
Co-Parsing with Competitive Models

Lidia Khmylko
Natural Language Systems Group
University of Hamburg, Germany

khmylko@informatik.uni-hamburg.de

Kilian A. Foth
smartSpeed GmbH & Co. KG

Hamburg, Germany
kilian.foth@smartspeed.com

Wolfgang Menzel
Natural Language Systems Group
University of Hamburg, Germany

menzel@informatik.uni-hamburg.de

Abstract
We present an asymmetric approach to a run-
time combination of two parsers where one
component serves as a predictor to the other
one. Predictions are integrated by means of
weighted constraints and therefore are subject
to preferential decisions. Previously, the same
architecture has been successfully used with
predictors providing partial or inferior infor-
mation about the parsing problem. It has now
been applied to a situation where the predictor
produces exactly the same type of information
at a fully competitive quality level. Results
show that the combined system outperforms
its individual components, even though their
performance in isolation is already fairly high.

Keywords

Dependency Parsing, Hybrid Parsing

1 Introduction

Machine learning techniques for automatically acquir-
ing processing models from a data collection and tra-
ditional methods of eliciting linguistic knowledge from
human experts are usually considered as two alterna-
tive roadmaps towards natural language processing so-
lutions. Since the resulting components exhibit quite
different performance characteristics with respect to
coverage, robustness and output quality, they might
be able to provide some kind of complementary infor-
mation, which could even lead to a notable degree of
synergy between them when combined within a single
system solution.

For the task of dependency parsing the high poten-
tial for such a synergy has indeed been demonstrated
already.

A popular approach for combining alternative de-
cision procedures is voting [18]. It makes use of a sym-
metric architecture, where a meta component chooses
from among the available candidate hypotheses by
means of a (weighted) voting scheme. Such an ap-
proach not only requires the target structures of all
components to be of the same kind, but in case of com-
plex structures like parse trees also requires sophisti-
cated decision procedures which are able to select the

optimal hypotheses with respect to additional global
constraints (e.g. the tree property). Since this opti-
mization problem has to be solved by the individual
parser anyhow, an asymmetric architecture suggests
itself as an alternative.

In asymmetric architectures, a master component,
i.e. a full fledged parser, is solely in charge of de-
ciding on the target structure, whilst the others (so
called helper or predictor components) provide addi-
tional evidence which is integrated into the global de-
cision by suitable means. Such a scheme has been
extensively investigated for the Weighted Constraint
Dependency Grammar, WCDG [3]. External evidence
from the predictor components is integrated by means
of constraints, which check for compatibility between
a local structure and a prediction, and penalize this
hypothesis in case of a conflict. So far, however, all
the additional information sources which have been
considered in this research differed considerably from
the master component: They either focused on partic-
ular aspects of the parsing problem (e.g. POS tagging,
chunking, PP attachment), or used a simplified scheme
for structural annotation (e.g. projective instead of
non-projective trees).

This paper takes one step further by investigating
the same architecture under the additional condition
that (1) the helper component provides the very same
kind of target structure as the master, and (2) the
quality levels are considered in isolation.

As a helper component MSTParser [9], a state-
of-the-art dependency parser for non-projective struc-
tures based on a discriminative learning paradigm, is
considered. The accuracy of MSTParser differs in-
significatly from that of WCDG with all the previously
used helper components active.

Section two introduces WCDG with a special em-
phasis on the soft integration of external evidence
while section three describes MSTParser which is used
as a new predictor component. Since parsing results
for these systems have been reported in quite differ-
ent experimental settings we first evaluate them under
comparable conditions and provide the results of using
MSTParser as a guiding predictor for WCDG in sec-
tion four and discuss whether the expected synergies
have really materialized. Section five concentrates on
a comparative error analysis.

2 WCDG

The formalism of a Constraint Dependency Grammar
was first introduced by H. Maruyama [8] and sug-
gests modeling natural language with the help of con-
straints. I. Schröder [17] has extended the approach to
Weighted Constraint Dependency Grammar, WCDG,
where weights are used to further disambiguate be-
tween competing structural alternatives. A WCDG
models natural language as labeled dependency trees
and is entirely declarative. It has no derivation rules
— instead, constraints license well-formed tree struc-
tures. The reference implementation of WCDG for the
German language used for the experiments described
below contains about 1, 000 manually compiled con-
straints.1

The values of weights of the WCDG constraints
have to be determined by the grammar writer exper-
imentally. They lie in the interval from zero to one,
a lower value of the weight reflects its greater impor-
tance. Constraints having zero weights are referred to
as hard and are used for prohibitive rules. Constraints
with a weight greater than zero, also called defeasible,
may express universal principles or vague preferences
for language phenomena. Empirically, the absolute
values of defeasible constraints usually do not matter
greatly as long as the relative importance of the rules
remains preserved.

If a set of dependency edges in a parse found by the
system violates any of the constraints, it is registered
as a constraint violation between the structure and
the rules of the language. The score of an analysis is
the product of all the weights for constraint violations
occurring in the structure. Therefore, it becomes pos-
sible to differentiate between the quality of different
parse results: the analysis with a higher score is con-
sidered preferable. Under these conditions, an analysis
having only a few grave conflicts may be preferred by
the system against another one with a great number
of smaller constraint violations. However, an analy-
sis which violates any of the hard constraints always
receives the lowest possible score.

The parsing problem is being treated in the WCDG
system as a Constraint Satisfaction Problem. While
a complete search is intractable for such a problem,
transformation-based solution methods provide a re-
liable heuristic alternative. Starting with an initial
guess about the optimal tree, changes of labels, sub-
ordinations, or lexical variants are applied, with con-
straint violations used as a control mechanism guiding
the transformation process [5].

A transformation-based search cannot guarantee to
find the best solution to the constraint satisfaction
problem. Compared to the resource requirements of
a complete search, however, it is not only more effi-
cient, but can also be interrupted at any time. Even if
interrupted, it will always return an analysis, together
with a list of constraint violations it was not able to
remove. The algorithm terminates on its own if no
violated constraints with a weight above a predefined
threshold remain. Alternatively, a timeout condition
can be imposed.

1 Freely available from http://nats-www.informatik.
uni-hamburg.de/view/CDG/DownloadPage

The same kind of constraints that describe gram-
mar rules, can also be used as an interface to exter-
nal predictor components. Thus, the formalism turned
out to be flexible enough to incorporate other sources
of knowledge into the decision process on the opti-
mal structural interpretation. Previously, five addi-
tional statistical components have been successfully in-
tegrated into WCDG: POS tagger, chunker, supertag-
ger, PP attacher and a shift-reduce oracle parser [4].
This study has shown that the accuracy also improves
if multiple components interact and consistent predic-
tions no longer can be guaranteed. Even though the
predictor components have an accuracy that is mostly
— with the exception of the tagger — below that of
the parser itself, WCDG not only avoids error prop-
agation successfully, it also improves consistently by
slight, but noticeable margins.

3 MSTParser

MSTParser [9] is a state-of-the-art language indepen-
dent data-driven parser. It processes the input in two
separate stages. In the first, the dependency structure
is determined, labeling is applied to it successively in
the second. The reasons of its efficiency lie in the
successful combination of discriminative learning with
graph-based solution methods for the parsing problem.

In this edge-factored graph-based model, each edge
of the dependency graph is assigned a real-valued score
that expresses the likelihood of creating a dependency
edge between two words. The score of the graph is
defined as the sum of its edge scores.

If a scoring function for edges is known, the pars-
ing problem becomes equivalent to finding the highest
scoring directed spanning tree in the complete graph
over the given sentence, and the correct parse can be
obtained by searching the space of valid dependency
graphs for a tree with a maximum score.

This formalism allows to find efficient solutions for
both projective and non-projective trees. When only
features over single edges are taken into account, the
complexity falls to unprecedented O(n2) [12].

Not only a single edge, but also adjacent edges may
be included into the scoring function. As a result, in-
tractability problems arise for the non-projective algo-
rithm, but an efficient approximate algorithm based on
exhaustive search is provided for this case [10]. This
algorithm was also used for our experiments.2

The parsing model of MSTParser has the advan-
tage that it can be trained globally and eventually be
applied with an exact inference algorithm. On the
other hand, the parser has only limited access to the
history of parsing decisions. To avoid complexity prob-
lems, the scores (and the feature representations) are
restricted to a single edge or adjacent edges. Outsourc-
ing labeling into a separate stage comes at the price of
not being able to combine knowledge about the label
and the structure it is attached to. Such combined
evidence, however, might be helpful for some disam-
biguation problems.

2 MSTParser is freely available from http://
sourceforge.net/projects/mstparser

4 Guiding WCDG by Predic-
tions of MSTParser

MSTParser predictions are integrated into the decision
procedure of WCDG by means of two additional con-
straints, which monitor each dependency hypothesis
for being in accord with the prediction and penalize it
if a mismatch has been found. One of the constraints
checks the attachment point being the same, while the
other takes care of the dependency label.

To properly adjust the weights of these constraints,
it has to be determined how valuable the information
of the predictor is relative to the information already
present in the system. This gradation is needed to es-
tablish a balance between the influence of the grammar
and the predictor. According to the scoring principles
of WCDG, a low weight strongly deprecates all devi-
ations from the prediction, thus forcing the system to
follow them almost without exception. Higher weights,
on the other hand, enable the grammar to override a
prediction. This, however, also means that predictions
have less guiding effect of the transformation process.
Typically for WCDG, the best suitable weights have
to be tuned on development data.

To determine the best constraint weights the
WCDG grammar is extended with three additional
constraints similar to those used for the shift-reduce
predictor in the previous experiments [3]:

#pragma predict MST ’mst.pl -v 3 -’ cat

{X!SYN} : ’MST:regent’ : stat : W :
predict(X@id, MST, gov) = X^to;

{X|SYN} : ’MST:null’ : stat : W :
predict(X@id, MST, gov) = 0;

{X:SYN} : ’MST:label’ : stat : W :
predict(X@id, MST, lab) = X.label;

The first two constraints advise WCDG on the struc-
tural information, whereby the second deals with the
elements modifying the root and the first with all the
others; the third fetches the edge label predicted. W ,
0 ≤ W ≤ 1, stands for the constraint weight chosen for
the experiment.

As a result of these experiments, the optimum
weight for the attachment predictions has been ad-
justed to 0.75. Compared to a weight of 0.9 for the
shift-reduce parser, this is a rather strong influence,
which also reflects the differences in the reliability of
these two information sources. With a weight of 0.9,
the integration of the label predictions is considerably
weaker, which is consistent with their lower degree of
accuracy.

Evaluation

The most common general measures for the quality of
dependency trees are structural accuracy that points
out the percentage of words correctly attached to their
regent, and labeled accuracy which is the ratio of the
correctly attached words which also have the correct
label. Still, it is difficult to directly compare the results
reported for different parsers, as the evaluation results
are influenced by the data used during the experiment,

the domain of the data, and different annotation guide-
lines. Moreover, the particular kind of POS informa-
tion might be relevant, which either can be obtained
from the manual annotations or be provided by a real
tagger. Even such a condition as the treatment of
punctuation has not yet become a standard. Follow-
ing the evaluation procedure in the CoNLL-X shared
task [2], we will not include punctuation into the per-
formance measures, as was done in previous WCDG
experiments [4]. The source of POS tagging informa-
tion will need to be specified in each individual case.

All the evaluations were performed on a thousand
sentences (18, 602 – 19, 601) from the NEGRA tree-
bank, the same data set that was previously used in
the performance evaluations of WCDG, e.g. in [3].
The NEGRA treebank is a collection of newspaper ar-
ticles; in the original, it stores phrase structure an-
notations. These have been automatically translated
into dependency trees and then manually corrected to
bring them in accord with the annotation guidelines
of WCDG. The major difference consists in a differ-
ent treatment of non-projectivity, where WCDG only
allows non-projectivity in the attachment of verbal ar-
guments, relative clauses and coordinations, i.e., the
cases where it helps to decrease ambiguity. Further-
more, corrections were applied when the annotations
of NEGRA itself turned out to be inconsistent (usu-
ally in connection with co-ordinated or elliptical struc-
tures, adverbs and subclauses).

Unfortunately, these manually corrected data were
only available for a small part (3, 000 sentences) of
the NEGRA corpus, which is not sufficient for train-
ing MSTParser on WCDG-conforming tree structures.
Previous evaluations of the MSTParser have used
much larger training sets. E.g., during the CoNLL-X
shared task 39,216 sentences from the TIGER Tree-
bank [1] were used.

Therefore, we used 20, 000 sentences from the on-
line archive of www.heise.de as an alternative train-
ing set. They have been manually annotated accord-
ing to the WCDG guidelines (called heiseticker in
the following). The texts in this corpus are all from
roughly the same domain as NEGRA, and although
very many technical terms and proper nouns are used,
the sentences have only a slightly longer mean length
compared to the NEGRA corpus.

Using POS tags from the gold annotations,
MSTParser achieves 90.5% structural and 87.5% la-
beled accuracy on the aforementioned NEGRA test
set (Table 1). Even a model trained on the inconsis-
tent NEGRA data excluding the test set reaches state-
of-the-art 90.5 and 87.3% for structural and labeled
accuracy respectively, despite the obvious mismatch
between training and test data. This performance is
almost the same as the 90.4%/87.3% reported on the
TIGER data during the CoNLL-X 2006 shared task.
Another MSTParser experiment has been conducted
with a real POS tagger [6]. Generally, in ambigu-
ous cases, it can predict several POS tags per word
sorted by the predicted POS category probabilities in
descending order. But only the first of these predic-
tions was used for the experiments with MSTParser
as, contrary to WCDG, it does not provide an inter-
face to use POS tag variants by default. As is to be
expected, if a real POS tagger is used, the accuracy is

Experiment structural labeled
MSTParser-h 90.5 87.5
MSTParser-N 90.5 87.3

MSTParser(CoNLL-X) 90.4 87.3
WCDG + MST 92.9 91.3

WCDG + MST + 5P 93.3 92.0

Table 1: Structural/labeled accuracy results with
POS tagging from the gold standard. WCDG —
no statistical enhancements used. MSTParser-h —
MSTParser trained on the heiseticker. MSTParser-
N — MSTParser trained on NEGRA. 5P — with all
five statistical predictors of WCDG.

reduced quite expectedly by approximately one per-
cent to 89.5%/86.0% (Table 2 (B)). All the results
obtained with a real POS tagger are summarized in
Table 2. For comparison, under the same evaluation
conditions, the performance of WCDG with different
predictors is summarized in Table 2 (A).

Experiment structural labeled
(A) WCDG 88.0 86.0

CP 88.6 86.5
PP 89.4 87.3
ST 90.8 89.2
SR 90.0 88.4

PP+SR 90.2 88.6
ST+SR 91.0 89.4
ST+PP 90.8 89.2

5P 91.3 90.0
(B) MSTParser 89.5 86.0
(C) WCDG + MST 92.0 90.5

PP 92.0 90.6
CP 92.1 90.6
SR 92.2 90.6
ST 92.4 90.9

CP+SR 92.3 90.7
CP+ST 92.6 91.0
ST+SR 92.9 91.4

PP+CP+ST 92.6 91.1
PP+ST+SR 92.8 91.3
CP+ST+SR 92.9 91.4

5P 92.9 91.4

Table 2: Structural/labeled accuracy results with a
real POS tagger. (A) WCDG experiments with dif-
ferent statistical enhancements (B) MSTParser exper-
iment with a real POS tagger. (C) Combined experi-
ments of WCDG and MSTParser with other statistical
enhancements of WCDG. CP — chunker, ST — su-
pertagger, PP — prepositional attacher, SR — shift-
reduce oracle parser, 5P — POS + CP + PP + ST +
SR.

The combined experiments in which MSTParser was
used as a predictor for WCDG have achieved higher

accuracy than each of the combined components in
isolation: the structural accuracy rises to 92.0% while
the labeled accuracy also gets over the 90%-boundary
(WCDG + MST experiment in Table 2 (C)) .

Finally, the MSTParser predictor was evaluated
in combination with the other predictors available for
WCDG. The results of the experiments are shown in
Table 2 (C). Every combination of MSTParser with
other predictors (first four experiments) improves the
accuracy. The increase is highest (0.4%) for the com-
bination with the supertagger. This confirms earlier
experiments with WCDG, in which the supertagger
also contributed the largest gains.

The experimental results again confirm that
WCDG is a reliable platform for information integra-
tion. Although the use of multiple predictors does not
lead to an accumulation of the individual improve-
ments, the performance of predictor combinations is
always higher that using them separately. A maxi-
mum performance of 92.9%/91.4% is reached with all
the six available predictors active. For comparison, the
same experiment with POS tags from the gold stan-
dard has achieved even better results of 93.3%/92.0%
(Table 1).

Unfortunately, the PP attacher brings accuracy re-
ductions when it is working parallel to the shift-reduce
predictor (experiment PP + CP + SR in Table 2 (C)).
This effect has already been observed in the experi-
ments that combined the two alone (experiment PP +
SR in Table 2 (A)). When MST was combined with
the PP attacher (experiment PP in Table 2 (C)), the
increase of the performance was also below a tenth of
a percent. The possible reasons why the use of an ad-
ditional information source does not improve the per-
formance in this case may be the disadvantages of the
PP attacher compared to a full parser.

5 Error Analysis

A very useful property of WCDG is that it not only
can be used as a parser, but also as a diagnostic tool
for dependency structures. Applied to a given depen-
dency tree, any constraint violation reported by the
constraint solver indicates an inconsistency between
the structure and the WCDG constraint grammar.

Among the most frequent hard constraint viola-
tions found in the MSTParser results are double sub-
jects, double objects and direct objects in passive, pro-
jectivity violations, conjunctions without a clause as
well as subordinate clause without conjunction.

These findings are in line with the analysis of [11].
For example, the errors in distinguishing noun com-
plements of the verb may be due to the fact that
MSTParser is more precise for longer dependency arcs
and has no access to the parsing history.

In absolute figures, MSTParser commits 1509 at-
tachment errors of which 902 are corrected by WCDG.
On the other hand, WCDG adds another 542 errors of
its own, so that the final result still contains 1149 er-
rors.

For most labels, accuracy of the predictor combi-
nation is higher than in each of the parsers alone. A
particularly large gain has been observed for coordi-
nated elements (KON and CJ), subordinate (NEB)

(1) (2) (3)
Label p r p r p r
DET 98.4 99.3 98.7 99.5 99.3 99.5
PN 97.4 97.4 98.0 98.0 98.0 98.7
PP 67.6 98.1 78.3 97.4 80.1 98.5
ADV 76.6 94.7 79.4 95.4 82.2 97.2
SUBJ 94.0 90.9 91.3 86.4 95.8 94.0
ATTR 95.2 95.8 97.7 98.2 98.3 98.4
S 89.2 90.1 89.3 90.5 90.5 91.0
AUX 95.9 94.2 98.6 97.8 98.7 97.6
OBJA 87.9 83.9 83.8 72.5 92.5 88.7
APP 85.1 88.5 88.9 90.9 90.9 94.0
KON 78.9 88.1 78.9 88.3 86.0 89.2
CJ 85.6 86.5 90.9 91.4 93.0 93.5
GMOD 90.7 90.7 89.0 85.3 96.3 95.8
KONJ 88.6 91.9 91.9 95.7 95.1 95.7
PRED 90.3 75.0 85.4 60.4 91.7 76.4
NEB 68.9 82.8 73.0 66.4 79.5 90.2
REL 64.8 77.9 59.0 77.0 68.9 86.9

Table 3: Per label structural precision (p, %) and
label recal (r, %) in comparison for the experiments
with the real POS tagger (1) WCDG, (2) MSTParser,
(3) WCDG combined with MSTParser

and relative (REL) clauses, indirect accusative objects
(OBJA), genitive modifiers (GMOD) and apposition
(APP), (Table 3). Here, the measures of structural
precision, the ratio of the number of correct attach-
ment of a given label to the number of all the pre-
dictions for that label made by the parser, and label
recall, the ratio between the number of correct labeling
decisions and desired labeling are used.

In this respect, the increase in the structural pre-
cision of the PP attachment seems worth mention-
ing. MSTParser attaches 79.3% of PPs correctly on
the used test set. Although MSTParser does not use
any special PP-attachment resolution mechanisms, it
is comparable with the result of WCDG combined with
the PP attacher that achieves 78.7% structural preci-
sion for PP edges.

If MSTParser is trained on NEGRA excluding the
test set — the rest of NEGRA lacking consistence
mentioned above — it performs even better, attaching
80.4% of PP-s correctly. Thus, MSTParser as a statis-
tical parser trained on a full corpus becomes a strong
competitor for a PP attacher that has been trained on
restricted four-tuples input.

As for the errors in the MSTParser output that
are most often corrected in the hybrid experiment,
this happens for both the structural precision and la-
bel recall of most verb complements, such as direct
and indirect objects, or clausal objects as well as for
subordinate and relative clauses for such subordinate
clauses.

It even comes to one case in which the synergy
took place in spite of the incorrect predictions. Al-
though MSTParser has predicted possessive modifiers
more seldom than WCDG alone (the label recall of

MSTParser for possessive modification was over 5%
below that of WCDG) its structural precision and la-
bel recall in the combined experiment are by around
6% greater than WCDG result.

Cases in which WCDG performs worse with the
predictor than its predictor alone can hardly be found.
Still, one may observe many cases in which the pre-
dictor has a negative influence on the performance
of WCDG, such as for different kinds of objects (in-
direct objects, object clauses and infinitive objects)
and parenthetic matrix clauses. For all, the result
of MSTParser was below that of the baseline WCDG
with only the POS tagger active. Same can be said
about the labeled accuracy for split verb prefixes and
nominal time expressions. This worsening effect can
be attributed to the lower values of the WCDG con-
straints for the corresponding labels and edges than
for the MSTParser predictor. Thus, the search could
not find a decision scoring better than that when the
MSTParser prediction has been followed.

Around 15% of the sentences in the test set are not
projective. The accuracy of MSTParser on the projec-
tive sentences of the test set is higher than that on
the non-projective sentences by more than 3 percent
(Table 4), although these values cannot be compared
directly as the mean length of non-projective sentences
is longer (25.0 vs. 15.3 words).

Experiment Non-proj. Proj.
MSTParser (POS) 88.2 91.7
WCDG (POS) 87.2 90.2
WCDG (POS + SR) 88.7 92.2
WCDG (POS + MST) 91.3 93.6

Table 4: Structural accuracy, (%), for different pars-
ing runs for non-projective vs. projective sentences.

MSTParser generally tends to find many more non-
projective edges than the data has, while the preci-
sion remains restricted. The number of non-projective
edges was determined by counting how often an edge
crosses some other edge. Thus, if a non-projective edge
crossed three other edges the number of non-projective
edges equals three. For MSTParser experiments with
a real POS tagger (MSTParser POS-experiment in Ta-
ble 5), the non-projective edge recall, the ratio of the
non-projective edges found in the experiment to the
corresponding value in the gold standard, is at 23%
and non-projective edge precision, the ratio of the cor-
rectly found non-projective edges to all non-projective
edges found, is also only 36% (second column in Ta-
ble 5).

Precision and recall of non-projective sentences is
a less rigid measure. If at least one edge-crossing is
correctly identified in a non-projective sentence, it is
added to the correctly identified non-projective sen-
tences, even if the identified edge-crossing is not the
one annotated in the gold standard and the ratios
are calculated respectively (right column of Table 5).
Under these relaxed conditions, MSTParser correctly
identifies slightly less than a half of the non-projective
sentences and over a third of non-projective edges.

Edges Sentences
Experiment r p r p
MSTParser (POS) 23 36 35 44
WCDG (POS) 37 53 51 63
WCDG (POS + SR) 41 47 57 55
WCDG (POS + MST) 48 53 61 61

Table 5: Recall (r, %) and precision (p, %) of the
non-projective edges and sentences for different pars-
ing runs.

In fact, WCDG under the same conditions (WCDG
POS-experiment in Table 5) has a non-projective sen-
tence precision of 63% and a non-projective edge pre-
cision of 53%. Still, WCDG misses a considerable
amount of non-projectivities. More importantly, as
the present shift-reduce predictor has not been de-
signed for non-projective parsing, its inclusion re-
duces the non-projective sentence and edge precision
of WCDG — to 55% and 47% respectively — WCDG
(POS+SR) in Table 5.

The expected benefits for the non-projective sen-
tences have not yet been observed to the full ex-
tent. The precision of the combined system to find
non-projective sentences and edges remained limited
by the performance that WCDG was able to achieve
alone (WCDG (POS+MST) in Table 5). While
MSTParser in many cases predicts non-projectivity
correctly WCDG is seldom capable of accepting this
external evidence. On the contrary, WCDG often ac-
cepts an incorrect projective solution of the predictor
instead of relying on its own cues. In its interaction
with external predictors WCDG should typically de-
cide about the alternatives.

6 Related Work

So far, approaches to hybrid parsing have been mainly
based on the idea of a post-hoc selection which can be
carried out for either complete parses, or individual
constituents and dependency edges, respectively. The
selection component itself can be based on heuristics,
like a majority vote. Alternatively, a second-level clas-
sifier is trained to decide which component to trust
under which conditions and therefore the approach is
often referred to as classifier stacking.

In a series of experiments, J. C. Henderson and
E. Brill [7] combined three constituency-based parsers
by a selection mechanism for either complete parsing
results (parser switching) or individual constituents
(parse hybridization), using both a heuristic decision
rule as well as a näıve Bayesian classifier in each case.
Among the heuristics considered were majority votes
for constituents and a similarity-based measure for
complete trees. Tests on Penn Treebank data showed
a clear improvement of the combined results over the
best individual parser. Constituent selection out-
performed the complete parse selection scheme, and
Bayesian selection was slightly superior.

Instead of coupling different data-driven parsers
which all provide comparable analyses for complete

sentences, C. G. Rupp etal. [15] combined differently
elaborated structural descriptions (namely chunks and
phrase structure trees) obtained by data-driven com-
ponents with the output of a HPSG-parser. Driven by
the requirements of the particular application (speech-
to-speech translation), the focus was not only on parse
selection, but also on combining incomplete results.
However, no quantitative evaluation of the results has
been published.

D. Zeman and Z. Žabokrtský [18] applied the se-
lection idea to dependency structures and extended it
by using more context features. They combined seven
different parsers for Czech, among them also a sys-
tem based on a manually compiled rule set. Some of
the individual parsers had a fairly poor performance,
but even a simple voting scheme on single edges con-
tributed a significant improvement while the best re-
sults have been obtained for a combination that did
not include the worst components. Alternatively the
authors experimented with a trained selection compo-
nent which not only had access to the alternative local
parsing results, but also to their structural context.
Neither a memory-based approach nor a model based
on decision trees did result in further gains.

In two separate experiments, K. Sagae and
A. Lavie [16] combined a number of dependency and
constituent parsers, respectively. They created a new
weighted search space from the results of the indi-
vidual component parsers using different weighting
schemes for the candidates. They then reparsed this
search space and found a consistent improvement for
the dependency structures, but not for the constituent-
based ones.

While all these approaches attempt to integrate the
available evidence at parse time, J. Nivre and R. Mc-
Donald [14] pursued an alternative architecture, where
integration is achieved already at training time. They
combined the two state-of-the-art data-driven depen-
dency parsers, MaltParser [13] and MSTParser [10],
by integrating the features of each of the classifiers
into the parsing model of the other one at training
time. Since the two parsers are based on quite different
model types (namely a history-based vs. a structure-
based one), they exhibit a remarkable complementary
behavior [11]. Accordingly, significant mutual benefits
have been observed. Note, however, that one of the
major benefits of MaltParser, its incremental left-to-
right processing, is sacrificed under such a combination
scheme.

7 Conclusion

Integrating MSTParser as a full predictor with WCDG
is beneficial for both of them. Since these systems take
their decisions based on completely different sources of
knowledge, combining both helps avoid many mistakes
each of them commits in isolation. Altogether, with
a real POS tagger, an accuracy level of 92.9%/91.3%
has been reached (the last row in Table 2 (C)), which
is higher than what any of the parsers achieved alone.
With POS tagging from the gold standard, the accu-
racy has been at 93.3%/92.0% (the last row in Ta-
ble 1). To the knowledge of the authors, these accu-
racy values are also better than any previous parsing

results on the NEGRA test set.
WCDG can profit from the combination not only

with ancillary predictors for specific parsing subtasks,
but also with another full parser. This result was
achieved even though the second parser is very similar
to WCDG with respect to both the richness and the
accuracy of its target structures. The probable reason
lies in the considerable difference in the error profiles
of both systems as regards specific linguistic phenom-
ena. WCDG was also used as a diagnostic tool for the
errors of MSTParser.

Possibly, a higher degree of synergy could be
achieved if a stronger coupling of the components is
established by also using the scores of MSTParser as
additional information for WCDG, reflecting the in-
tuitive notion of preference or plausibility of the pre-
dictions. This could be done for the optimal parse
tree alone as well as for the complete hypothesis
space. Alternatively, the output of MSTParser can
be used as a initial state for the transformation pro-
cedure of WCDG. Vice versa, MSTParser could be
enriched with additional features based on the output
of WCDG, similar to the feature-based integration of
data-driven parsers evaluated by J. Nivre and R. Mc-
Donald [14].

At the moment, the integration constraints treats
all attachment and label predictions as being uni-
formly reliable. To individualize them with respect
to their type or origin could not only make the system
sensitive to qualitative differences between predictions
(for instance, with respect to different labels). It would
also allow the parser to accommodate multiple oracle
predictors and to carefully distinguish between typi-
cal configurations in which one prediction should be
preferred over an alternative one. MaltParser [13] is
certainly a good candidate for carrying out such ex-
periments.

References
[1] S. Brants, S. Dipper, S. Hansen, W. Lezius, and G. Smith.

The TIGER treebank. In Proceedings of the Workshop on
Treebanks and Linguistic Theories, Sozopol, 2002.

[2] S. Buchholz and E. Marsi. CoNLL-X shared task on multilin-
gual dependency parsing. In Proc. CoNLL, pages 149 – 164,
2006.

[3] K. A. Foth. Hybrid Methods of Natural Language Analysis.
Doctoral thesis, Hamburg University, 2006.

[4] K. A. Foth and W. Menzel. Hybrid parsing: using probabilistic
models as predictors for a symbolic parser. In Proc. 21st Int.
Conference on Computational Linguistics and ACL-44, pages
321–328, 2006.

[5] K. A. Foth, W. Menzel, and I. Schröder. A Transformation-
based Parsing Technique with Anytime Properties. In 4th Int.
Workshop on Parsing Technologies, IWPT-2000, pages 89 –
100, 2000.

[6] J. Hagenström and K. A. Foth. Tagging for robust parsers.
In Proc. 2nd. Int. Workshop, Robust Methods in Analysis of
Natural Language Data, ROMAND-2002, 2002.

[7] J. C. Henderson and E. Brill. Exploiting diversity in natural
language processing: Combining parsers. In Proc. 4th Confer-
ence on Empirical Methods in Natural Language Processing,
pages 187–194, 1999.

[8] H. Maruyama. Structural disambiguation with constraint prop-
agation. In Proc. 28th Annual Meeting of the ACL (ACL-90),
pages 31–38, 1990.

[9] R. McDonald. Discriminative Learning and Spanning Tree
Algorithms for Dependency Parsing. PhD dissertation, Uni-
versity of Pennsylvania, 2006.

[10] R. McDonald, K. Lerman, and F. Pereira. Multilingual depen-
dency analysis with a two-stage discriminative parser. In Proc.
CoNLL, pages 216 – 220, 2006.

[11] R. McDonald and J. Nivre. Characterizing the errors of data-
driven dependency parsing models. In Proc. EMNLP-CoNLL,
pages 122 – 131, 2007.

[12] R. McDonald, F. Pereira, K. Ribarov, and J. Hajic̆. Non-
projective dependency parsing using spanning tree algorithms.
In Proc. HLT/EMNLP, pages 523 – 530, 2005.

[13] J. Nivre, J. Hall, J. Nilsson, G. Eryiǧit, and S. Marinov. La-
belled pseudo-projective dependency parsing with support vec-
tor machines. In Proc. CoNLL-2006, pages 221–225, 2006.

[14] J. Nivre and R. McDonald. Integrating graph-based and
transition-based dependency parsers. In Proc. ACL-08: HLT,
pages 950–958, 2008.

[15] C. G. Rupp, J. Spilker, M. Klarner, and K. L. Worm. Com-
bining analyses from various parsers. In W. Wahlster, edi-
tor, Verbmobil: Foundations of Speech-to-Speech Translation,
pages 311–320. Springer-Verlag, Berlin etc., 2000.

[16] K. Sagae and A. Lavie. Parser combinations by reparsing. In
Proc. HLT/NAACL, pages 129–132, 2006.

[17] I. Schröder. Natural Language Parsing with Graded Con-
straints. PhD thesis, Dept. of Computer Science, University
of Hamburg, Germany, 2002.

[18] D. Zeman and Z. Žabokrtský. Improving parsing accuracy by
combining diverse dependency parsers. In Proc. 9th Inter-
national Workshop on Parsing Technologies (IWPT-2005),
pages 171–178, Vancouver, B.C., 2005.

