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Abstract. Using the  constraint-based  modeling approach,  we have  developed  a diagnostic
component, which is able to identify errors made by learners of a logic programming language
when implementing a given task specification. It uses patterns to hypothesize the intention of a
learner and programming techniques to model conditions on the semantic well-formedness of
the program code. These conditions are expressed by means of constraints, which are evaluat-
ed on the student solution. Guiding feedback can be derived from constraint violations and is
presented to the student with different degrees of informativity. The component has been inte-
grated into a web-based tutoring system and tested on a number of exercises by the participants
of an introductory course in logic programming. 
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Introduction

Error diagnosis is one of the essential components of Intelligent Tutoring Systems because
understanding the current difficulties of a student is indispensable for providing him with
guiding help. This information is necessary irrespective of how this feedback is going to
be presented. Thus, error diagnosis and feedback generation can and should be separated
to a certain degree. Numerous approaches to error diagnosis in programming languages
have been proposed. Many of them turned out difficult to apply, do not provide enough
diagnostic information or are restricted to a particular pedagogic strategy. In this paper, we
present  our experience in  developing a constraint-based error diagnosis  component for
logic programming and highlight its strengths and weaknesses. 

The constraint-based approach was introduced by Ohlsson in [1] and has been proven
successfully in building Intelligent Tutoring Systems (ITS) in the domains of SQL and
database design [2]. Since a logic programming language can be understood as the rela-
tional calculus enriched with recursion and function symbols, the question arises naturally,
whether constraint-based diagnosis techniques can also be used in the more general case of
a declarative programming language. To investigate this issue, we developed a diagnosis
component and integrated it in a web-based tutoring system (INCOM). This system is in-
tended to  help first  year university students  to  overcome difficulties  while  doing their
homework assignments in programming with Prolog. Students are offered a database of
Prolog exercises. They can select from this database the exercises, for which they are in
need of help. The system attempts to diagnose their solution and returns feedback which
indicates possibilities for remedy. Thus, the students can improve their solutions succes-
sively.

Three main issues have been identified as being crucial for designing an error diagnosis
system. First, we have to understand the learning domain, namely logic programming and
its subjects i.e. database query and recursion. Second, we need a diagnosis method which
can deliver three kinds of information about an error: where the error is, what kind of error



it is and how it could be remedied. The third issue is the role didactics plays in the design
of a tutoring system. Here we can derive some inspiration from how a human tutor pro-
ceeds when correcting a program solution.

First the human tutor observes the structure of a student's solution and tries to guess,
what kind of approach the student is following. We refer to a particular way to solve a pro-
gramming problem as a programming pattern. Patterns can be derived from experience or
a systematic study of the program structure. They impose several conditions that must be
fulfilled in order to ensure the semantic correctness of the program code. By examining
these conditions, the tutor can look deeper into the student's solution and seek for possible
misconceptions. If a condition is not fulfilled, the tutor marks the erroneous position and
writes his feedback beside the error.

Based on this scenario, we have developed our constraint-based approach. Firstly, it
tries to "guess" the pattern the student is following, based on a generalized description of
the corresponding program structure. Thereafter, it examines the semantic correctness of a
solution by evaluating programming techniques applied to this pattern. The correctness of
programming techniques is described by constraints. If a constraint is violated, a technique
is not correctly used and an appropriate remedial hint is passed back to the user.

In the next section, we briefly overview the state of the art. In the second section, we
describe how we combine patterns, Prolog programming techniques and constraint evalua-
tion in the design of a coherent diagnosis component. The fourth section introduce the ar-
chitecture of INCOM. Finally, the paper illustrates future directions of our research.

1. State of Art 

Over  the  last  two  decades,  numerous  error  diagnosis  approaches  in  the  domain  of
programming  languages  have  been  devised,  such  as  program  transformation  [3,4,5],
program  verification  [6],  plan  and  bug  library  [7,8,9,10],  model  tracing  [11]  and
constraint-based modeling [12]. Among these, model tracing is used by cognitive tutors
which are some of the most successful ITS today [13].

The model tracing approach keeps track of the student's programming process and tries
to guide him towards expert programming behavior. Possible actions a student might take
are described by means of production rules. The set of production rules includes buggy
rules, which represent erroneous actions that would be taken by a novice and ideal rules,
which represent expert programming skills. By tracing the actions of the student with a
collection of these rules, model tracing systems are able to build a student model and inter-
vene in the programming process of the student. Whenever he performs a “bad” action, the
system can return feedback immediately. Anderson and Reiser [11] applied this approach
to build a tutor system for Lisp.

While the model tracing technique has been widely applied for developing cognitive tu-
tor systems [14], recently, the constraint-based technique has been showing great promise
as an alternative, which focuses on static cognitive states rather than problem solving pro-
cesses [15]. This technique has been employed successfully to build an SQL tutor system
[2] and has also been researched in the domain of data structures [16]. A number of factors
explain why the constraint-based approach seems to be auspicious:
• It is relatively easy to model domain knowledge by means of constraints. It does not

require an inference mechanism [15]. 
• A separate expert model is not necessary because the expert information is encapsulated

in the constraints [1].
• This approach is more tolerant than model tracing with regard to the incompleteness of

the knowledge base. It can recognize a correct solution submitted by the student, even if



that  solution  is  different  from the  ideal  one.  If  no  constraint  is  violated,  then  the
student's  solution  is  still  considered  to  be  correct  with  respect  to  the  notion  of
correctness embodied in the constraint base [12].

• It is neutral with respect to the tutor strategy. It provides a description of the error in
terms of the constraints which the student has violated, but it leaves open the question
of what instruction is implied by that description. The error description can be available
immediately or later in a summarized form [1].

2. The pattern and constraint-based error diagnosis approach

2.1 Patterns

A pattern is  a  standard  way to  solve  a  recurrent  problem.  For  example,  many people
multiply two numbers using the method of decimal-offsets.  There are, of course, other
ways to  carry out  such  a  computation,  e.g.  the  Russian  peasant  algorithm.  It  reduces
multiplication to four elementary operations: doubling a number, dividing a number by
two, subtracting one, and adding two numbers.

Even after the basic algorithmic idea has been chosen, there are still different ways to
implement it, e.g. a recursive or an iterative solution. Analog to arithmetics, such typical
problems and standard ways to solve them can also be identified in other areas of program-
ming. We call them patterns.

In Prolog, a pattern includes a general structure and a number of programming tech-
niques  applied  to  this  structure.  For  example,  the  two  predicate  definitions  below,
member/2 and nested_list/1, follow the so-called pattern “test-for-existence” [17].
  member/2
  member(H,[H|T]).
  member(P,[H|T]):-member(P,T).

nested_list/1
nested_list([H|T]):-islist(H).
nested_list([H|T]):-nested_list(T).

The pattern “test for existence” determines that some collection of objects has at least
one object with a specified property, i.e a list of terms has at least one term which is also a
list.  We generalize  the structures of the two predicate  definitions  above and specify a
structure for this pattern as follows:

pred(<<V1>>, [V2|V3]):-subgoal(1).

pred(<<V4>>, [V5|V6]):-pred(<<V7>>, V8).

In this representation, the expression <<X>> stands for a specific number of arguments
and  subgoal(Y) is replaced by a task dependent subgoal. This generalized structure for
“test-for-existence” is accompanied by two programming techniques which establish the
semantics of the pattern and are refered to as pattern specific programming techniques.
First, as the first n arguments are used to determine that a single input element has the de-
sired property, they represent the information which will not be changed during the com-
putation process. These arguments must be used according to the so-called “same” tech-
nique. It requires the arguments in <<V4>> and <<V7>> to be co-referenced, i.e. to share the
same value. The second technique applied to the last argument of the second clause is the
“list head” technique which requires that V6 and V8 must have the same value [18]. In ad-
dition to the four patterns described by Brna which are mainly for list processing tasks
[17], we defined some patterns to handle structures like Peano numbers.

In order to create a reference definition for member/2 which follows the pattern “test-
for-existence”, an instance of the appropriate pattern is generated. Then, <<V1>>, <<V4>>,
<<V7>> are replaced by variables  V1,  V4,  V7 and  subgoal(1) is  replaced by an empty
string which means that the body of the first clause contains no subgoals. Thus, we obtain
the following reference structure for member/1:

pred(V1, [V2|V3]).



pred(V4, [V5|V6]):-pred(V7, V8).

where in addition to pattern specific techniques, a task specific technique is applied to the
first  clause  which represents a  base  case and requires  that  the property argument  is  a
member of a list. That means V1 is equal to V2. 

Gegg-Harrison  [19]  defined  a  set  of  fourteen  Prolog  standard  structures  which  are
called schemata. A schema is specified based on a class of programs which share a com-
mon underlying structure and exemplify general techniques. He argued that the syntactic
structure and the semantic interpretation of two Prolog programs are highly related and
this makes it possible to compare the semantic similarity between two Prolog programs by
comparing the similarities of their syntactic structures. This method, however, fails in cas-
es, where the subgoals can be transposed without affecting the semantics. Hong [20] ac-
cepted that basic Prolog schemata are useful for presenting the general idea of techniques
to the student. But, a basic Prolog schema is less useful for recognizing a student program
since it does not provide much grammatical information.

Contrary to schemata, a pattern is described by a general structure (a schema) and a set
of programming techniques which ensure the semantic correctness of a class of programs.
Schemata have been proposed to teach Prolog by providing the novice Prolog programer
with a template with place-holders for completion [19,21] and for program transformation
[20]. We use patterns to diagnose errors in a student's solution.

2.2 Constraints

Techniques capture semantic  relationships  between variables within  a clause.  As such,
they say something about the computation being undertaken rather than simply providing a
syntactic pattern. A technique is language dependent (i.e., Prolog), but task independent,
e.g. the same technique might be used in sorting a list or in finding the maximum of two
numbers. Furthermore, a technique might apply to only part of a complete procedure, and
many techniques may be combined together in a procedure [18,22,23]. Brna [22] raised
some  questions  about  the  representation  of  techniques.  How  might  techniques  be
specified? Which structural elements we really care about?

We address these problems by applying the constraint-based modeling approach.  A
constraint consists of two parts: a relevance and a satisfaction part [1]. The first part identi-
fies the structural elements, for which a constraint is relevant. The latter examines if these
elements satisfy the conditions of a constraint. For instance, the following statement can be
described by a constraint:

“if the solution follows the pattern ‘test-for-existence’, then a ‘same’ technique must be
applied to the arguments which represent a property and a 'list head' technique must be
applied to the input list.”

The “if” phrase corresponds to the relevance part and the “then” phrase to the satisfac-
tion part of the constraint. The statement mentioned can be separated into two constraints
which have to be evaluated in conjunction.  Hence, constraints express units of domain
knowledge and can be used to describe the semantic requirements of techniques. In our
system, we distinguish pattern specific from task specific constraints.

The relevance part of a constraint is the pattern a solution applies and the satisfaction
part is a semantic condition for a programming technique or a combination of them. The
following types of conditions for the satisfaction part are required for our diagnosis com-
ponent and can be used under the assumption that a pattern has been identified:
• arg_value(V1,V2): value of V1 and V2 must be the same. 
• arg_value(V1,<Constant>): V1 has a constant value.
• type_value(V1,<type>): argument V1 must have type <type> which can be number,

atom and list.



• op_value(Op,<operator>): operator Op must be equal to <operator>.
• before(<item1>,<item2>): <item1> must appear before <item2>. An item can be an

argument, a subgoal or a clause.
• and_value, or_value, not_value: conjunction, disjunction, negation of constraints.

In the INCOM system, constraints are described by XML expressions. The piece of
XML code below describes a satisfaction part of a constraint which is valid for the pattern
“test-for-existence”. It specifies that the variables V1 and V2 must be the same. If not, an
error of type “same_argument” will  be raised and the corresponding feedback is  made
available. The cost for this violated constraint is 3. This cost is used by the Feedback Gen-
erator component to sort error messages according to the severity of errors. Moreover, it is
exploited by the pattern identification process to find the pattern with the least cost. Table
1 defines five degrees of severity for constraints.
<constraint>
  <constraintcontent>

     <constraintGround>
     arg_value('V1','V2')
     </constraintGround>
</constraintcontent>
<constrainterror>

<constrainterrortype>
      same_argument

</constrainterrortype>
<constrainterrortext>

      'You should apply the “same” technique.'
</constrainterrortext>

</constrainterror>
<constraintpenalty>3</constraintpenalty>

</constraint>
Table 1: Costs for constraints

Cost Constraint
1 which just gives information.
2 which makes some suggestion, e.g. to improve performance.
3 error on the argument and operator level
4 error on the subgoal and clause level. E.g. the order of two subgoals is wrong
5 indicates that information of the exercise description has been overlooked by users.

Missing information is directly highlighted in the exercise description.

2.3 A two-step diagnosis: Pattern identification and Constraint evaluation

As there are usually some patterns for solving a programming problem, the first step of our
diagnosis needs to identify the pattern underlying the student’s solution. We use it as an
hypothesis about the intention of the student.

Beginning with the first pattern, a reference solution structure is instantiated based on
the selected pattern. The student's solution is transformed to an internal format. Then the
two structures need to be matched.  This  process carries out  a heuristic search to  map
clause to clause, head to head, subgoal to subgoal, argument to argument and operator to
operator of the two structures. Unmatched elements of a structure incur a cost which is
highest for unmatched clauses. The cost for unmatched structures on the subgoal and head
level is higher than on the argument and operator level. This means that the errors which
occur on the argument and operator level are more easily tolerated than on the clause level.
The matching process results in a clause map, a subgoal map, and a variable map which
contain pairs of clauses, subgoals, arguments and operators from the student’s solution and
the reference structure, respectively. Also, a type map is created which contains type infor-
mation of arguments and predicates in the student’s solution. Currently, our system is able



to determine if an argument is a list, an atom, a number or can have any type. As we de-
compose a predicate solution into clauses, head, subgoals, arguments and operators for
matching purposes, we are able to assign positions of these structural elements with posi-
tion numbers which are also included in the resulted maps. The reference structure of a
pattern, which can be matched against the student solution with the least cost, is taken to
be the most plausible hypothesis for the pattern the student followed. After the matching
process is finished, the constraint analyser is going to evaluate the pattern specific and the
task specific constraints.

Information from the clause map, subgoal map, variable map and type map can be used
in order to evaluate the satisfaction part of constraints. For example, we can take advant-
age of the variable map to evaluate arg_value(V1,<Constant>) to determine if a pattern
variable is bound to a program constant. The type map provides information for evaluating
type_value(V1,<type>). The position information in a variable or clause map allows ex-
amining the succession of two items.

If a constraint is violated, the constraint analyser forwards position information about
the affected elements and the corresponding error text to the Feedback Generator. How
these components of our diagnosis system interact, it is described in the next section.

3. Architecture

INCOM is a web-based system. Its architecture is divided into three layers (figure 1). The
first layer contains the student interface which provides the exercise description and offers
a means for students to input their solution. Users can choose one of the available tasks
and  input  their  entire  solution.  In  addition,  the  student  interface  layer  can  present
information  about  errors  in  the  student’s  solution.  The  second  layer  comprises  the
diagnosis component and the feedback generator. The diagnosis component is separated
into two sub-components. The first one performs the pattern identification and the second
one evaluates the constraints. Errors which are found during the pattern identification and
constraint  analyzing process will  be passed to  the feedback generator  component.  The
third layer inhabits the knowledge base of the system. In this component, the exercises and
their solution space are described.

Figure 1: Architecture of INCOM

The knowledge base is stored as an XML file, which is separated into two parts. The
first one is a collection of possible patterns. In the second part, the exercises are specified.
Each exercise has its description and a list of applicable patterns. For each applicable pat-
tern, the reference structure is specialized with additional exercise specific rules.

The diagnosis component begins with detecting syntax errors. For that purpose, the stu-
dent’s solution is forwarded to the Prolog compiler. In principle, conditions on the syntac-



tic well-formedness of a predicate definition could also be modeled by means of con-
straints, but the focus of our research has been on the semantic and pragmatic aspects. If
the syntax of the student’s solution is correct, the program is normalized into an internal
structure and the diagnosis is invoked. Otherwise, the diagnostic information of the com-
piler is returned to the student interface. The pattern identification component finds the
best pattern and the constraint analyzer evaluates the pattern specific and the exercise spe-
cific constraints as described in section 2.

The errors collected during the diagnosis process are passed to the Feedback Generator
which relies on an established collection of error types. For each error type, an error expla-
nation is specified. The error types, which are produced by the structure matching process,
are accompanied with a general remedial hint, which is exercise independent. Errors of
this type are e.g. additional, missing or alternated arguments, subgoals and clauses. For er-
rors which are detected by a constraint violation, the remedial hint needs to be specified by
a human tutor individually when he authors the exercises. Thus, the Feedback Generator
can provide position, explanation and remedial hint for errors if requested by the student.

4. Conclusion and Future works

When viewed as an intention-based program diagnoser, INCOM would be related to the
PROUST [10], APROPOS2 [7] and MEDD [24] which are also intention-based. The most
important difference between INCOM and other intentional diagnosers is that the others
use bug library, whereas INCOM gives the exercise author a possibility to constrain the
semantics of a solution object.

A preliminary evaluation has been carried out during the winter term 2004/05 at the
University of Hamburg. System use was not mandatory, but recommended in case the stu-
dent wanted additional help. Deliberately, we did not use an authentication mechanism.
Hence, students could log in under different names. No reliable user identification was
possible and even not desired to respect the privacy of students and encourage group work.

Currently, we have 261 log data created by 99 distinct users. The result is that in 68.3%
of the cases after requesting error location without remedial hints and 75.8% of the cases
after requesting remedial hints users were able to remove the indicated error [25].

Our experience has shown that the constraint-based approach can also be applied to
model domain knowledge in a logic programming language. With a small set of constraint
types, we were able to model the solution space for a number of typical recursion exercises
in Prolog. The main difficulty we have been faced with was the definition of the patterns.
If a pattern is defined for too broad for a class of programs, it is very time consuming to
find appropriate specialization rules for every corresponding exercise. If a pattern is too
specific, we have to define too many of them. Here, a proper balance has to be found. In
the future, we also want to extend the system by defining patterns for predicates which use
arithmetics. In addition, we are also planning to develop a tutor interface for authoring ex-
ercises. Besides the existing patterns which can be used to create new exercises, additional
patterns can then be developed using this interface.
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