variations of a clause head and of its subgoals.
This collection is not a complete one, but also reflects
specific restrictions imposed by the system. The following
types of clause head and subgoals can be distinguished:

Clause head: a clause head is the first part of a clause of a
predicate. The definition for a clause head must adhere to
the predicate declaration: clause type (a base case, a
recursive case or a non-recursive clause), argument types
(atom, number, list or arbitrary) and argument modes (+, -,
?). A clause head may vary depending on the clause body,
i.e. a (de)composition or a unification either takes place in
the clause head implicitly or in the clause body explicitly.

Recursive: a recursive subgoal has the same functor and
the same arity as its clause head. Arguments of an
recursive subgoal inherit declaration information from the
clause head such as: types, modes and argument meaning.

(De)composition: a (de)composition subgoal composes an
argument using other variables or decomposes an
argument into several variables or constants. A
(de)composition can be established implicitly at an
argument position or can be represented explicitly as a
separate subgoal.

Arithmetic test: an arithmetic test subgoal is used to
compare two bound arguments which are of type number.
There are two classes of arithmetic test subgoals. The first
one applies the operators: <, >, =< and >= to test whether a
number is greater/smaller than another one. The second
class applies the operators: =:= and =\= to test whether two
numbers are equal or not. The operands of the operators
can be transposed because they are commutative.

Calculation: a calculation subgoal is used to compute an
arithmetic expression using the operator ‘is’. It requires
that the variables on the right hand side of the subgoal are
bound; otherwise the evaluation cannot be executed. We
consider the following arithmetic operators: +, -, *, /, ^ and
three forms for an arithmetic expression are distinguished:
1) Normal form: A°X±B°X; 2) Applying the distributive
law and 3) Applying the commutative law where the
operator ± is either + or -, and the operator ° is either * or /.
Currently we do not perform any transformation for
exponential expressions: (X+Y)^A. We just consider the
neutral elements: X^1=X and X^0=1. The basis is regarded
as an arithmetic expression with possible variants.

Unification: a unification subgoal unifies two variables or
assigns a value to a variable using the operator =. The
unification subgoal is referred to as an explicit unification.

A unification can also occur if two different argument
positions have the same variable name and this case is
called implicit unification or co-reference.

Term test: a term test subgoal is intended to test whether
two terms are equivalent using the operators: == and \==.
We also include the operator \= into the class of term test
because it tests whether two terms are not unifiable. All
three operators are commutative.

Relation: a subgoal is a relation if a database is provided in
which an appropriate relation is defined. A relation can not
be transformed.

Helper predicates: we restrict the space of helper predicates
to the ones which build accumulation over lists or which
are defined without using recursion. In general, the space
of helper predicates is open-ended.

Table 1. Normal form and variation of clause heads/subgoals

Head/Sub
goal

Normal form Variants

Clause head p(X,Y):-X=Y.
q(X,Y):-X=[H|T].

p(X,X).
q([H|T],Y).

Recursive p([H|T],Y):-p(T,Y) p([H|T],Y):-p(T,Y)

(De)compos
ition

Explicit:
p(X,Y):-X=[H|T], p(T,Y).

Implicit:
p([H|T], Y) :- p(T,Y).

Arithmetic
test

X<Y

A=:=B
A=\=B

Y>X; X-Y<0; Y-X>0; 0>X-Y;
0<Y-X;
B=:=A
B=\=A

Calculation A°X±B°X distributive: (A±B)°X
commutative: X°A±B°X,
A°X±X°B, X°(A±B)

Unification Explicit:
p([H1|T1],[H2|T2]):-
H1=H2, p(T1,T2).

Implicit:
p([H|T1],[H|T2]):-p(T1,T2).

Term test A==B
A\==B
A\=B

B==A
B\==A
B\=A

Relation query(A,B,C) query(A,B,C)
Helper
predicate

help(A,B,C) help(A,B,C)

Solution space spanned by patterns: to solve a problem
in logic programming many programming techniques can
be applied and combined. The programming techniques
underlying a predicate definition determine the strategy of
a problem solution. For example, to solve the problem of
processing all elements of a list, one can choose between
recursion by processing many elements or only one
element. If only one element is processed, there are several
possible alternatives: naive recursion, inverse recursion,
recursion using an accumulation predicate or applying the
railway-shunt [8]. Hence, for a given problem of Prolog
programming, there are typical solution strategies which
we refer to as patterns. The number of patterns spans the
solution space for a given problem in logic programming.

Solution space spanned by a set of general principles
of Prolog: the general principles of Prolog assure that a

Prolog predicate definition is executable. The following is
a subset of general principles of Prolog, which is not an
exclusive list:

− Variables on the RHS of an calculation subgoal must
be bound.

− Variables of an arithmetic test and of term test
subgoals must be bound.

− For a recursive implementation, at least a base case
and a recursive case are required

Solution space spanned by the choice of names for
variables and predicates: as we do not want to restrict
students to a small space of solutions, they are allowed to
choose any names for variables and predicates as they do
without an ITS system. Therefore, the solution space for a
programming problem in Prolog also becomes open with
respect to the choice of names for variables and predicates.

4. APPLYING CBM APPROACH

4.1 Constraint-based Modeling
The CBM approach has been proposed in [12] to model
general principles of a domain as a set of constraints. A
constraint is represented as an ordered pair consisting of a
relevance part and a satisfaction part: Constraint C =
<relevance part, satisfaction part> where the relevance
part represents circumstances under which the constraint
applies, and the satisfaction part represents a condition that
has to be met for the constraint to be satisfied. Constraints
are not only used to circumscribe facts, principles or
conditions of a domain, they can also be used to specify
the requirements of a task or to handle solution variations.
Using the relevance part constraints can be tailored
according to the semantics which represent the
requirements of the given task [8]. If a constraint is
violated, it indicates that the student solution does not hold
principles of a domain or it does not meet the requirements
of the given task.

In order to evaluate constraints, we define a formal
representation for constraints: constraint(Id, Type,
Relevance, Satisfaction, Severity, Position, Hint)2.
Information about relationships between structural
elements of a given Prolog program and a given predicate
declaration are stored in three types of assertions:
headarg, bodyarg and argmode where headarg and
bodyarg contain information about each argument in the
clause head and in the clause body, respectively. If an
assertion of type argmode exists, it denotes that the
argument is bound, after its corresponding subgoal has

2 Id is an unique identification of the constraint; Type is one of
pattern, general, head, recursive, arithmetictest, termtest,
(de)composition, unify or calculation; Relevance is a relevance
part; Satisfaction is a satisfaction part; Severity indicates the
severity of the constraint, it ranges between zero if the
constraint is important and one if it is informative; Position
indicates the error location; Hint is an instructional message.

been executed [8]. As a result, the relevance and
satisfaction parts of a constraint can be specified as
conjunctions of assertions. The constraint evaluation is
carried out as follows: first, the relevance part of the
constraint is matched against a set of assertions. If there is
a match, i.e. the constraint is relevant to the program, then
the satisfaction part is matched against the same set of
assertions. If the satisfaction part is also fulfilled, then the
Prolog program is considered to be correct with respect to
that constraint. Otherwise, it indicates a shortcoming in the
program and the corresponding information will be
returned for instructional purposes: error location,
constraint severity and hint encoded in the constraint [9].

4.2 Applying CBM to Model a Solution Space
There are two classes of constraints: semantic constraints
and Prolog general constraints. The first one includes
constraints which examine whether a solution object
satisfies the requirements of a given problem. Constraints
of the latter class examine whether the solution object
fulfills general principles of Prolog. Prolog general
constraints can be constructed as demonstrated in [8].
Semantic constraints are constructed based on a semantic
table which contains information required to solve a given
problem. Clause heads and subgoals in the semantic table
are represented in normal forms (Table 2). The normal
form representation reveals the underlying programming
techniques and thus, the diagnosis becomes more accurate.

Table 2. An example of a semantic table

Head Subgoal Description

salary(OldL,NewL) OldL=[]
NewL=[]

Old list is empty
New list is empty

salary(OldL,NewL) OldL=[N,S|T]
NewL=[N,Snew|Tnew]
S=<5000
Snew is S+S*0.03
salary(T,Tnew)

N, S: name, salary
build a new salary list
Salary less than 5000
Salary is increased
Decompose old salary list
recursively

From this table, headarg, bodyarg and argmode assertions
can be extracted. They are referred to as semantic
assertions, while similar ones derived from the student
solution are referred to as student assertions. In order to
construct a semantic constraint, two steps are required:

1. We map semantic assertions to student assertions of the
same subgoal type. This might result in multiple
combinations of maps. For example: the set of semantic
assertions contains two assertions bodyarg(tp,unify,1,A)
and bodyarg(tp,unify,2,B), which represent a unification
subgoal of two arguments A and B at position 1 and
position 2, respectively. Similarly, two student assertions
bodyarg(sp,unify,1,SB) and bodyarg(sp,unify,2,SA)
represent a unification subgoal of two arguments SA and
SB at position 2 and 1, respectively. Mapping two

semantic assertions against two student assertions of the
subgoal type unify results in two mappings:

Mapping1=[map(bodyarg(tp,unify,1,A),bodyarg(sp,unify,2,SA)
), map(bodyarg(tp,unify,1,B),bodyarg(sp,unify,1,SB))]

Mapping2=[map(bodyarg(tp,unify,1,A),bodyarg(tp,unify,1,SB)
), map(bodyarg(tp,unify,2,B), bodyarg(sp,unify,2,SA))]

2. We select relevant semantic assertions which consider a
semantic unit for the relevance part. The satisfaction part
checks corresponding student assertions in the selected
mapping. The following formula computes the plausibility
of each mapping: P(Assertions,Mapping)=P1*P2*…*Pn
where P1, P2, ... are the severity of constraints which are
violated. The mapping (either Mapping1 or Mapping2),
whose evaluation obtains the best score, is the most
plausible one. If the student solution deviates from the
normal form, then the satisfaction part has to consider all
possible variants. In this case, a semantic constraint can be
generalized as follows:

General Constraint Template:

constraint(Id, Type, Facts, Relevance: s⊂S ,
Satisfaction: test(SP,variant(s)), Severity, Position, Hint)

s is a subset of semantic assertions S and describes a
semantic unit, for instance: an explicit unification; SP is a
subset of student assertions and test(SP, variants(s)) tests
whether the student solution satisfies the selected semantic
unit s or its variants. The generalized constraint template
above can be applied to: 1) Clause level: constraints
examine clause order; 2) Clause subgoal level: constraints
examine subgoal order, functor and arity of subgoals; 3)
Argument level: constraints examine co-references of
variables, correctness of constants or operators.

The two steps mapping-evaluation above allows us to
cover the solution space spanned by the choice of names
for variables and predicates because the mapping step
maps corresponding elements between student assertions
and semantic assertions without considering variable
names or predicate names, and the evaluation step
examines whether the mapping satisfies semantic units.

4.3 Applying CBM and Transformation to
Model a Solution Space
As the right hand side (RHS) of a calculation subgoal can
be transformed using the distributive and commutative law,
there are difficulties to apply the generalized constraint
template above directly. In addition, the structure of a
calculation subgoal must be decomposed according to its
depth. Currently, we do not consider recursively embedded
arithmetic expressions. Our system just copes with
arithmetic expressions without nesting, for example:
A*(B+C). Before we attempt to model a space of
calculation subgoals using CBM, we introduce
transformation rules for arithmetic expressions and an
algorithm for evaluating a calculation subgoal of the
student solution whose RHS is referred to as SP_RHS.

Rule 1: transforms the normal form to the simplified form
applying the distributive law: A°X ± B°X → (A±B)°X,
where the operator ° is either * or /. If A and B are
numbers, then (A±B)°X can be transformed to M°X where
M=A±B. For example: (2+3)*X → 5*X

Rule 2: transforms a product term applying the
commutative law: A*B -> B*A

Evaluate a calculation subgoal:

1. Evaluate the left hand side of the subgoal;

2. Call the algorithm Evaluate arithmetic expression to
evaluate the RHS of the subgoal

Evaluate an arithmetic expression: the RHS of a
calculation subgoal in the semantic table is represented in
the normal form which is referred to as SEM_NF. That is a
sum of many summands. Each summand is a product of
many factors which are connected by arithmetic operators:
*, /, ^. The arithmetic expression A*X + 1/Y – Z^B, for
instance, is in normal form where the summands are A*X,
1/Y and Z^B. In order to evaluate an arithmetic expression,
we have to evaluate from the arithmetic expression level
through the summand level to the factor level as follows:

1. Apply Rule 1 to SEM_NF producing the simplified
form SEM_SF. For instance, SEM_NF=3*Y+5*Y is
simplified to SEM_SF=8*Y.

2. Create mappings which contain maps between the
SEM_NF and SP_RHS as well as between SEM_SF and
SP_RHS, respectively. If SP_RHS=8*X, for instance,
mapping between SEM_NF and SP_RHS yields
Sum_Mapping1=[map(sum,3*Y,8*X),map(sum,5*Y,nil)];
Sum_Mapping2=[map(sum,5*Y,8*X),map(sum,3*Y,nil)]; and
mapping between SEM_SF and SP_RHS results in
Sum_Mapping3=[map(sum,8*Y, 8*X)].

3. Call the algorithm Evaluate summands to evaluate
constraints based on those mappings. The mapping which
yields a better evaluation result defines the most plausible
representation of SP_RHS. Following the example above,
we can hypothesize that SEM_SF is the most suitable
representation of SP_RHS because Sum_Mapping1 and
Sum_Mapping2 contain a map of a product and a nil-value
which causes constraint violation.

Evaluate summands: a summand is comprised of an
algebraic sign and a list of factors. For instance, a
summand 8*X*Z^B has the algebraic sign + and the
factors [8, X, Z^B]. We refer to a summand of SEM_NF as
SEM_SUM and a summand of the SP_RHS as SP_SUM.
The algorithm of evaluating summands follows:

1. Evaluate the algebraic sign of SP_SUM whether it
corresponds to the one of SEM_SUM.

2. If any element in the factor list of SEM_SUM contains a
division, then apply Rule 2 to create a list of commutative
variants, otherwise this list contains just SEM_SUM.
Similarly, apply Rule 2 to SP_SUM.

3. Create mappings between SEM_SUM and SP_SUM by
selecting one commutative variant of SEM_SUM and one
variant of SP_SUM, then map factors of SEM_SUM
against factors of SP_SUM.

4. Call the algorithm Evaluate factors. The factor
mapping, which yields the best evaluation result, indicates
that the selected factors of SP_SUM corresponds to factors
of SEM_SUM.

Evaluate factors:

1. Evaluate the existence of factors.

2. Evaluate the type of each factor (variable, number,
division or an exponential term) and co-references of
variables, correctness of numbers.

3. If a factor is an exponential term and its basis is an
arithmetic term, then apply the algorithm evaluate an
arithmetic expression to this arithmetic term.

Applying the generalized constraint template above, we are
in a position to construct constraints for evaluating factors,
for evaluating summands and for evaluating arithmetic
expressions. As a result, constraints evaluating calculation
subgoals are nested constraints. That is, the relevance part
of a constraint includes the execution of the evaluation on
the next level and the satisfaction part requires that no
error occurs during that evaluation.

4.4 Applying CBM and Pattern Candidates
to Model a Solution Space
The variation of a subgoal (clause head) requires
considering arguments within that subgoal (clause head). A
pattern variant differs from others not only at argument
positions in one subgoal, but also in many subgoals.
Therefore, the generalized constraint template above
cannot be applied directly to define constraints which span
the space of patterns. Syntactically, a constraint, which
should cover the space of patterns, requires to consider
many subgoals (clause heads) in its relevance part. The
following problem exercise illustrates this issue:

Compound interest: An amount of money S will be
charged with an annual interest rate (i.e. R=0.05) and
rises exponentially. Define a predicate to compute the
amount of money after X years of investment.

For the problem above we can apply four different
patterns: analytic, tail recursive, increasing recursive and
decreasing recursive. Possible solutions according to the
last two patterns are shown in Table 3. We can notice that
those solutions differ from each other remarkably. Even
though the increasing recursive and the decreasing
recursive solutions seem to have many structures in
common, from the view of underlying programming
techniques, they are quite different. The predicate in the
increasing recursive solution calls itself until the variable
New_Period is bound, then the second subgoal, an
arithmetic calculation, tests the bound value of

New_Period in relation to the bound value X (number of
investment years). If the test succeeds, the new sum is
calculated, otherwise, the recursive subgoal is called again.
In another solution New_Period is calculated by
decrementing X, as long as X is greater than 1, the new
investment sum is computed until New_Period is zero.

Table 3. Possible solutions for the problem Compound interest

Pattern Solution

Increasing
recursive

in_inv(S,_,0,S).
in_inv(S,R,X,End_S):-
in_inv(S,R,New_Period,New_S),
X is New_Period+1,
End_S is New_S+R*New_S.

Decreasing
recursive

de_inv(S,_,0,S).
de_inv(S,R,X,End_S):-X>0,
New_Period is X-1,
de_inv(S,R,New_Period,New_S),
End_S is New_S+R*New_S.

Hypothesis: It is possible to define a constraint which
models a common space of solutions for both patterns
increasing recursive and decreasing recursive.

Attempt 1: we define Constraint P1 without using a
transformation rule. We select assertions from the semantic
table to describe the decreasing recursive pattern as the
relevance part of a constraint, and the satisfaction part
requires that the student solution should satisfy either the
increasing recursive or the decreasing recursive pattern.

Constraint P1:

Relevance: in the semantic table, a recursive subgoal R, an
increment calculation subgoal A: X is V+1, a calculation
subgoal A, and a base case Cbase exist and should fulfill the
following conditions: R precedes A; V also exists in R at
the position p(V); p(V) is equal to the argument position of
X in the clause head; The argument at position p(V) in Cbase

is bound to a constant.

Satisfaction: in the student solution, either condition set A
or condition set B should be satisfied:

Condition set A: there should exist a recursive subgoal SR,
an increment calculation SA: SX is SV+1, and a base case
SCbase, which meet following requirements: SR precedes
SA; SV exists in SR at the position p(SV); p(SV) is equal
to the argument position of X in the clause head; The
argument at position p(SV) in SCbase is bound to a constant.

Condition set B: there should exist a recursive subgoal SR,
a decrement calculation subgoal SC: SV is SX-1, and a
base case SCbase, which meet the following requirements:
SR precedes SC; SV exists in SR at the position p(SV);
p(SV) is equal to the argument position of SX in the clause
head; The argument at position p(SV) in SCbase is bound to
a constant; An arithmetic test subgoal SX>0.

Suppose, the solution SP3 (Appendix B) for the problem
Compound interest should be evaluated. The relevance
part of Constraint P1 is always evaluated to true because it

is a conjunction of semantic assertions. However, SP3 will
not satisfy Constraint P1 because the calculation subgoal
neither satisfies the condition set A nor set B. As a result,
Constraint P1 is not useful due to following problems: 1)
The student solution is implemented according to either the
increasing recursive or the decreasing recursive pattern.
But in case of an erroneous solution, this distinction is not
reflected in the diagnostic results because the constraint
simply evaluates to false without indicating the strategy
used by the student probably. 2) The relevance part of
Constraint P1 is so complex that errors in the student
solution can not be reliably localized.

Attempt 2: we define a constraint using a transformation
rule which transforms the decreasing recursive (DRP) to
the increasing recursive pattern (IRP).

Rule 3: copy the base case of DRP: de_inv(S,_,0,S);

copy the clause head of the recursive case of DRP:
de_inv(S,R,X,End_S); remove the arithmetic test subgoal
of DRP; convert the decrement subgoal of DRP to
increment subgoal: N_Period is X-1 → X is N_Period+1;
concatenate the recursive subgoal of DRP to the front of
the increment subgoal; concatenate the increment subgoal
with other subgoals of the recursive case of DRP; the new
form is the IRP.

We can now evaluate Constraint P1 on a predicate which
uses arithmetic recursion as follows: 1) Assuming, a
solution is coded according to decreasing recursive
pattern (called SEM_DRP). We apply Rule 3 to
SEM_DRP resulting in a predicate SEM_IRP which uses
increasing recursive pattern; 2) We evaluate Constraint P1
based on either SEM_DRP or SEM_IRP; 3) SEM_DRP or
SEM_IRP, which causes fewer constraint violations, is
taken as the one which apparently has been implemented
in the student solution. However, the transformation is
very complex and it is difficult to verify its correctness.

To avoid the constraint complexity as in Attempt 1 and the
necessity to apply Rule 3 as in Attempt 2, the semantic
table is extended to contain two candidates for the two
patterns. The student solution is evaluated based on
semantic assertions extracted from the semantic table. The
pattern candidate, which causes the least constraint
violation, is taken as the most plausible explanation for the
student solution.

5. IMPLEMENTATION
The architecture of our web-based INCOM is comprised
of three layers: front-end, back-end and resource layer. The
front-end layer plays the role of presenting exercise tasks
to students, reading student solution inputs and returning
feedback. The back-end layer is charged to transform
student solutions to other possible variants, to analyse its
structure and to diagnose errors by calling the General
Constraint Evaluator. The resource layer contains exercise
descriptions and associated semantic tables. The resource
and back-end layers are implemented using SWI-Prolog,
whereas the front-end layer is implemented using

JavaBeans and Java Server Pages. Front-end and back-end
layer communicate via the Tomcat server.

6. EVALUATION
The efficacy of an ITS depends on the accuracy of
diagnosis. We conducted an off-line test by selecting
appropriate exercises from past written examinations and
integrated them into INCOM. Then, we collected student
solutions for those exercises. The examination candidates
should have attended a course in logic programming which
was offered as a part of the first semester curriculum in
Informatics. The purpose of the evaluation is to find out
whether the solution space modeled by CBM covers
possible student solutions, and thus the ITS is in a position
to give appropriate diagnostic information.

Currently, we conducted the evaluation with three
exercises tasks (Appendix A). Each of the exercise tasks
requires different skills to solve. For the first one, students
should be able to handle recursion, arithmetic calculation,
arithmetic test, and (de)composition of a list structure. The
second one requires students to cope with arithmetic
calculation and database relationships. The last one
requires the skill of implementing a recursive subgoal,
using unification and (de)composition.

While collecting student solutions from past examinations
we filtered out solutions which are not sufficiently
elaborated for applying a diagnosis, i.e. fragmentary
clauses. In addition, we added appropriate predicate
declarations, because students were not asked to provide
that information about meaning, types and modes of each
argument position. An expert marks the position of errors
in the student solution, and looks for a list of possible
constraints which might be violated. Finally, we run the
diagnosis on the student solution resulting in a list of
constraint violation hypotheses. If both lists are in
agreement, the automatic diagnosis is in accordance with
the one of the expert. Each student solution is a test case.

Table 4. Evaluation of student solutions

Exercise Participants Solutions Solutions not diagnosed

1 20 11 0

2 20 5 2

3 39 10 0

We summarize the number of participants who had to
solve the exercises and the number of collected solutions
which are diagnosable in Table 4. The system INCOM
could diagnose almost all collected solutions correctly
except two of them: SP1, SP2 (Appendix B). In one case
the solution contained a disjunction operator ‘;’ which is
currently not supported. In the other case the semantic
table was incomplete, since it did not contain a pattern
candidate implementing an accumulator.

7. CONCLUSION AND FUTURE WORKS
We have discussed how the CBM technique can be applied
to describe the solution space of ill-defined problems in
logic programming. There are three cases when we should
apply constraints: 1) Constraints without transformation
can be used to describe an object for which there is a small
number of variants as long as the conditions are not too
complex. If the complexity of a constraint becomes too
high, the author risks that the relevance part of the
constraint will not be fulfilled by an erroneous solution or
that the error committed by the student cannot be
diagnosed precisely enough. Therefore, we should use
constraints without transformation primarily to examine
objects at the argument level of a Prolog predicate
definition. 2) Constraints with transformation can be
applied to objects, which may have many variants, i.e. an
arithmetic expression that can be modified using the
distributive or commutative law. We suggest to describe
only transformation rules which are verifiable. 3) Pattern
candidates are required if we are not able to define a
transformation between them or a transformation rule can
not be verified. Normally, pattern candidates have a large
degree of dissimilarity. They are distinguished from each
other not only at the argument level but also at the subgoal
and clause level and thus, a transformation becomes very
complex. As a consequence, it is almost not possible to
verify the correctness and the generality of the
transformation. Therefore, a normalized pattern candidate
should be provided.

This technology has been integrated into a web-based ITS
and the system has been evaluated with student solutions
from past examinations. The evaluation results pointed out
that the CBM was able to cover 24 of 26 student solutions
for the exercises in Appendix A. The disadvantage of this
approach is that we have to define enough pattern
candidates to represent the different programming
strategies for which no transformation rules between
patterns can be defined and verified. This is not always an
easy task for a very ill-defined problem. We will be
extending INCOM with new exercises and test cases to
demonstrate the effectiveness of the CBM approach.

8. REFERENCES
[1] Anderson, J. R. & Reiser, B. J. The Lisp Tutor, BYTE,

April, pp. 159-175, 1985.

[2] Gick, M. L. Problem-solving strategies, Educational
Psychologist, Vol. 21, pp-99-120, 1986.

[3] Goel, V. Comparison of well-structured & ill-structured
task environments and problem spaces, Proceedings of the
14th annual conference of the cognitive science society,
Hillsdale, NJ: Erlbaum, 1992.

[4] Jacobs, J. E. & Paris, S. G. Children’s metacognition
about reading: Issues in definition, measurement, and
instruction, Edu. Psychologist, 22, pp. 255-278, 1987.

[5] Jonassen, D. H. Instructional design models for well-
structured and ill-structured problem-solving learning

outcomes, Educational Technology: Research and
Development, Vol. 45, No. 2, pp. 65-94, 1997.

[6] Jonassen, D.H.; Tessmer, M. & Hannum, W.H. Task
analysis methods for instructional design, Erlbaum 1999.

[7] Koedinger, K. R.; Anderson, J. R.; Hadley, W. H. & Mark,
M. Intelligent tutoring goes to school in the big city,
International Journal of Artificial Intelligence in
Education, Vol. 8, No. 1, pp. 30-43, 1997.

[8] Le, Nguyen-Thinh Using prolog design patterns to
support constraint-based error diagnosis in logic
programming, in K. Ashley, V. Aleven, N. Pinkwart and
C. Lynch (Ed.), Proc. of the Workshop on ITS for Ill-
Defined Domains, the 8th Conf. on ITS, pp. 38-46, 2006.

[9] Le, Nguyen-Thinh, INCOM: a constraint-based tutoring
system for logic programming. Report, FBI-HH-B-280/07,
University of Hamburg, Department of Informatics.

[10] Lynch, C. F.; Ashley, K. D.; Aleven, V. & Pinkwart, N.
Defining Ill-Defined Domains; A literature survey, In
Proceedings of the Workshop on ITS for Ill-Defined
Domains, the 8th Conference on ITS, pp. 1-10, 2006.

[11] Murray, W. Automatic Program Debugging for Intelligent
Tutoring Systems, Los Altos, Morgan Kaufmann, 1988.

[12] Ohlsson, S. Constraint-based student modeling, in Greer,
McCalla, Student Modelling: The Key to Individualized
Knowledge-based Instruction, pp. 167-189, Berlin, 1994.

[13] Ormerod, T. C. Planning and ill-defined problems, in R.
Morris & G. Ward (Eds.): The Cognitive Psychology of
Planning, London: Psychology Press, 2006.

[14] Roberts, D.A. What counts as an explanation for a
science teaching event?, Teaching Edu.,3, pp.69-87, 1991.

[15] Simon, H. The structure of ill-structured problems,
Artificial Intelligence, No. 4, pp. 181-201, 1973.

[16] Spiro, R. J. et al. Cognitive Flexibility, Constructivism
and Hypertext. Random Access Instruction for Advanced
Knowledge Acquisition in Ill-Structured Domains, in
Educational Technology Vol. 31, No. 5, pp. 24-33, 1991.

[17] Taylor, J. & Boulay, B.D. Studying novice programmers:
why they might find learning Prolog hard, in Rutkowska
& Crook (Eds), Computers, Cognition & Development:
Issues for Psychology & Education. Wiley, NY, 1987.

[18] Vanneste, P. A Reverse Engineering Approach to Novice
Program Analysis, PhD thesis, KU Kortrijk, 1994.

[19] Voss, J. F. Problem solving and reasoning in ill-structured
domains, in C. Antaki (Ed), Analyzing everyday
explanation: A casebook of methods, pp. 74-93, London:
SAGE Publications, 1988.

[20] Voss, J. F. & Post, T. A. On the solving of ill-structured
problems, in Chi, Glaser, & Farr (Eds), The nature of
expertise, Lawrence Erlbaum, 1988.

[21] Weber, G. Episodic learner modelling, Cognitive Science,
Vol. 20, pp. 195-236, 1996.

[22] White, B. Y. & Frederksen, J. R. Inquiry, modeling, and
metacognition: Making science accessible to all students,
Cognition and Instruction, Vol. 16, No. 1, pp-3-18, 1998.

[23] Xu, S. & Chee, Y.S Transformation-based diagnosis of
student programs for programming tutoring systems,
IEEE Trans on Software Eng, 29, 4, pp. 360-384, 2003.

Appendix A
Exercise 1: A salary database is implemented as a list whose
odd elements represent names and even elements represent
salary in €. For example: [‘A’, 3600, ‘B’, 5400, ‘C’, 6300,...,
‘D’, 4200]. Please, define a predicate which creates a new
salary list according to following rules: 1) Salary less equal
5000€ will be raised 3%; 2) Salary over 5000 € will be raised
2%. The new salary list would be: [‘A’, 3708, ‘B’, 5508, ‘C’,
6426, ..., ‘D’, 4226]. Notice: the representation of 3% and 2%
corresponds to 0.03 and 0.02 in Prolog, respectively.

Exercise 2: The income of a company is implemented as a
collection of facts in Prolog: invoice(InvoiceNr, ClientNr,
Amount, Date) where Amount is a sum of money in old
German Mark. Please, define a predicate invoice_e/4, which
converts invoices from German Mark into Euro.

Exercise 3: A list represents numbers of audience for a series
of TV programs. Each list element contains a sublist with
information about the TV station, the program title and the
number of audience (in Tsd). The list is ordered in descending
order according to the number of audience and is implemented
as an argument of the predicate audience/1 in the database of
the Prolog system: audience([[TV1, Pro1, 5300], [TV2, Pro2,
4200],...,[TVn, ProN, 3000]]). Please, define a predicate which
builds a new list of programs for a given name of TV station.
Please notice, that the original order should be kept and the
operator not/1 is provided to negate an unification.

Appendix B
Student solution SP1 for Exercise 2:
plus([], L2, L2).

plus(Gehalt,L2,R):-
Gehalt=[Kopf|Rest],
Rest=[Kopf1|Rest1],
Kopf1<=5000,
NKopf1 is Kopf1*1.03,
plus(Rest1,[L2|Kopf,NKopf1],R]);
Gehalt=[Kopf|Rest],
Rest=[Kopf1|Rest1],
Kopf1>5000,
NKopf1 is Kopf1*1.02,
plus(Rest1,[L2|Kopf,NKopf],R).

Student solution SP 2 for Exercise 2:
gehalttarif(Gehaltvorher,Gehaltnachher):-

gtacc(Gehaltvorher,[],Gehaltnachher).

gtacc([GLvorName,GLvorDM|GLvorTail],Acc,GLnach):-
gtacc(GLvorTail,[GLvorName,GLneuDM|

Acc],GLnach),
(GLneuDM is GlvorDM*103/100,Gehalt<=5000);
(GLneuDM is GLvorDM*105/100, Gehalt>5000).

Gtacc([], Acc, Acc).

Student Solution SP 3 for the problem Compound interest :
invest(S,_,0,S).

invest(S,R,X,End_S):-
X is New_P-1,
invest(S,R,New_P,New_S),
End_S is New_S+R*New_S.

	1. INTRODUCTION
	2. ILL-DEFINED1 PROBLEMS
	3. SOLUTION SPACE FOR A LOGIC PROGRAMMING PROBLEM
	4. APPLYING CBM APPROACH
	4.1 Constraint-based Modeling
	4.2 Applying CBM to Model a Solution Space
	4.3 Applying CBM and Transformation to Model a Solution Space
	4.4 Applying CBM and Pattern Candidates to Model a Solution Space

	5. IMPLEMENTATION
	6. EVALUATION
	7. CONCLUSION AND FUTURE WORKS
	8. REFERENCES
	Appendix A
	Appendix B

