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ABSTRACT
Intelligent Tutoring Systems have made great strides in recent 
years.  Many  of  these  gains  have  been  achieved  for  well-
defined  problems.  However,  solving  ill-defined  problems  is 
important because it can enhance the cognitive, metacognitive 
and  argumentation  skills  of  a  student.  In  this  paper,  we 
demonstrate  how  to  apply  the  constraint-based  modelling 
approach to describe the solution space of ill-defined problems 
in  logic  programming.  This  technology  has  been  integrated 
into a web-based ITS (INCOM) and has been evaluated with 
student solutions from past examinations.  
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1. INTRODUCTION
Intelligent Tutoring Systems (ITS) have made great strides 
in recent years. Many of these gains have been achieved 
for  well-defined problems such as geometry,  Newtonian 
Mechanics, and  system maintenance  [10].  However,  by 
solving  ill-defined  problems  students  can  gain  more 
benefits:

1.Enhancement of cognitive skills: well-developed domain 
knowledge  is  a  primary  factor  in  solving  ill-defined 
problems [5, 14]. In solving ill-defined problems, students 
apply their domain knowledge in a meaningful way instead 
of storing a chunk of concepts in a memory [22].

2.  Enhancement  of  metacognitive  skills:  ill-defined 
problems  require  solvers  to  control  and  regulate  the 
selection and execution of a solution process [5, 2, 4]. In 
the ill-defined problem solving process,  students employ 
their  meta-cognitive  skills,  such  as  changing  strategies, 
modifying plans and reevaluating goals in order to reach 
an optimal solution [22].

3. Enhancement of argumentation skills: since ill-defined 
problems require students to consider alternative solutions, 
successful students can provide evidence for their solution 
[19, 20]. Therefore, students gain practice justifying their 
solution in a logical way to persuade others.

For this purpose, we focus our research on a web-based 
programming ITS which supports students learning logic 

programming by  solving  ill-defined problems.  Prolog  is 
one of the most widely used logic programming languages. 
Prolog is considered to be difficult to learn because of the 
simple syntax and the concept of recursive programming 
which is the most important programming technique [17]. 
In general, the domain of programming is infinite. For a 
given programming task, there is no single solution, but 
many strategies to design a solution. For a strategy, there 
are many ways to implement them. 

How can an ITS diagnose errors in the student solution for 
an  ill-defined  problem?  Over  the  last  two  decades, 
numerous  error  diagnosis  approaches  in  the  domain  of 
programming  languages  have  been  devised,  such  as 
program  transformation  [18,  23],  program  verification 
[11],  plan  and  bug  library  [21],  model  tracing  [1]  and 
constraint-based  modeling  (CBM)  [12].  Among  these, 
model tracing is used by cognitive tutors which are some 
of  the  most  successful  ITS  today  [7].  However,  those 
approaches have been applied to problems with a lower 
degree of ill-definedness. An ill-defined problem has not 
only  a  simple  correct  solution,  rather  many  or  even 
uncountably.  In  this  paper,  we  introduce  the  CBM 
approach to cope with the solution space for  ill-defined 
problems in logic programming. 

In  the  next section,  we review the characteristics  of  ill-
definedness  in  the  literature  and  argue  why  logic 
programming  problems  provided  by  INCOM  are  ill-
defined. The solution space for a programming problem in 
Prolog  is  described  in  the  third  section.  In  the  fourth 
section, we introduce CBM and how we apply it to model 
the solution space for a Prolog problem. The fifth section 
illustrates the architecture of INCOM briefly. In the sixth 
section  we show our  evaluation  result.  Our  conclusions 
and future works are summarized in the last section.

2. ILL-DEFINED1 PROBLEMS
In  the  literature,  there  is  no  formal  definition  what 
constitutes a “well-defined problem”. Instead, we must be 

1 In this paper we have chosen the term ill-defined problem. 
The  terms  ill-structured  and  ill-defined  are  used 
interchangeably in the literature. To avoid confusion, we will 
use the former one.



content with requirements which have been proposed as 
criteria a problem must satisfy in order to be regarded as 
well-defined: 1) a start state is available; 2) there exist a 
limited  number  of  relatively  easily  formalized 
transformation rules; 3) evaluation functions are specified 
and 4) the goal state is unambiguous [6]. If one or several 
of these conditions is violated, the problem is considered 
ill-defined  [13].  Most  researchers  agree  that  a  design 
problem is  a  representative of  ill-defined  problems [3], 
because  the  start  state  is  underspecified,  there  is  no 
predefined set of rules for completing the task, and it is 
difficult to evaluate when a “best” result has been attained. 
However,  “the  boundary  between  well-defined  and  ill-
defined problems is vague, fluid and not susceptible to  
formalization”  [15].  Thus,  this  vagueness  and  relativity 
should  simply  reflect  the  continuum  of  degrees  of 
definiteness between the well-defined and ill-defined ends 
of  the  problem  spectrum.  Those  problems,  which  lie 
somewhere  in  the  middle  between well-defined  and  ill-
defined ends, may have well-specified start and goal states, 
but  underspecified  transformation  rules  or  evaluation 
functions because 1) there are multiple representations of 
knowledge  with  complex  interactions;  2)  the  ways  in 
which the rules apply vary across cases nominally of the 
same  type  [16]  and  3)  there  are  only  aesthetic  value 
judgments, but no quantitative measurements available.

Most  programming  problems,  which  are  used  to  tutor 
Prolog,  are simple  and  might have well-defined start  as 
well as goal states. The problem text can be well specified 
and a solution can be verified whether it solves the given 
problem  correctly.  However,  the  activity  of  solving  a 
Prolog  programming  problem is  a  design  problem. The 
solution space is mainly spanned by using different Prolog 
primitives  or  applying  mathematical  rules.  Furthermore, 
one can modularize a program in order to make the code 
clearer,  easy  maintainable  and  reusable,  but  all  these 
criteria  are  highly  subjective.  That  is  why  Prolog 
programming  problems  are  ill-defined.  We  provide 
students with a series of problem tasks (Appendix A) to be 
solved in free-form using our system INCOM.

3. SOLUTION SPACE FOR A LOGIC 
PROGRAMMING PROBLEM
We  consider  only  Prolog  programs  without  cuts, 
disjunctions  or  if-then-else  operators.  No  assert,  retract, 
abolish or similar database-altering predicate can be used. 
The set of built-in predicates which can be employed by 
the programs are: =, =.=, =\=, ==, \==, >, >=, <,  =<, =.., +, 
-,  *,  /,  ^  and  ‘is’.  Auxiliary  predicates  are  provided 
explicitly or can be defined by users.

To solve a logic programming problem, there are many 
solutions.  The  solution  space  results  from  a  variety  of 
Prolog primitives and a variety of programming techniques 
which describe standard solution strategies. The solution 
space is also determined by a set of general principles of 
Prolog.  Furthermore,  it  is  restricted  by  an  appropriate 
predicate declaration which is developed interactively with 

the  student  prior  to  the  implementation  itself.  The 
declaration information is used to gather the intention of 
the student, and to understand subsequent implementation 
of the student solution. In the following, we describe the 
space of solutions for a given problem in more detail.

Solution  space  spanned  by  Prolog  primitives:  a 
predicate is composed of a clause head and a clause body. 
A clause body contains several subgoals. Table 1 shows the 
possible variations of  a clause head and of  its subgoals. 
This  collection  is  not  a  complete  one,  but  also  reflects 
specific restrictions imposed by the system. The following 
types of clause head and subgoals can be distinguished:

Clause head: a clause head is the first part of a clause of a 
predicate. The definition for a clause head must adhere to 
the  predicate  declaration:  clause  type  (a  base  case,  a 
recursive case or a non-recursive clause), argument types 
(atom, number, list or arbitrary) and argument modes (+,  -, 
?). A clause head may vary depending on the clause body, 
i.e. a (de)composition or a unification either takes place in 
the clause head implicitly or in the clause body explicitly.

Recursive: a recursive subgoal has the same functor and 
the  same  arity  as  its  clause  head.  Arguments  of  an 
recursive subgoal inherit declaration information from the 
clause head such as: types, modes and argument meaning.

(De)composition: a (de)composition subgoal composes an 
argument  using  other  variables  or  decomposes  an 
argument  into  several  variables  or  constants.  A 
(de)composition  can  be  established  implicitly  at  an 
argument  position  or  can  be  represented  explicitly as  a 
separate subgoal.

Arithmetic  test: an  arithmetic  test  subgoal  is  used  to 
compare two bound arguments which are of type number. 
There are two classes of arithmetic test subgoals. The first 
one applies the operators: <, >, =< and >= to test whether a 
number  is  greater/smaller  than another  one.  The second 
class applies the operators: =:= and =\= to test whether two 
numbers are equal or not. The operands of the operators 
can be transposed because they are commutative.

Calculation: a calculation subgoal is used to compute an 
arithmetic expression  using  the operator  ‘is’. It  requires 
that the variables on the right hand side of the subgoal are 
bound; otherwise the evaluation cannot be executed. We 
consider the following arithmetic operators: +, -, *, /, ^ and 
three forms for an arithmetic expression are distinguished: 
1) Normal form: A°X±B°X; 2) Applying the distributive 
law  and  3)  Applying  the  commutative  law  where  the 
operator ± is either + or -, and the operator ° is either * or /. 
Currently  we  do  not  perform  any  transformation  for 
exponential  expressions: (X+Y)^A. We just  consider the 
neutral elements: X^1=X and X^0=1. The basis is regarded 
as an arithmetic expression with possible variants.

Unification: a unification subgoal unifies two variables or 
assigns  a  value to  a  variable  using  the operator  =. The 
unification subgoal is referred to as an explicit unification. 



A unification  can  also  occur  if  two  different  argument 
positions  have  the same variable name and  this case is 
called implicit unification or co-reference.

Term test: a term test subgoal is intended to test whether 
two terms are equivalent using the operators: == and \==. 
We also include the operator \= into the class of term test 
because it tests whether two terms are not unifiable.  All 
three operators are commutative.

Relation: a subgoal is a relation if a database is provided in 
which an appropriate relation is defined. A relation can not 
be transformed.

Helper predicates: we restrict the space of helper predicates 
to the ones which build accumulation over lists or which 
are defined without using recursion. In general, the space 
of helper predicates is open-ended.

Table 1. Normal form and variation of clause heads/subgoals 

Head/Sub
goal

Normal form Variants

Clause head p(X,Y):-X=Y.
q(X,Y):-X=[H|T].

p(X,X). 
q([H|T],Y).

Recursive p([H|T],Y):-p(T,Y) p([H|T],Y):-p(T,Y)

(De)compos
ition

Explicit: 
p(X,Y):-X=[H|T], p(T,Y). 

Implicit:
p([H|T], Y) :- p(T,Y).  

Arithmetic 
test

X<Y

A=:=B
A=\=B

Y>X; X-Y<0; Y-X>0; 0>X-Y; 
0<Y-X;
B=:=A
B=\=A

Calculation A°X±B°X distributive: (A±B)°X
commutative: X°A±B°X, 
A°X±X°B, X°(A±B)

Unification Explicit: 
p([H1|T1],[H2|T2]):- 
H1=H2, p(T1,T2).

Implicit:  
p([H|T1],[H|T2]):-p(T1,T2). 

Term test A==B
A\==B
A\=B

B==A
B\==A
B\=A

Relation query(A,B,C) query(A,B,C)
Helper 
predicate

help(A,B,C) help(A,B,C)

Solution space spanned by patterns: to solve a problem 
in logic programming many programming techniques can 
be applied and combined.  The programming techniques 
underlying a predicate definition determine the strategy of 
a problem solution. For example, to solve the problem of 
processing all elements of a list, one can choose between 
recursion  by  processing  many  elements  or  only  one 
element. If only one element is processed, there are several 
possible  alternatives: naive  recursion,  inverse  recursion, 
recursion using an accumulation predicate or applying the 
railway-shunt [8]. Hence, for a given problem of Prolog 
programming, there are typical solution strategies which 
we refer to as patterns. The number of patterns spans the 
solution space for a given problem in logic programming.

Solution space spanned by a set of general principles 
of Prolog:  the general principles of Prolog assure that a 

Prolog predicate definition is executable. The following is 
a subset of general principles of Prolog, which is not an 
exclusive list:

− Variables on the RHS of an calculation subgoal must 
be bound.

− Variables  of  an  arithmetic  test  and  of  term  test 
subgoals must be bound.

− For a recursive implementation, at least  a base case 
and a recursive case are required

Solution  space  spanned  by  the  choice  of  names  for 
variables and predicates:  as we do not want to restrict 
students to a small space of solutions, they are allowed to 
choose any names for variables and predicates as they do 
without an ITS system. Therefore, the solution space for a 
programming problem in Prolog also becomes open with 
respect to the choice of names for variables and predicates.

4. APPLYING CBM APPROACH

4.1 Constraint-based Modeling
The CBM approach has been proposed in [12] to model 
general principles of a domain as a set of constraints. A 
constraint is represented as an ordered pair consisting of a 
relevance  part  and  a  satisfaction  part:  Constraint  C  = 
<relevance part,  satisfaction part> where the relevance 
part represents circumstances under which the constraint 
applies, and the satisfaction part represents a condition that 
has to be met for the constraint to be satisfied. Constraints 
are  not  only  used  to  circumscribe  facts,  principles  or 
conditions of a domain, they can also be used to specify 
the requirements of a task or to handle solution variations. 
Using  the  relevance  part  constraints  can  be  tailored 
according  to  the  semantics  which  represent  the 
requirements  of  the  given  task  [8].  If  a  constraint  is 
violated, it indicates that the student solution does not hold 
principles of a domain or it does not meet the requirements 
of the given task. 

In  order  to  evaluate  constraints,  we  define  a  formal 
representation  for  constraints:  constraint(Id,  Type,  
Relevance,  Satisfaction,  Severity,  Position,  Hint)2.  
Information  about  relationships  between  structural 
elements of a given Prolog program and a given predicate 
declaration  are  stored  in  three  types  of  assertions: 
headarg,  bodyarg  and argmode  where  headarg and 
bodyarg contain information about each argument in the 
clause head  and  in  the  clause  body,  respectively.  If  an 
assertion  of  type  argmode exists,  it  denotes  that  the 
argument  is  bound,  after  its  corresponding  subgoal  has 

2 Id is an unique identification of the constraint; Type is one of 
pattern,  general,  head,  recursive,  arithmetictest,  termtest,  
(de)composition, unify or calculation; Relevance is a relevance 
part;  Satisfaction is  a satisfaction part;  Severity indicates the 
severity  of  the  constraint,  it  ranges  between  zero  if  the 
constraint  is  important  and one if  it  is  informative;  Position 
indicates the error location; Hint is an instructional message.



been  executed  [8].  As  a  result,  the  relevance  and 
satisfaction  parts  of  a  constraint  can  be  specified  as 
conjunctions  of  assertions.  The  constraint  evaluation  is 
carried  out  as  follows:  first,  the  relevance  part  of  the 
constraint is matched against a set of assertions. If there is 
a match, i.e. the constraint is relevant to the program, then 
the  satisfaction  part  is  matched  against  the same set  of 
assertions. If the satisfaction part is also fulfilled, then the 
Prolog program is considered to be correct with respect to 
that constraint. Otherwise, it indicates a shortcoming in the 
program  and  the  corresponding  information  will  be 
returned  for  instructional  purposes:  error  location, 
constraint severity and hint encoded in the constraint [9].

4.2 Applying CBM to Model a Solution Space
There are two classes of constraints: semantic constraints 
and  Prolog  general  constraints.  The  first  one  includes 
constraints  which  examine  whether  a  solution  object 
satisfies the requirements of a given problem. Constraints 
of  the  latter  class  examine  whether  the  solution  object 
fulfills  general  principles  of  Prolog.  Prolog  general 
constraints  can  be  constructed  as  demonstrated  in  [8]. 
Semantic constraints are constructed based on a semantic 
table which contains information required to solve a given 
problem. Clause heads and subgoals in the semantic table 
are  represented in  normal forms  (Table  2).  The normal 
form representation reveals the underlying programming 
techniques and thus, the diagnosis becomes more accurate.

Table 2. An example of a semantic table

Head Subgoal Description

salary(OldL,NewL) OldL=[] 
NewL=[]   

Old list is empty
New list is empty

salary(OldL,NewL) OldL=[N,S|T]  
NewL=[N,Snew|Tnew] 
S=<5000              
Snew is S+S*0.03 
salary(T,Tnew)    

N, S: name, salary
build a new salary list
Salary less than 5000
Salary is increased 
Decompose old salary list 
recursively

From this table, headarg, bodyarg and argmode assertions 
can  be  extracted.  They  are  referred  to  as  semantic 
assertions,  while  similar  ones  derived  from the  student 
solution are referred to as student assertions. In order to 
construct a semantic constraint, two steps are required:

1. We map semantic assertions to student assertions of the 
same  subgoal  type.  This  might  result  in  multiple 
combinations of maps. For example: the set of semantic 
assertions  contains  two  assertions  bodyarg(tp,unify,1,A)  
and  bodyarg(tp,unify,2,B),  which represent a unification 
subgoal  of two  arguments  A and  B at  position  1  and 
position 2,  respectively.  Similarly, two student assertions 
bodyarg(sp,unify,1,SB)  and bodyarg(sp,unify,2,SA) 
represent a unification subgoal of two arguments SA and 
SB at  position  2  and  1,  respectively.  Mapping  two 

semantic assertions  against two student assertions of  the 
subgoal type unify results in two mappings: 

Mapping1=[map(bodyarg(tp,unify,1,A),bodyarg(sp,unify,2,SA)
), map(bodyarg(tp,unify,1,B),bodyarg(sp,unify,1,SB))]

Mapping2=[map(bodyarg(tp,unify,1,A),bodyarg(tp,unify,1,SB)
), map(bodyarg(tp,unify,2,B), bodyarg(sp,unify,2,SA))]

2. We select relevant semantic assertions which consider a 
semantic unit for the relevance part. The satisfaction part 
checks  corresponding  student  assertions  in  the  selected 
mapping. The following formula computes the plausibility 
of  each  mapping:  P(Assertions,Mapping)=P1*P2*…*Pn 
where P1, P2, ... are the severity of constraints which are 
violated. The  mapping  (either  Mapping1 or  Mapping2), 
whose  evaluation  obtains  the  best  score,  is  the  most 
plausible  one.  If  the student  solution  deviates  from the 
normal form, then the satisfaction part has to consider all 
possible variants. In this case, a semantic constraint can be 
generalized as follows:

General Constraint Template:

constraint(Id,  Type,  Facts,  Relevance: s⊂S ,  
Satisfaction: test(SP,variant(s)), Severity, Position, Hint)

s is  a  subset  of  semantic  assertions  S  and describes a 
semantic unit, for instance: an explicit unification; SP is a 
subset of student assertions and test(SP, variants(s)) tests 
whether the student solution satisfies the selected semantic 
unit  s or its variants.  The generalized constraint template 
above  can  be  applied  to:  1)  Clause  level:  constraints 
examine clause order; 2) Clause subgoal level: constraints 
examine subgoal order, functor and arity of subgoals; 3) 
Argument  level:  constraints  examine  co-references  of 
variables, correctness of constants or operators.

The  two  steps  mapping-evaluation  above  allows  us  to 
cover the solution space spanned by the choice of names 
for  variables  and  predicates  because  the  mapping  step 
maps corresponding elements between student assertions 
and  semantic  assertions  without  considering  variable 
names  or  predicate  names,  and  the  evaluation  step 
examines whether the mapping satisfies semantic units.

4.3 Applying CBM and Transformation to 
Model a Solution Space
As the right hand side (RHS) of a calculation subgoal can 
be transformed using the distributive and commutative law, 
there  are  difficulties  to  apply  the  generalized  constraint 
template  above  directly.  In  addition,  the  structure  of  a 
calculation subgoal must be decomposed according to its 
depth. Currently, we do not consider recursively embedded 
arithmetic  expressions.  Our  system  just  copes  with 
arithmetic  expressions  without  nesting,  for  example: 
A*(B+C).  Before  we  attempt  to  model  a  space  of 
calculation  subgoals  using  CBM,  we  introduce 
transformation  rules  for  arithmetic  expressions  and  an 
algorithm  for  evaluating  a  calculation  subgoal  of  the 
student solution whose RHS is referred to as SP_RHS.



Rule 1: transforms the normal form to the simplified form 
applying  the distributive  law: A°X ±  B°X  →  (A±B)°X, 
where  the  operator  °  is  either  * or  /.  If  A and  B are 
numbers, then (A±B)°X can be transformed to M°X where 
M=A±B. For example: (2+3)*X → 5*X 

Rule  2:  transforms  a  product  term  applying  the 
commutative law: A*B -> B*A

Evaluate a calculation subgoal: 

1. Evaluate the left hand side of the subgoal; 

2. Call the algorithm Evaluate arithmetic expression to 
evaluate the RHS of the subgoal

Evaluate  an  arithmetic  expression: the  RHS  of  a 
calculation subgoal in the semantic table is represented in 
the normal form which is referred to as SEM_NF. That is a 
sum of many summands. Each summand is a product of 
many factors which are connected by arithmetic operators: 
*,  /,  ^. The arithmetic expression A*X + 1/Y – Z^B, for 
instance, is in normal form where the summands are A*X, 
1/Y and Z^B. In order to evaluate an arithmetic expression, 
we have to evaluate from the arithmetic expression level 
through the summand level to the factor level as follows:

1.  Apply  Rule  1  to  SEM_NF  producing  the  simplified 
form  SEM_SF.  For  instance,  SEM_NF=3*Y+5*Y  is 
simplified to SEM_SF=8*Y.

2.  Create  mappings  which  contain  maps  between  the 
SEM_NF and SP_RHS as well as between SEM_SF and 
SP_RHS,  respectively.  If  SP_RHS=8*X,  for  instance, 
mapping  between  SEM_NF  and  SP_RHS  yields 
Sum_Mapping1=[map(sum,3*Y,8*X),map(sum,5*Y,nil)];  
Sum_Mapping2=[map(sum,5*Y,8*X),map(sum,3*Y,nil)];  and 
mapping  between  SEM_SF  and  SP_RHS  results  in 
Sum_Mapping3=[map(sum,8*Y, 8*X)].

3.  Call  the  algorithm  Evaluate  summands to  evaluate 
constraints based on those mappings. The mapping which 
yields a better evaluation result defines the most plausible 
representation of SP_RHS. Following the example above, 
we  can  hypothesize  that  SEM_SF  is  the  most  suitable 
representation  of  SP_RHS because  Sum_Mapping1 and 
Sum_Mapping2 contain a map of a product and a nil-value 
which causes constraint violation.

Evaluate  summands: a  summand  is  comprised  of  an 
algebraic  sign  and  a  list  of  factors.  For  instance,  a 
summand  8*X*Z^B  has  the  algebraic  sign  +  and  the 
factors [8, X, Z^B]. We refer to a summand of SEM_NF as 
SEM_SUM and a summand of the SP_RHS as SP_SUM. 
The algorithm of evaluating summands follows:

1.  Evaluate  the  algebraic  sign  of  SP_SUM  whether  it 
corresponds to the one of SEM_SUM.

2. If any element in the factor list of SEM_SUM contains a 
division, then apply Rule 2 to create a list of commutative 
variants,  otherwise  this  list  contains  just  SEM_SUM. 
Similarly, apply Rule 2 to SP_SUM.

3. Create mappings between SEM_SUM and SP_SUM by 
selecting one commutative variant of SEM_SUM and one 
variant  of  SP_SUM,  then  map  factors  of  SEM_SUM 
against factors of SP_SUM.

4.  Call  the  algorithm  Evaluate  factors.  The  factor 
mapping, which yields the best evaluation result, indicates 
that the selected factors of SP_SUM corresponds to factors 
of SEM_SUM.

Evaluate factors:

1. Evaluate the existence of factors.

2.  Evaluate  the  type  of  each  factor  (variable,  number, 
division  or  an  exponential  term)  and  co-references  of 
variables, correctness of numbers.

3.  If  a factor  is an exponential  term and its basis is an 
arithmetic  term,  then  apply  the  algorithm  evaluate  an 
arithmetic expression to this arithmetic term.

Applying the generalized constraint template above, we are 
in a position to construct constraints for evaluating factors, 
for  evaluating  summands  and  for  evaluating  arithmetic 
expressions. As a result, constraints evaluating calculation 
subgoals are nested constraints. That is, the relevance part 
of a constraint includes the execution of the evaluation on 
the  next  level  and  the  satisfaction  part  requires that  no 
error occurs during that evaluation.

4.4 Applying CBM and Pattern Candidates 
to Model a Solution Space
The  variation  of  a  subgoal  (clause  head)  requires 
considering arguments within that subgoal (clause head). A 
pattern variant differs from others not  only at  argument 
positions  in  one  subgoal,  but  also  in  many  subgoals. 
Therefore,  the  generalized  constraint  template  above 
cannot be applied directly to define constraints which span 
the  space  of  patterns.  Syntactically,  a  constraint,  which 
should cover the  space of  patterns,  requires to consider 
many subgoals (clause  heads)  in its relevance part.  The 
following problem exercise illustrates this issue:

Compound  interest:  An  amount  of  money  S  will  be  
charged with an annual interest rate (i.e.  R=0.05) and 
rises  exponentially.  Define  a  predicate  to  compute  the  
amount of money after X years of investment.

For  the  problem  above  we  can  apply  four  different 
patterns: analytic, tail recursive, increasing recursive and 
decreasing recursive. Possible solutions according to the 
last two patterns are shown in Table 3. We can notice that 
those solutions  differ  from each other remarkably.  Even 
though  the  increasing  recursive and  the  decreasing 
recursive  solutions  seem  to  have  many  structures  in 
common,  from  the  view  of  underlying  programming 
techniques, they are quite different.  The predicate in the 
increasing recursive  solution calls itself until the variable 
New_Period is  bound,  then  the  second  subgoal,  an 
arithmetic  calculation,  tests  the  bound  value  of 



New_Period in relation to the bound value X (number of 
investment  years).  If  the test  succeeds,  the new sum is 
calculated, otherwise, the recursive subgoal is called again. 
In  another solution New_Period is  calculated  by 
decrementing X, as long as X is greater than 1, the new 
investment sum is computed until New_Period is zero. 

Table 3. Possible solutions for the problem Compound interest

Pattern Solution

Increasing 
recursive

in_inv(S,_,0,S).
in_inv(S,R,X,End_S):- 
in_inv(S,R,New_Period,New_S), 
X is New_Period+1, 
End_S is New_S+R*New_S.

Decreasing 
recursive

de_inv(S,_,0,S).
de_inv(S,R,X,End_S):-X>0, 
New_Period is X-1, 
de_inv(S,R,New_Period,New_S), 
End_S is New_S+R*New_S.

Hypothesis: It  is  possible to  define  a  constraint  which 
models  a  common  space  of  solutions  for  both  patterns 
increasing recursive and decreasing recursive.

Attempt  1: we  define  Constraint  P1  without  using  a 
transformation rule. We select assertions from the semantic 
table to describe the  decreasing recursive pattern as the 
relevance  part  of  a  constraint,  and  the  satisfaction  part 
requires that the student solution should satisfy either the 
increasing recursive or the decreasing recursive pattern.

Constraint P1:

Relevance: in the semantic table, a recursive subgoal R, an 
increment calculation subgoal A: X is V+1, a calculation 
subgoal A, and a base case Cbase exist and should fulfill the 
following conditions: R precedes A; V also exists in R at 
the position p(V); p(V) is equal to the argument position of 
X in the clause head; The argument at position p(V) in Cbase 

is bound to a constant.

Satisfaction: in the student solution, either condition set A 
or condition set B should be satisfied:

Condition set A: there should exist a recursive subgoal SR, 
an increment calculation SA: SX is SV+1, and a base case 
SCbase,  which  meet  following  requirements:  SR precedes 
SA; SV exists in SR at the position p(SV); p(SV) is equal 
to  the  argument  position  of  X  in  the  clause head;  The 
argument at position p(SV) in SCbase is bound to a constant.

Condition set B: there should exist a recursive subgoal SR, 
a decrement calculation subgoal SC: SV is SX-1, and a 
base case SCbase, which meet the following requirements: 
SR precedes SC; SV exists in SR at the position p(SV); 
p(SV) is equal to the argument position of SX in the clause 
head; The argument at position p(SV) in SCbase is bound to 
a constant; An arithmetic test subgoal SX>0.

Suppose, the solution SP3 (Appendix B) for the problem 
Compound  interest should  be  evaluated.  The  relevance 
part of Constraint P1 is always evaluated to true because it 

is a conjunction of semantic assertions. However, SP3 will 
not satisfy Constraint P1 because the calculation subgoal 
neither satisfies the condition set A nor set B. As a result, 
Constraint P1 is not useful due to following problems: 1) 
The student solution is implemented according to either the 
increasing recursive or the  decreasing recursive  pattern. 
But in case of an erroneous solution, this distinction is not 
reflected in the  diagnostic results because the constraint 
simply  evaluates  to false without indicating the  strategy 
used  by  the  student  probably.  2)  The relevance  part  of 
Constraint  P1  is  so  complex  that  errors  in  the  student 
solution can not be reliably localized.

Attempt 2: we define a constraint using a transformation 
rule which transforms the decreasing recursive  (DRP) to 
the increasing recursive pattern (IRP). 

Rule  3: copy  the base case of  DRP:  de_inv(S,_,0,S); 

copy  the  clause  head  of  the  recursive  case  of  DRP: 
de_inv(S,R,X,End_S);  remove the arithmetic test subgoal 
of  DRP;  convert  the  decrement  subgoal  of  DRP  to 
increment subgoal: N_Period is X-1 → X is N_Period+1; 
concatenate the recursive subgoal of DRP to the front of 
the increment subgoal; concatenate the increment subgoal 
with other subgoals of the recursive case of DRP; the new 
form is the IRP. 

We can now evaluate Constraint P1 on a predicate which 
uses  arithmetic  recursion  as  follows:  1)  Assuming,  a 
solution  is  coded  according  to  decreasing  recursive 
pattern   (called  SEM_DRP).  We  apply  Rule  3  to 
SEM_DRP resulting in a predicate SEM_IRP which uses 
increasing recursive pattern; 2) We evaluate Constraint P1 
based on either SEM_DRP or SEM_IRP; 3) SEM_DRP or 
SEM_IRP,  which  causes  fewer  constraint  violations,  is 
taken as the one which apparently has been implemented 
in  the  student  solution.  However,  the  transformation  is 
very complex and it is difficult to verify its correctness.

To avoid the constraint complexity as in Attempt 1 and the 
necessity to apply Rule 3  as in Attempt 2,  the semantic 
table  is  extended to  contain two candidates  for  the two 
patterns.  The  student  solution  is  evaluated  based  on 
semantic assertions extracted from the semantic table. The 
pattern  candidate,  which  causes  the  least  constraint 
violation, is taken as the most plausible explanation for the 
student solution.

5. IMPLEMENTATION
The architecture of our web-based INCOM is comprised 
of three layers: front-end, back-end and resource layer. The 
front-end layer plays the role of presenting exercise tasks 
to students, reading student solution inputs and returning 
feedback.  The  back-end  layer  is  charged  to  transform 
student solutions to other possible variants, to analyse its 
structure  and  to  diagnose  errors  by  calling  the  General 
Constraint Evaluator. The resource layer contains exercise 
descriptions and associated semantic tables. The resource 
and back-end layers are implemented using SWI-Prolog, 
whereas  the  front-end  layer  is  implemented  using 



JavaBeans and Java Server Pages. Front-end and back-end 
layer communicate via the Tomcat server.

6. EVALUATION
The  efficacy  of  an  ITS  depends  on  the  accuracy  of 
diagnosis.  We  conducted  an  off-line  test  by  selecting 
appropriate exercises from past written examinations and 
integrated them into INCOM. Then, we collected student 
solutions for those exercises. The examination candidates 
should have attended a course in logic programming which 
was offered as a part of the first semester curriculum in 
Informatics. The purpose of the evaluation is to find out 
whether  the  solution  space  modeled  by  CBM  covers 
possible student solutions, and thus the ITS is in a position 
to give appropriate diagnostic information.

Currently,  we  conducted  the  evaluation  with  three 
exercises tasks (Appendix A). Each of the exercise tasks 
requires different skills to solve. For the first one, students 
should be able to handle recursion, arithmetic calculation, 
arithmetic test, and (de)composition of a list structure. The 
second  one  requires  students  to  cope  with  arithmetic 
calculation  and  database  relationships.  The  last  one 
requires  the  skill  of  implementing  a  recursive  subgoal, 
using unification and (de)composition.

While collecting student solutions from past examinations 
we  filtered  out  solutions  which  are  not  sufficiently 
elaborated  for  applying  a  diagnosis,  i.e.  fragmentary 
clauses.  In  addition,  we  added  appropriate  predicate 
declarations, because students were not asked to provide 
that information about meaning, types and modes of each 
argument position. An expert marks the position of errors 
in  the student  solution,  and  looks  for  a  list  of  possible 
constraints which might be violated. Finally,  we run the 
diagnosis  on  the  student  solution  resulting  in  a  list  of 
constraint  violation  hypotheses.  If  both  lists  are  in 
agreement, the automatic diagnosis is in accordance with 
the one of the expert. Each student solution is a test case.

Table 4. Evaluation of student solutions

Exercise Participants Solutions Solutions not diagnosed

1 20 11 0

2 20 5 2

3 39 10 0

We  summarize  the  number  of  participants  who  had  to 
solve the exercises and the number of collected solutions 
which  are  diagnosable  in  Table  4.  The system INCOM 
could  diagnose  almost  all  collected  solutions  correctly 
except two of them: SP1, SP2 (Appendix B). In one case 
the solution contained a disjunction operator ‘;’ which is 
currently  not  supported.  In  the other  case  the  semantic 
table  was incomplete,  since  it  did  not  contain  a  pattern 
candidate implementing an accumulator.

7. CONCLUSION AND FUTURE WORKS
We have discussed how the CBM technique can be applied 
to describe the solution space of  ill-defined problems in 
logic programming. There are three cases when we should 
apply  constraints:  1)  Constraints  without  transformation 
can be used to describe an object for which there is a small 
number of variants as long as the conditions are not too 
complex. If  the complexity  of  a constraint becomes too 
high,  the  author  risks  that  the  relevance  part  of  the 
constraint will not be fulfilled by an erroneous solution or 
that  the  error  committed  by  the  student  cannot  be 
diagnosed  precisely  enough.  Therefore,  we  should  use 
constraints  without  transformation  primarily  to  examine 
objects  at  the  argument  level  of  a  Prolog  predicate 
definition.  2)  Constraints  with  transformation  can  be 
applied to objects, which may have many variants, i.e. an 
arithmetic  expression  that  can  be  modified  using  the 
distributive or  commutative law. We suggest to describe 
only transformation rules which are verifiable. 3) Pattern 
candidates  are  required  if  we  are  not  able  to  define  a 
transformation between them or a transformation rule can 
not be verified. Normally, pattern candidates have a large 
degree of dissimilarity. They are distinguished from each 
other not only at the argument level but also at the subgoal 
and clause level and thus, a transformation becomes very 
complex. As a consequence, it is  almost not  possible to 
verify  the  correctness  and  the  generality  of  the 
transformation. Therefore, a normalized pattern candidate 
should be provided.

This technology has been integrated into a web-based ITS 
and the system has been evaluated with student solutions 
from past examinations. The evaluation results pointed out 
that the CBM was able to cover 24 of 26 student solutions 
for the exercises in Appendix A. The disadvantage of this 
approach  is  that  we  have  to  define  enough  pattern 
candidates  to  represent  the  different  programming 
strategies  for  which  no  transformation  rules  between 
patterns can be defined and verified. This is not always an 
easy  task  for  a  very  ill-defined  problem.  We  will  be 
extending INCOM with new exercises and test cases to 
demonstrate the effectiveness of the CBM approach.
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Appendix A
Exercise 1: A salary database is implemented as a list whose 
odd  elements  represent  names  and  even  elements  represent 
salary in €. For example: [‘A’, 3600, ‘B’, 5400, ‘C’, 6300,..., 
‘D’,  4200].  Please,  define  a  predicate  which  creates  a  new 
salary list  according to following rules:  1)  Salary less equal 
5000€ will be raised 3%; 2) Salary over 5000 € will be raised 
2%. The new salary list would be: [‘A’, 3708, ‘B’, 5508, ‘C’, 
6426, ..., ‘D’, 4226]. Notice: the representation of 3% and 2% 
corresponds to 0.03 and 0.02 in Prolog, respectively.

Exercise  2: The income of  a  company is  implemented as  a 
collection  of  facts  in  Prolog:  invoice(InvoiceNr,  ClientNr, 
Amount,  Date)  where  Amount  is  a  sum  of  money  in  old 
German Mark.  Please,  define  a  predicate  invoice_e/4,  which 
converts invoices from German Mark into Euro.

Exercise 3: A list represents numbers of audience for a series 
of  TV programs.  Each  list  element  contains  a  sublist  with 
information  about  the  TV station,  the  program title  and  the 
number of audience (in Tsd). The list is ordered in descending 
order according to the number of audience and is implemented 
as an argument of the predicate  audience/1 in the database of 
the Prolog system: audience([[TV1, Pro1, 5300], [TV2, Pro2, 
4200],...,[TVn, ProN, 3000]]). Please, define a predicate which 
builds a new list of programs for a given name of TV station. 
Please  notice,  that  the  original  order  should be kept  and the 
operator not/1 is provided to negate an unification. 

Appendix B
Student solution SP1 for Exercise 2:
plus([], L2, L2).

plus(Gehalt,L2,R):-
Gehalt=[Kopf|Rest],
Rest=[Kopf1|Rest1],
Kopf1<=5000,
NKopf1 is Kopf1*1.03,
plus(Rest1,[L2|Kopf,NKopf1],R]); 
Gehalt=[Kopf|Rest],
Rest=[Kopf1|Rest1],
Kopf1>5000,
NKopf1 is Kopf1*1.02,
plus(Rest1,[L2|Kopf,NKopf],R).

Student solution SP 2 for Exercise 2:
gehalttarif(Gehaltvorher,Gehaltnachher):-

gtacc(Gehaltvorher,[],Gehaltnachher).

gtacc([GLvorName,GLvorDM|GLvorTail],Acc,GLnach):-
gtacc(GLvorTail,[GLvorName,GLneuDM|

Acc],GLnach),
(GLneuDM is GlvorDM*103/100,Gehalt<=5000);
(GLneuDM is GLvorDM*105/100, Gehalt>5000).

Gtacc([], Acc, Acc).

Student Solution SP 3 for the problem   Compound interest  :  
invest(S,_,0,S).

invest(S,R,X,End_S):-
X is New_P-1,
invest(S,R,New_P,New_S),
End_S is New_S+R*New_S.
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