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Introduction

Error  diagnosis  plays  an important  role  in an Intelligent  Tutoring System (ITS) because 
diagnostic information is essential for modelling the state of student’s knowledge and for 
initiating appropriate instructional actions. Currently, several programming tutoring systems 
apply  a  rather  simple  diagnostic  approach  by  presenting  a  problem to  the  student  and 
providing the possibility to submit a solution by choosing from several options or filling in a 
template. Diagnostic approaches supported by this type of solution submission might be used 
in tutoring systems aiming at helping students to become familiar with basic concepts of a 
programming language. In problem solving, however, students often make errors because 
they have difficulties with task analysis or solution design. Thus, at that point, diagnostic 
information  about  semantic  or  syntactic  errors  is  not  relevant.  Rather  it  is  important  to 
consider the stage of the problem solving process, where the student becomes stuck: task 
analysis, solution design or implementation.

We have developed a web-based tutoring system for logic programming applying 
the  constraint-based  modeling  (CBM)  approach.  In  this  paper,  first,  we  introduce  the 
constraint-based  approach  briefly.  In  the  second  section,  we  present  the  result  of  the 
preliminary evaluation of our system. From the analysis of the evaluation result, we claim 
that diagnostic information is only useful for students if it matches the stage of the problem 
solving process where the student has difficulties. In the third section we outline related 
work. Our diagnosis approach is introduced in the fourth section.  The current state and 
further directions of our research are summarized in the last section.

1. Constraint-based Modeling

The CBM approach proposed in [1] can be applied to model general principles of a domain 
as  a  set  of  constraints.  A constraint  is  represented  as  an  ordered  pair  consisting  of  a 



relevance  part  and  a  satisfaction  part:  Constraint  C  =  <relevance  part, 
satisfaction part>

The relevance part represents circumstances under which the constraint applies, and 
the satisfaction part represents a condition that needs to be fulfilled for the constraint to be 
satisfied. Constraints can be used to describe facts, principles or conditions which must hold 
for every solution contributed by the student. In addition, constraints can also be used to 
specify  requirements  of  a  task.  Using  the  relevance  part,  constraints  can  be  tailored 
according  to  an  ideal  solution,  which  represents  the  requirements  of  the  given  task. 
Requirements, which have to be satisfied in that specific situation, can be specified in the 
satisfaction  part.  More  about  the  application  of  the  CBM approach  to  model  problem 
solving in logic programming can be found in [3, 4].

A constraint  is  evaluated  by  matching  its  relevance  part  to  the  solution.  If  the 
matching is successful then the solution should also fulfill the satisfaction part. Otherwise, 
the  solution  is  considered  to  be  incorrect  with  respect  to  the  constraint  that  has  been 
evaluated. If a constraint is violated, it indicates that the student solution does not obey 
principles of the domain or does not meet the requirements of the given task. 

We developed a tutoring system (INCOM) [3] for logic programming applying the 
CBM technique. The diagnosis approach of our current system consists of two steps. It starts 
by  hypothesising  the  Prolog  pattern  the  student  solution  is  based  on.  A Prolog  pattern 
represents a  solution strategy for  a  programming problem [4].  For  a  given programming 
problem, there are usually several appropriate patterns which can be applied to solve it. The 
pattern selection is carried out heuristically. The second step of the diagnosis examines whether 
the  student  solution  satisfies  the  task  requirements.  In  the  evaluated  version,  we  use 
constraints to model task requirements. If a constraint is violated, a programming technique 
has been applied incorrectly or a task requirement is not fulfilled.

2. Evaluation and the Problem of Remedial Hints

2.1 Evaluation results

We have conducted a preliminary evaluation for INCOM during the winter term 2004/05 at 
the University of Hamburg. We provided students with four exercise assignments: 

1. Define a predicate which specifies the relationship between a list and its prefix.
2. Write a function to convert Peano numbers to integer numbers.
3. Write a predicate which defines an even Peano number.
4. Write a function to compute the sum of compound interest for a given amount, an 

interest rate and a duration in years.
Students have been requested to consult our system via a web interface when experiencing 
difficulties in solving those four exercise assignments. On our server machine, we registered 
261 log files created by 99 users.

Table 1 number of false and correct trials for each task
Task trials/user trials for a correct solution task solved task not solved

1 6.07 4.33 11 7

2 6.21 6.54 22 23

3 5.72 6.83 27 17

4 6.21 74.5 1 24

The  first  goal  of  our  evaluation  was  to  find  out  which  task  is  challenging  for 
students.  Table 1 provides the results of problem solving for each task. The 2nd and 3rd 

columns show, how many trials in average a user carried out, and how many trials he/she 



needed to  reach  a  correct  solution.  The  last  two columns  tell  us,  how many log  files 
contained correct solutions and how many did not.  From the last  two columns we can 
identify that most students could solve Task 1 and 3. For Task 2, the number of  successful 
and unsuccessful attempts are almost the same. We also noticed that most users could not 
solve task 4. Analyzing the log files, we found two main reasons for these frequent failures: 

1. Task 4 is more complicated than the other tasks. It includes the concept of recursion, 
arithmetic expressions, and arithmetic computation;

2. Many users were not able to derive a correct  formula for the computation of a 
compound interest.

The second goal of our evaluation was to identify the problems of students and where they 
are usually stuck. By investigating the log files, we recognized that most errors have been 
detected by the first step of the diagnosis - the pattern identification process. Most users had 
one of the following problems:

• Users were not familiar with the data structure of Peano numbers. Some of them simply 
input “Peano” or peano(X) as arguments and expected that to be a Peano number.

• The arithmetic evaluation mechanism in Prolog poses considerable problems for many 
users.  Some of  them placed an arithmetic  expression at  an argument  position and 
expected  a  functional  evaluation.  Others  used  “=”  instead  of  “is”  for  arithmetic 
evaluation, as it is common in mathematical notations.

• Users called auxiliary predicates without defining them in the hope that they are built-in 
predicates. Or, they used arbitrary material  at an argument or subgoal position and 
expected that the system is able to provide helpful hints.

Through errors detected during the second step of the diagnosis - the constraint evaluation 
process, we noticed that users had the following problems:

• Many users applied arithmetic expressions without making sure that the arguments are 
sufficiently  instantiated.  Sometimes,  they  transposed  the  positions  of  operands  and 
result arguments or used operands not correctly.

• Instead of decomposing an input argument, many novice programmers composed it in 
recursive subgoals. Or, they decomposed an input argument and processed it, but then, 
they did not know how to return the result of the processed input value. This indicates 
that Prolog novices are not familiar with composition and decomposition.
The third goal of our evaluation was to determine the efficacy of the system. Our 

system provides  three  levels  of  feedback.  If  the  system detects  an  error  in  the  user’s 
solution, first, it notifies that the solution is incorrect; second, upon request, it shows the 
problem location,  gives an explanation and third,  it  provides suggestions to remove the 
error. We evaluate the efficacy of the system by determining if errors disappeared after 
users have seen the error location or a remedial hint.  A remedial hint includes an error 
explanation and a correction proposal.

In 75,6 % of a total of 632 false trials, students were interested in system feedback. 
In 60,5% of 478 feedback requests, after seeing the error location, they requested more 
detailed  error  explanation  and  remedial  hints.  That  indicates  that  most  students  are 
interested in receiving feedback from the system in order to improve their solutions. In 
68.3% of cases after seeing the error location without requesting remedial hint, users were 
able to remove the error. In 75.8% of cases after requesting remedial hints, the error was 
eliminated. As expected, the efficacy of remedial hints is higher than that of error location 
because remedial hints give more information. The result shows that in general the system is 
helpful  for  students.  However,  the  efficacy  of  our  current  system does  not  satisfy  our 
ambitions.

We investigated the log files to trace back how students have corrected their solutions 
after  having read the feedback. We noticed that students could not correct  their  solutions 
according to some remedial hints provided by our system. This can be attributed 1) to the 
incoherence of the remedial hints which are specified for isolated constraints [5, 6] and 2) to a 



mismatch between the feedback and the stage of the problem solving process where the 
student’s difficulty occurred. In this paper, we mainly address the second problem.

2.2 The problem of solution remediation

We illustrate the problem of providing students with appropriate feedback with the 
following example. The third exercise assignment requests students to define a predicate which 
specifies the relationship between a list and its prefix. Our system expects a correct solution 
like IP1 or IP2 which uses an auxiliary predicate append.

A student  submitted  the  following  solution  SP1  for  the  task  above.  Our  system 
hypothesizes that the student decided to apply the strategy IP1, it then evaluates the relevant 
constraints and returns the corresponding diagnostic information.

The  solution  indicates  that  the  student  is  in  a  position  to  specify  a  base  case 
“prefix([], List).” but not able to specify a recursive case. Perhaps the student wanted to 
specify the type restriction for the argument positions by giving the clause “prefix(List,  
List)”. More likely, however, it is that the student does not know how to specify a list data 
structure which is required for both predicate arguments. That means he/she is not able to 
fully analyze the task and to specify the arguments correctly. Therefore, remedial hints con-
cerning solution design are not helpful for the author of the solution above. In this case, we 
need to help the student analyze the task requirements. The task analysis includes questions 
like: Which information should be represented as an argument? What kind of data structures 
should be specified for predicate arguments? Which mode should an argument have?

The following student’s solution SP2 indicates that he/she has succeeded with the 
task analysis, but is now struggling with designing a solution for the given task. 

The system hypothesizes that the student was following strategy IP2 and evaluates the 
corresponding  constraints.  While  the  first  two  feedback  messages  concern  the  solution 
design  corresponding  to  the  strategy  IP2,  the  last  two  consider  the  erroneous 
implementation of arguments. This might have caused the student to be confused because 
she/he  is  currently  having  problems  with  designing  the  solution,  not  with  the 

Task: define a predicate to examine the relationship between a list and its prefix
Solution IP1:

prefix([], _). 
prefix([H|R], [H|T]):-prefix(R,T).

Solution IP2:  
IP2: prefix(L1, L2):-append(L1, Rest, L2).

Student solution SP1:  
prefix(List, List). 
prefix([], List).  

Remedial hints:  
Error1: a base case in your solution is superfluous.
Error2: a recursive case in your solution is missing.

Student solution SP2: 
prefix([X], [X]).  
prefix(L, [X|Rest]):- append(H, Rest, [X|Rest]),prefix(H, Rest).

Remedial hints:
Error1: the subgoal prefix(H, Rest) is superfluous.
Error2: the clause prefix([X], [X]) is superfluous.
Error3: L should be unified with H.
Error4: the argument [X|Rest] in the head of 2nd clause should be represented as a variable.



implementation.  At this stage,  the student has to deal  with the questions: what  kind of 
clauses and subgoals are required to construct a solution according to the intended design 
strategy,  and how these clauses and subgoals have to be arranged? Table 2 tells us the 
proportion of false attempts due to errors in task analysis and in solution design. The second 
and the third columns indicate the absolute number of students’ attempts to solve the tasks. 
We notice that students made most errors (70%) at the stage of analyzing Task 3. That 
means, they were not able to specify a Peano number correctly. We also see that students 
had difficulties with designing solutions for Task 4. 42% of their attempts for Task 4 were 
not successful at finding appropriate clauses or subgoals.

Table 2 Proportion of false attempts due to errors in task analysis and in solution design.
Task Total attempts False attempts Errors in task analysis Errors in solution design

1 91 70 7% 20%

2 242 205 25% 18%

3 246 210 70% 17%

4 149 147 9% 42%

From the evaluation result  and the  analysis  of  student’s  programs above,  we can 
derive the need for a diagnosis approach which is able to provide diagnostic information 
corresponding to the stage of the problem solving process.

3. Related works

Available tutoring systems are able to detect semantic or syntactic errors in a program. 
However, this kind of diagnostic information is not useful for students who already have 
difficulties in the early phases of problem solving. The problem is to determine which level 
of understanding the student has and how to guide him/her to correct his/her solution in a 
way he/she is supposed to do. Various attempts have been developed in this direction, but 
none of them is really able to provide diagnostic information tailored to the stage where the 
difficulties occurred. The Pascal tutoring system [7] is able to infer the student’s intention 
and to diagnose errors by mapping a student program to programming plans. This system 
focuses the diagnosis mainly on the solution design applying programming plans and misses 
the diagnosis at the task analysis stage. A model-tracing tutor [8, 9] follows the student’s 
intention by forcing the student to act as an expert would do. Hence, a model-tracing tutor 
always pretends to know the student’s intention. However, model tracing does not guarantee 
that  student errors can always be corrected.  When a student performs an act,  which is 
neither on a correct path nor on a anticipated incorrect one, model tracing has nothing to say 
other than that is probably incorrect [10]. ELM-PE provides a syntax-based structure editor, 
which guides the student filling in appropriate insertions into predefined LISP statement 
slots,  such  that  only  valid  LISP expressions  may  be  constructed  [11].  The  diagnostic 
approaches mentioned restrict students’ creativity and do not support them to improve the 
problem solving skill.

Some other  approaches  introduce  different  abstraction  levels  of  errors  made by 
students. The approach in [12] represents student’s actions and errors in terms of knowledge 
applied in a learning context. Two levels of knowledge are differentiated. The micro-level 
contains elements describing problems, operators,  and control structures and the macro-
level  describes  conceptions.  The  micro-level  represents  the  way  a  conception  may  be 
revealed  by  a  student,  whereas  the  macro-level  represents  conceptions  in  terms  of 
knowledge.  The  diagnosis  approach  is  driven  by  taking  into  account  student’s  actions 
related to a particular task and the system provides explanations on the student’s reasoning 
by recognizing sub-jacent knowledge. According to [12], an environment that intends to 



provide  personalized  feedback  must  be  able  to  interpret  student’s  actions  in  terms  of 
knowledge.  The  approach in  [13]  distinguishes  the surface  level  student  model  from a 
deeper level student model. The former one represents the scheduled problem solving plans 
and applied procedural knowledge. The authors of [13] argue that just diagnosing problem 
solving knowledge applied by the student is not sufficient,  because the sequence of the 
procedures  the  student  has  used  may  reflect  his  or  her  belief  in  the  domain  axioms. 
Therefore, it is necessary to build a deeper level student model which consists of diagnostic 
hypotheses explaining the procedural operations of a student in terms of the domain axioms. 
Both approaches [12, 13] introduce different levels of knowledge which can be inferred 
from the student’s input. However, they do not provide diagnostic information along the 
process of problem solving.

We propose a diagnostic approach which not only enables students to input a solution 
for a given task in free form. It also supports the students at all three stages of the problem 
solving process1: task analysis, solution design and implementation.

4. Three Steps Diagnosis in Logic Programming

4.1 Diagnosis at the task analysis stage

To create a logic program, first, it is necessary to know how many arguments are required to 
solve the given task. Normally the number of required arguments can be inferred from the 
task specification.  The  student  should  be  able  to  understand the  functionality  of  every 
argument which is used to define a predicate. If an argument does not have any function, it 
is considered to be superfluous. If information from the given task has not been modeled as 
an argument in the predicate definition, then the student has missed a necessary argument to 
solve the given task. The second step of the task analysis is to determine the argument 
modes. In logic programming, an argument can have input mode, output mode or both. 
Students are requested to specify a mode for each argument of the predicate to be defined 
according to the given task. The last step of task analysis is the definition of appropriate 
data  structures  for  the  argument  positions.  A data  structure  for  an  argument  in  logic 
programming can be an atom, a number, a list or a special kind of term (i.e. Peano number).

We request students to input the information for predicate declaration, i.e. argument 
list, argument mode and data structure, before they submit a complete solution. The system 
examines their inputs of the task analysis as the following example shows:

Task description: please define a predicate which specifies the relationship between a list and its  
prefix. You can use the built-in predicate append if necessary.
System: please, input the predicate name and the list of arguments with the appropriate modes.
Student: prefix(?List1, -List2)
System: Error location: 2nd argument; 

        Explanation: wrong mode; 
        Suggestion: check the task specification and choose the appropriate mode.

Student: prefix(?List1, ?List2)
System: The declaration for the predicate is correct. 

4.2 Diagnosis at the solution design stage

Now, the student has analyzed the task correctly. The system allows the student to put in a 
solution.  A template  prefix(List1, List2) according  to  the  predicate  declaration  is 

1 Our term “problem solving process” differs from the definition in [13] where a sequence of operations 
applied by the student in solving a given problem is called a problem solving process.



given  to  the  student.  After  the  student  has  submitted  her/his  solution,  the  system 
hypothesizes the design strategy of the student [4] and returns appropriate feedback.

System: please, input your solution for the task above.
Student: prefix([X],[X]).  

 prefix(L,[X|Rest]):-append(H,Rest,[X|Rest]),prefix(H,Rest).
System: we hypothesize that you apply the built-in predicate append to concatenate the first list  
with an arbitrary second list to get the third list. Please, consider the following feedback:
Error1: Location: clause prefix([X],[X])

Explanation: this clause is superfluous. It is not necessary for this design strategy.
Remedial hint: please remove it.

Error2: Location: prefix(H,Rest)
Explanation: this subgoal is superfluous. It is not required for this design strategy.
Suggestion: please remove it.

Student: prefix(L,[X|Rest]):-append(H,Rest,[X|Rest]).

4.3 Diagnosis at the solution implementation stage

Once, the student’s solution conforms with the design strategy the system hypothesized, the 
system moves the diagnosis to the implementation level. This step deals with the questions: 
How is a necessary subgoal implemented? How are the arguments in the student’s solution 
implemented?  Our  system replies  to  the  last  student’s  input  in  the  example  above  as 
follows:
System: please, consider the following feedback
Error 1:Location: L, H 

       Explanation: We need to process L. Therefore L and H have to be co-referenced.
Remedial hint: write a subgoal L=H, or replace H by L, or replace L by H.

Error 2: Location: [X|Rest] in the head of clause 1
Explanation: This argument position needs a variable which represents a list.
Suggestion: choose a variable name.

Error 3:Location: [X|Rest] in subgoal 1, clause 1
Explanation: This argument needs to represent the concatenation of two lists.
Suggestion: choose a variable name instead using a list representation

Figure 1: The three steps of the diagnosis process

A subgoal  can  be:  unification,  de/composition,  calculation,  an  arithmetic  test, 
binding, relation, recursion or user defined. An argument can be a variable, anonymous 
variable,  list,  atom (letter),  number  (float,  int),  Peano number,  arithmetic  expression or 
arbitrary  term.  For  each  subgoal,  there  are  different  implementation  techniques.  For 



example, to implement an arithmetic test subgoal “less then”, we have three possibilities: 
Y<Y, \+X>=Y or Y>X. The whole diagnosis process is illustrated by Figure 1.

5. Conclusion and Future Work

We have presented the evaluation of our current tutoring system for logic programming. 
The  diagnosis  component  of  this  system  is  developed  applying  the  constraint-based 
modeling approach. The evaluation result indicated that students have not only difficulties 
on the on the implementation level, but also on the task analysis level (e.g. data structure for 
Peano numbers) and the solution design level (e.g. de/composition of lists). The evaluation 
result has shown that it is necessary to devise a diagnosis approach which is able to deliver 
diagnostic information corresponding to the stage of the problem solving process where the 
student is stuck. For this purpose, we have proposed a three step diagnosis approach: 1) 
diagnosis at the problem analysis stage, 2) diagnosis at the solution design stage and 3) 
diagnosis at the implementation stage.

The three step diagnosis approach can serve several educational purposes. First, it 
helps students master analysis skills. Second, it supports students in solving programming 
problems by using design strategies and lastly, students become familiar with the semantics 
of logic programming. The diagnostic component of our system is under restructuring. We 
plan to launch and to evaluate a second version of our tutoring system during the winter 
term 2006/2007.
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