Hybrid Parsing
with a Maximum Spanning Tree
Predictor

by Lidia Khmylko

supervised by:

Prof. Dr.-Ing. Dr. habil. Karl-Heinz Zimmermann
Institute of Computer Technology
Hamburg University of Technology

Prof. Dr.-Ing. Wolfgang Menzel

Natural Language Systems, Department of Informatics
University of Hamburg

Master Thesis

Hamburg University of Technology

Hamburg, June 2007

Declaration

I declare that this work has been prepared by myself, all literal or content-based quota-
tions are clearly pointed out, and no other sources or aids than those declared have been

used.

Lidia Khmylko, December 16, 2007

Acknowledgments

My sincere thanks go to all who contributed to the success of this work:

Prof. Dr. Karl-Heinz Zimmermann — for his consent to supervise this master thesis on
the side of Hamburg University of Technology;

Prof. Dr. Wolfgang Menzel — for the exciting topic and the outstanding supervision and
support of this work;

Dr. Kilian Foth — for providing research materials and motivating hints, help with the
WCDG as well as for mentoring my previous work in the “Partial Parsing” that served
as a starting point for my interest in syntactic parsing;

Klaus Dahlinghaus — for valuable comments and discussions;

Dr. Ryan McDonald — for sharing the MSTParser and timely information;

Computer Center of the Department of Informatics, University of Hamburg — in per-
son, Gerhard Friesland-Kopke, Reinhard Zierke and Marc Klegin — for providing the
necessary hardware resources and fast and reliable computer administration support.

A special thank to my dearest friends, Jasmin Kominek and Endri Deliu, for helping me

with mathematical and other relevant and not relevant ambiguities the whole time this
work was in progress.

ii

Contents

1 Introduction
1.1 Sentence as Dependency Structure
1.2 Parsing Paradigms
13 Scopeof ThisThesis.

2 Online Learning for Natural Language Parsing
2.1 C(lassification Problem in Machine Learning
211 Linear Classification
2.1.2 Quadratic Optimization
21.3 Maximal Margin Classifier
214 OnlineLearning
2.2 Natural Language Parsing as Structured Classification Problem
23 SUMMATY v

3 Dependency Parsing as Maximum Spanning Tree Search
3.1 First-Order Parsing Algorithms
3.1.1 Eisner Projective Parsing Algorithm
3.1.2 Chu-Liu-Edmonds Non-Projective Parsing Algorithm
3.2 Second-Order Parsing Algorithms
3.2.1 Extension to Eisner Algorithm
3.22 Approximate Non-Projective Algorithm
3.3 Second-Stage Labeling
34 FeatureSpace
35 Summary

4 WCDG System
41 Weighted Constraint Dependency Grammar
4.2 Statistical Enhancements L .
43 Summary

5 Parsing German with the MSTParser
5.1 Parsing Experiments
52 ErrorAnalysis
53 Summary e

6 MSTParser as Predictor for WCDG
6.1 Constraint Weights for MST Predictor
6.2 Results Analysis L
6.3 Combining Different Predictors

1ii

N =

Contents

6.4 Summary

7 Concluding Remarks

71 Summary
72 Outlook

Some Mathematical Definitions
Optimization Theory Fundamentals
MSTParser Resources

WCDG Resources

m O O W >»

Details of Experiment Results

Bibliography

iv

66
66
67

69
71
73
81
83
88

Revised Version
December 16, 2007

Chapter 1
Introduction

“What makes the desert beautiful,” says
the little prince, “is that somewhere it
hides a well.”

Antoine de Saint-Exupéry

There are a lot of application areas that could benefit greatly from automatic syntactic
analysis of natural language. Question answering and machine translation, information
extraction and grammar checking in word processors are among a few to mention. Be-
cause of the fast development of the Web, the need for automatic processing of written
text becomes even more urgent. Together with the practical gains, a reliable solution
would also contribute to the understanding of the nature and the inner organizational
structure of language as well as provide more insights into the process of learning and
understanding of language by humans themselves. Unfortunately, the goal of automatic
language processing in general and syntactic analysis in particular could not be solved to
the full extent yet. This can be ascribed to the complexity of language itself for not even
a theoretical model has succeeded to cover all its phenomena. Besides, natural language
processing and computational linguistics accumulating the research in this field are still
comparatively young.

In the recent years, the most prominent advances in the area of syntactic analysis of nat-
ural language have been seen in connection with stochastic methods. Another distin-
guishable direction of research is combining the results obtained by different methods of
analysis, an approach often referred to as hybrid, although the understanding of the term
may differ greatly, the meaning relevant for this thesis will be given in a moment. Be-
fore that, the main conceptual view on modeling the structure of a sentence as the main
syntactic unit is to be introduced shortly.

Chapter 1 Introduction

1.1 Sentence as Dependency Structure

Modeling natural language in terms of dependencies has gained popularity in natural lan-
guage processing due to the success of statistical parsers !. Its strongest rival, especially
in the English language research community, the constituent model >, dominated the scene
until recently, and was used for lexicalized phrase structure representations. In that ap-
proach, a phrase structure of a sentence is understood as a set of nested constituents, i.e.,
those words or word groups that function as a single unit within a hierarchical struc-
ture. E.g., the German sentence “Mein Bruder ging am Sonntag in den Zoo,” may get the
analysis shown in Figure 1.1.

S
Np/\vp
/\ /\
DET N

mgin Bru‘der e g
Vp/\]_:p P/\NP
\‘7 P/\NP i‘n DE{\N
ging ar‘n 1‘\] den Zoo
Son‘ntag

Figure 1.1: An example of the phrase structure analysis.

When validating the correctness of the constituent structure, such usual checks as mov-
ing constituents around in the sentence or substituting them by pronouns are applied.
The modified sentence will still make sense if the constituent has been distinguished
correctly. Thus, the transformations “Am Sonntag ging mein Bruder in den Zoo” and “Er
ging am Sonntag in den Zoo” would help identify the PP “am Sonntag” and the NP “mein
Bruder”.

In contrast, a dependency structure renounces the phrasal nodes and is built wholly of lex-
ical nodes connected by binary relations. Every lexical node modifies some other lexical
node that is called its head or regent. This structure can be represented as a directed graph
having a unique root node which is inserted artificially. The nodes of the graph are built
by the lexical elements and the edges are drawn to show the dependency relations. Com-
monly, each dependency graph is acyclic and connected. Furthermore, it will be assumed
that each node except the root has exactly one incoming edge in the graph, and the root

'Tt is more correct to say, it was re-discovered as the lexical dependency notion of grammar was already
known in the linguistic tradition of ancient Greece and India [JM00].
*This approach was already used by the ancient Stoics [Fot06]

Chapter 1 Introduction

has no incoming edge. A dependency graph satisfying these properties is in fact a tree
and thus is often referred to as a dependency tree. Figure 1.2 shows an example of a depen-
dency tree of the same German sentence with an artificially inserted root as the left-most
element.

(NS ﬂ(f MR W(f—ﬂ

root mein Bruder ging am Sonntag in den Z.00

Figure 1.2: An example of a (projective) dependency graph.

The advantages of dependency parsing over phrase structure parsing are connected to
the properties of the structures themselves. In the former case, the sentence is decom-
posed into much smaller units, these occur more often and count for a better learning rate
of statistical parsers. Unfortunately, some of the higher-order knowledge of the sentence
phrasal structure is lost in the dependency tree in comparison to the constituent model,
but per-word relationships can be easier understood and explored as lexical information
is accessible at the moment when syntactic decisions are made. Besides, for other ap-
plications using the analyzed representation of the syntactic structure, the dependency
structure is easier to process. Another important advantage is that although not many
manually annotated dependency corpora exist, applying simple converting rules those
corpora annotated with the phrasal structures can be transformed into dependency trees
— while probably not the optimal ones — so that statistical parsers have plenty of train-
ing material they need. Last but not least to mention is the facilitation of measuring the
accuracy of a dependency structure as each word-to-word dependency is either correct
or wrong while such mistakes in the phrase structure as an incorrect part of a correctly
detached phrase or the partition of the constituents make them difficult to score.

Ay |
root in den Zoo ist mein Bruder gegangen

Figure 1.3: An example of a non-projective dependency graph.

Figure 1.2 has shown an example of a projective dependency tree, all edges of which are
drawn above the sentence with a root to the left of linearly ordered words and no edges
are crossing. If some edges are crossing, the tree is said to be non-projective. The results of
the transformations from the phrase structure trees are always projective. In the English
language, the number of non-projective sentences is very low. In German, and even
more often in languages with more flexible word-order non-projective structures are not
unusual. For example, a slightly modified sentence from the previous example shown in
Figure 1.3 is clearly non-projective. In this case, the edge from the root to “ist” is crossing
the edge from “gegangen” to “in” and there is no possibility to draw this graph in such a
way that these edges do not cross.

Chapter 1 Introduction

S PP PN
(DET SUBJ W(PP PN W(DET
coooC e e o
root mein Bruder ging am Sonntag in den Zoo

Figure 1.4: An example of a labeled dependency graph.

One may associate labels to the edges of the dependency graph to indicate syntactic rela-
tionships between the head and modifier, the result is referred to as a labeled dependency
tree, such as the one presented in Figure 1.4.

1.2 Parsing Paradigms

Syntactic parsing can be understood as a task of recognizing a sentence and assigning a
syntactic structure to it [JM00]. It should be noted that such a definition is not broad
enough as it does not reflect the fact that universal ‘yes” or ‘no” judgment about gram-
maticality apparently does not exist [Cho55]. There are utterances which human speakers
fail to understand, although they are made up analogous to other syntactic constructions
in the language. Just think of the “Buffalo buffalo buffalo buffalo buffalo” by Coving-
ton [Fot06] unclear and ungrammatical to most readers until hinted for “Boston cattle
bewilder Cleveland cattle”. On the other hand, in many cases small errors in the syntac-
tic construction do not prevent comprehension. For instance, uncouth foreign language
learners may be unaware of many mistakes they make as no native speaker reclaims
them. Differences in the social, local or historic conditions may account for the fact that
quite different constructions are preferred by the speakers and thought of to be gram-
matical. In fact, the grammaticality is not a binary, but rather a graded property [KelO0].
Thus, it is desirable that parsing results include some kind of ranking, i.e., not only assign
a possible grammatical structure to the input, but also a score to it.

One of the greatest hurdles for syntactic parsing is the ambiguity inherent to language
structures. Thus, when encountering the sentence “He ate the bread with his wife,” hu-
man speakers imagine a nice family meal rather than a spine-chilling sandwich. In this
case, they may rely on the general world knowledge of what kinds of bread exist, such
as “bread with meat” or “bread with cheese”, to correctly choose for attaching the PP
to the verb and not to the NP preceding it. For an automatic parser this choice between
alternatives would be much harder to make.

The methods chosen for syntactic disambiguation, allow for classifications of the existing
parsers. The two main parsing paradigms distinguishable from the very beginning of the
language processing research are rule-based and data-driven parsing briefly presented
next.

Chapter 1 Introduction

Rule-Based Parsing

Within the rule-based, or symbolic, paradigm, the language is understood as a system of
regularities and, thus, an attempt is made to formulate all of them through a grammar of
explicit linguistic rules and interactions of rules.

For example, the grammar according to which the sentence presented in Figure 1.1 is
analyzed contains at least the following set of rules:

S — NP VP
NP — DET N

VP — VP PP
PP —- P NP
VP —V
NP — N

A common disadvantage of rule-based systems is that much expert knowledge and effort
is needed to create, enhance and maintain the rules together with the lexicon mostly
used in such systems. The creation of broad coverage parsers, i.e., parsers working on
unrestricted input is difficult as, on the one hand, the complete generally applicable set
of rules has never been set down in theory or practice for any language, and, on the
other hand, if it were, the growth in the number of rules would multiply the number of
ambiguity of the results and increase the search space substantially. Moreover, as not only
the type of the word, but also its identity is important for the restriction of the syntactic
roles it can play, another shortcoming of symbolic parsers comes into foreground for it is
clearly infeasible to accumulate all lexicalized rules manually.

Data Driven Parsing

Data driven parsers, also referred to as statistical, have recently left the rule-based parsers
behind. They first gained popularity in the 50s, but after the n-gram models were judged
to be unsuitable for natural language modeling in [Cho55] and the limitations of the
perceptron algorithm were emphasized [MP69], they were almost forgotten until a recent
revival in the 90s.

Data driven parsing does not need any underlying grammar. Instead, some similarity
measure is defined and the disambiguation is understood as similarity maximization.
While parsing the data, an alternative is preferred that has the greatest similarity to those
seen during the training phase * which is done on the data annotated with correct struc-
tures.

The dependency on the similarity at the same time accounts for a well-known restriction
of this approach: the parsing results will depend on the similarity between the training

The term ‘learning’ is used synonymously to “training’, but it sounds misleading as it suggests the simi-
larity of automatic learning to human learning which is not generally applicable.

Chapter 1 Introduction

and testing data. So, such properties of the data as its domain, style, or the percentage
of lexical units during the test, will make influence on the results. Even different sections
of the same corpus can comprise quite non-similar data in this sense. Besides, the vol-
ume of the training data is also a property statistical parsers depend on since both the
scarcity and the abundance of the training data may contribute to the degradation of the
results. The former is just a limiting factor typical for some languages for which a suffi-
cient amount of annotated data has not yet been collected, the latter sometimes becomes
a time problem of the parsers due to the exponential complexity of the algorithms. An-
other disadvantage of data driven parsing is that fine-tuning cannot be done easily, e.g.,
by improving the performance on some isolated source of errors. The similarity measures
are generally defined for the data as a whole and changes will effect all the results after
the reparsing.

Still, the advantages of this approach are much more prominent in comparison to the
disadvantages of the rule based paradigm. Data driven parsers adapt well to new lan-
guages. Lexicalization becomes easy as one only has to enforce the similarity measure to
include the lexical units. Besides, the achievable coverage is greater than what is known
for the rule-based parsers despite the points mentioned in the previous passage.

Within the data driven approach, probabilistic models can be subdivided into generative
and discriminative with respect to the prediction task.

A generative model is motivated by the following properties. If objects and their classi-
fications are generated randomly from a joint probability distribution P(z,y), then the
optimal way to predict the class y for an input « is to maximize P(y|x). Applying Bayes’
rule, this is equivalent to maximizing P(x|y)P(y). Thus, in the generative classifier the
training data is used to learn the conditional probability P(x|y) for all the variables and
the marginal probability P(y) for the different classes y. The results are used to approxi-
mate the behavior of the optimal predictor for the source [DHS00, JH99, RSNM04].

In the discriminative approach, the learning algorithm simply tries to find a classifier that
performs well on the training data. Fitting the model requires estimating the conditional
probability P(y|x). It does not attempt to model the underlying distribution of the vari-
ables and features, only the resulting classification boundary or function approximation
accuracy is adjusted, the intermediate goal of forming a generator that can model the
variables is left out [JH99, LS06, Vap00].

A generative model must make simplifying independence assumptions about the entire
P(zx,y), while the discriminative model makes many fewer assumptions by focusing on
P(y|z). In fact, by optimizing the model to fit the joint distribution P(x, y), one may tune
the approximation away from optimal conditional distribution P(y|x), which is used
to make the predictions. Given sufficient data, the discriminative model will learn the
best approximation to P(y|x) possible using its inner parameter w, while the generative
model will not necessarily do so. Still, generative models actually need fewer samples to
converge to a good estimate of the joint distribution than discriminative models need to
accurately represent the conditional distribution [Tas04, JH99]. But with enough data in
use, the result may look quite differently.

Chapter 1 Introduction

Examples of generative training methods include Hidden Markov Models [JM00], Mar-
kov Random Fields [BVZ98], Bayesian Networks [DHS00], and of the discriminative —
Gaussian processes [Ras06], Support Vector Machines [Vap00], as well as Neural Net-
works [McKO03]. Eisner used a cubic parsing algorithm [Eis96] together with a gener-
ative model. The shift-reduce dependency parser of English of Yamada and Matsu-
moto [YMO03] is trained with Support Vector Machines. Thereby, the classifiers are trained
on individual decisions rather than on the overall quality of the parse. A similar ap-
proach is applied in the parser of Ratnaparkhi [Rat99] which is trained to maximize the
conditional likelihood of each parsing decision and is probably the earliest work on dis-
criminative parsing.

Hybrid Parsing

The opposition of the two approaches just described, and the possible synergies that
may emerge after the combination of both, were the reasons for the appearance of hy-
brid parsing methods which have been first applied in the area of shallow parsing, such
as supertagging or attachment prediction [WHO02], and later transferred to full syntactic
parsing as well. For example, the rule-based parsers presented in [RM90] or [CC04] use
statistical methods to restrict the space of search possibilities.

The greatest gains of hybrid methods lie in the combination of the different sources of
knowledge. This may be of advantage even among data-driven approaches. For ex-
ample, in [SL06] several statistical parsing solutions are applied to the same data and an
additional algorithm makes further decisions based on the suggested variants. Or, purely
stochastic solutions may be trained on different data collections and their results may be
combined for parsing. In the recent time, much research in the area of hybrid methods is
being done [Ric94, HB02, Zu05]. In this work, an extension of a rule-based system with a
statistical parser is pursued.

The main hurdle that hybrid methods have to overcome is the imperfection of the com-
ponents combined. Errors in one component may be propagated into the next and lead
to a substantial decrease of performance, e.g., a parser that completely relies on the part
of speech information provided by the tagger will most probably make a mistake when
the tagger fails. A preference-based solution is one of the possibilities to deal with this prob-
lem. According to it, conflicting information from different sources should be assessed
for its reliability and even overridden if enough evidence is present for some other alter-
native [FMO06b].

Evaluation Measures

To evaluate parsing results, such measures as precision p, defined as the ratio of the num-
ber of correct predictions to the number of all the predictions made by the parser, and
recall r, understood as the ratio between the number of correct predictions and desired
predictions, are mostly used [Fot06]. Considering either of them in isolation does not

Chapter 1 Introduction

make sense as they are antagonistic in their nature, they are also combined as part of the
so-called f~measure [Rij79] which may by defined as

(8% + 1)pr
B32p+r

where 3 is a parameter that allows to favor either of the two, precision or recall, as de-
sired.

9

As already mentioned, it is rather straightforward to evaluate an analysis made by a de-
pendency parser, as per edge correctness may be easily computed. For parsers, that never
fail to return an analysis such as those that will be considered in the present work, the
measures of parsing performance are summed up under the term accuracy since preci-
sion, recall and f-score coincide. Thereby, structural accuracy points out the percentage of
words correctly attached to their regent, and labeled accuracy is the ratio of the correctly
attached words which also have the correct label.

Although well-defined general measures to evaluate parsing performance exist, it is dif-
ficult to directly compare the results reported for different parsers as the evaluations are
influenced by the data used during the experiment, the domain of the data, or various
annotation guidelines as well as the source of the part of speech information that may
be obtained from the manual annotations or disambiguated during the parsing process.
Even such a condition as inclusion or not of the punctuation into the results has not yet
become a standard.

1.3 Scope of This Thesis

This work is a successor of the previous efforts on hybrid methods of syntactic lan-
guage processing realized with Weighted Constraint Dependency Grammar, WCDG, [Fot06,
FHS™05, Sch02] at the Natural Language Systems Division (NATS) of the Department of
Informatics, University of Hamburg. The WCDG system has successfully combined rule-
based parsing, the rules in this case are written in form of constraints, with five additional
statistical predictor components which improved the performance of the system by over
twenty percent.

Integrating predictors into WCDG has shown itself as a promising way of parse improve-
ments. At the moment, a simple shift-reduce parser is acting in WCDG as a full pars-
ing predictor. It is known for its rather modest parsing accuracy and inability to deal
with non-projectivity. Even such an unreliable predictor brings a performance increase
of over 3 percent. A recent study of statistical parsers during the CoNLL-X shared task
2006 [BMDKO6] has reported the best results among 14 languages of the MSTParser by
R. McDonald [MLP06] who combined discriminative learning with maximum spanning
tree parsing. The perspectives of integrating the MSTParser as a predictor for WCDG
were outlined in [FMO06b]. In addition to high performance (the reported accuracy on the
German data is 90.4% structural and 87.3% labeled accuracy, especially attractive is the

Chapter 1 Introduction

stated ability of this parser to deal with non-projective data and the low complexity of
suggested algorithms.

The evaluation of the perspectives to use the MSTParser as a predictor for WCDG, re-
stricted to the German language is the main goal of the present work. Because of the
reasons outlined in the previous section, the evaluation of the MSTParser on the in-house
data is a necessary step on the way to it. This would also allow for a reliable compari-
son of the performance of the two parsers as the measurements will be performed on the
same data according to the same criteria.

This thesis is organized as follows. The next two chapters study the MSTParser in de-
tail: the theoretical background about online learning methods and the MIRA algorithm
used in the MSTParser are revised in Chapter 2 and the leveraged parsing algorithms are
summarized in Chapter 3. Chapter 4 gives an overview of the WCDG system and the
hybrid parsing methods successfully applied in it so far. Chapter 5 presents the results
of evaluation of the MSTParser on the same German data WCDG has been mostly tested
on and Chapter 6 sums up the results of integrating the MSTParser as a predictor for
WCDG. Finally, in Chapter 7, the achieved results are summarized and an outlook on
further research is given.

Chapter 2

Online Learning for Natural Language
Parsing

An important feature of a learning
machine is that its teacher will often be
very largely ignorant of quite what is
going on inside, although he may still be
able to some extent to predict his pupil’s
behavior.

Alan Turing

The maximum spanning trees parsing framework constructed by R. McDonald [McD06,
MLPO06], or the MSTParser, takes a set of parsed sentences during the training phase and
outputs a parsing model. The responsibility for the success of the training is taken by
a learning algorithm which is generic and will produce different parsing models under
different input data. The test phase is controlled by the parser which consists of both
the parsing model and an inference algorithm, also called the parsing algorithm. When
the parser gets a new sentence x it uses the model parameters to produce a syntactic
representation y.

This chapter will analyze the online learning algorithm building the center of R. McDon-
ald’s framework. The theoretical background, necessary for its understanding, such as
machine learning approaches to the classification problem as well as specific solutions
like large margin classifiers, will be revised first. After that it will be shown how these
methods can be applied to the structural classification problems and natural language
parsing as their subtype.

2.1 Classification Problem in Machine Learning

Much of this section is drawn from [CST03, S502, TGK04, Vap00].

10

Chapter 2 Online Learning for Natural Language Parsing

Traditional programming methods explicitly specify how the correct output should be
computed from the input data. An alternative to this approach provided by the learn-
ing methodology suggests ways to learn the input/output mapping directly from existing
examples, especially, in the cases where no known method for computing the desired
output from a set of inputs is known (such as classification of protein types based on
DNA sequence from which they are generated) or the methods are too complex (like
handwriting analysis or natural language parsing). There are several types of learning
suggested by the learning methodology, among them supervised learning, in which case
the input data is provided in pairs with the corresponding output (both together referred
to as training data) and which is of utmost importance for the present work. !

The input/output pairs in the general case reflect a functional relationship mapping of
inputs to outputs called the target function, or decision function, exception being made
for situations in which the outputs are corrupted by noise. Usually, before the attempt is
made to learn the correct function, a particular set or class of candidate functions referred
to as hypotheses is chosen.

One of the fundamental supervised learning problems is classification. A classifier is a
function that maps an input to an output. In binary classification problems, the goal is to
assign each input instance one of two possible labels. For example, classifying sounds
of a language strictly into vowels and consonants is a binary classification problem. If
the number of labels is finite, the problem is called multi-class classification, such as in
the case of the part of speech tagging. Binary classification can be viewed as a multi-
class classification with only two classes. If the output is not a single value, but a set
or a sequence of values, such as when assigning a parse tree to an input sentence, the
problem is referred to as structured classification and as practice has shown that it is a
good abstraction for natural language parsing [TGK04, McD06] and will be thoroughly
presented in the next section.

The supervised classification setting can formally be described as follows. Let denote
an input, € € X, where X is the space of all possible inputs, or input space. Further, let y
denote the output, y € Y, and) be the discrete output space. The input space is an arbi-
trary set, often chosen as X = R”, while the output space for a multi-class classification
isY ={y1, - ,yr}, where k is the number of classes.

A classifier, or hypothesis, h is a function from X to), h : X —). The set of all classifiers
that the learning program can produce is denoted as H (hypothesis class). The input to a
learning algorithm is a set of m i.i.d. (independent and identically distributed) samples
S = {x y®}m . drawn from a fixed but unknown distribution D over X x) and
the learning program aims at finding a classifier h € H that will work well on unseen
examples, i.e., such that h(x) will approximate y on new samples from the distribution
(x,y) ~ D; this property being one of the most important of A is called generalization.

!Other types of learning include, e. g., unsupervised learning in which case no output values are provided
and some understanding of the process that generates the data should be achieved or reinforcement learn-
ing whereby the learner can take some of eligible actions to move toward states where they can expect
high rewards.

11

Chapter 2 Online Learning for Natural Language Parsing

The variation in classification algorithms is achieved by choosing the hypothesis class H
and the criterion for selection of a hypothesis h from H given the training data. The
task of selecting a hypothesis h is reduced to estimating model parameters. As already
mentioned in Section 1.2, probabilistic estimation methods associate a joint distribution
p(z,y) or conditional distribution p(y|x) with h and select a model based on likelihood
of the data. Joint distribution models are often called generative, while conditional models
are called discriminative.

A criterion for selection of h from H can be derived by qualifying what it means for
h(z) to approximate y. The measure for the expected error of the approximation is risk
functional, defined as:

Rﬂf) [h} = E(m,y)wD [L(ZB, Y, h(:l)))], (21)

where L : X x Y x Y — R is the loss function which measures the penalty for predicting
h(z) on the sample (x,y). In general, it is assumed that L(xz,y,y) = 0if y = 3.

A common loss function for classification is 0/1 loss:

LYY (@, y, h(z)) = Iy # h(=)),

where I(-) denotes the indicator function, I(true) = 1 and I(false) = 0.

Since the distribution D is generally not known, the risk of A is estimated using its empir-
ical risk R, which on the training sample S is given by:

RE = £ L@,y ha®) = 2 3" Li(h(a)) @2)

m “ N
i=1 =1

where L;(h(z")) is the abbreviation for L(z®,y®, h(z®)). For 0/1 loss, R% is simply
the proportion of training examples that h misclassifies. R is also called training error or
training loss.

Empirical risk minimization as a criterion for the selection of the solution hypothesis from
the hypothesis class might not provide good generalization. This can be illustrated by the
fact that for each h and any training sample {z(), 4y} satisfying {z(1),... 2™} N
{z(W) ... z(m1 = (), there exists another hypothesis h* such that h*(z(")) = h(z(®) for all
i=1,---,m,yet h*(z®) £ h(z¥) foralli = 1,--- ,m.

The key to selecting an optimal hypothesis h* is to trade-off complexity of class H with
the error on the training data as measured by the empirical risk (2.2). This fundamen-
tal balance is generally achieved by minimizing the weighted combination of the two
criteria:

h* = arg min(D[h] + CRE[R]), (2.3)

where D[h], often referred to as regularization, measures the inherent dimension of com-
plexity of h, and C' > 0 is a trade-off parameter. Derivation of the different complexity

12

Chapter 2 Online Learning for Natural Language Parsing

measures is the main task of the statistical learning theory, or VC (Vapnik-Chervonenkis)
theory [Vap00] which shows that it is imperative to restrict the set of functions from
which h* is chosen to one that has capacity suitable for the amount of available training
data. VC theory provides bounds on the test error. The minimization of these bounds
which depend on both the empirical risk and the capacity of the function class, leads to
the principle of Structural Risk Minimization.

Most of the recent research has been concentrated on linear models where the optimal
hypothesis h* can be found efficiently using convex optimization in polynomial time.
The linear model for binary classification as its simplest kind allows to quickly define
and demonstrate the main concepts and abstractions regarding classification problem
description, learning algorithms and their analysis and will be introduced next.

2.1.1 Linear Classification

Linear functions are intensively used in different fields of mathematical research, among
them in traditional statistics and machine learning. Their properties are thoroughly stud-
ied and they are simple to apply and implement. A linear function of the form:

h(z) = (w,x) +b (2.4)

where (w,b) € R™ x R are the parameters controlling the function, can be used as a
decision function for binary classification if the decision rule is given by sgn(f(x)).2 Ac-
cording to the learning methodology, the parameters (w, b) have to be learned from the
data.

This kind of hypothesis is geometrically a linear separator, i. e., the hyperplane (w,) + b
that splits the input space into two parts. In Figure 2.1, the hyperplane is the dark line
separating the two classes presented by crosses and naughts respectively. The parameter w,
referred to as a weight vector, is a vector orthogonal to the hyperplane and affects the ori-
entation of the hyperplane in the space, while the bias parameter b controls the distance
of the hyperplane from the origin.

If a hyperplane that correctly classifies the training data exists, the data is called linearly
separable, in the reverse case, the data is called non-separable.

Very important parameter concerning the hyperplane for the further discussion is the
quantity called the margin. It also plays the central role in the learning algorithm used in
the framework of R. McDonald.

Definition 2.1. The functional margin of an example (x;,y;) with respect to a hyperplane
(w, b) is the quantity

v = yi({w, z;) +b). (2.5)

21t will be assumed here that sgn(0) = 1.

13

Chapter 2 Online Learning for Natural Language Parsing

Figure 2.2: The geometric margin of two points; cf.: [CST03].

The margin v; > 0 implies that the example (x;, y;) from S has been classified correctly.

The minimum of the margin distribution (i. e. the distribution of the margins of the exam-
ples in S) is often referred to as the functional margin of a hyperplane (w, b) with respect to
a training set S. The geometric margin is obtained from the functional margin for the nor-

malized linear function (1w, -b) and measures the Euclidean distances of the points
Tl 0 Trao] P

14

Chapter 2 Online Learning for Natural Language Parsing

Figure 2.3: The margin of a training set; cf.: [CSTO03].

from the decision boundary in the input space (see Figure 2.2). The geometric margin
will equal the functional margin if the weight vector is a unit vector. Besides, the margin
of a training set S (Figure 2.3) is the maximum geometric margin over all hyperplanes.
A hyperplane realizing this maximum is known as the maximal margin hyperplane. For a
linearly separable training set, the size of the margin will be positive.

The earliest usage of linear functions in the context of machine learning goes back to
Fisher [Fis52] who suggested them for classification more than 70 years ago. One of the
first algorithms utilizing linear functions that recently gained its popularity again [Col02,
CR04, RSCJ04, Moo05] is the F. Rosenblatt’s Perceptron dating back to 1956. Since then, it
has proved to be effective for a broad rage of applications and gave birth to a number of
enhancements, one of them being the learning algorithm used for R. McDonald’s learning
framework.

The Perceptron algorithm is used in its original form for binary classification of a linearly
separable training set S of length m, it maintains a separating hyperplane (w, b) that is
used for prediction. Given an input instance x the Perceptron algorithm predicts its label
by first computing § = sgn({w,x)). The algorithm modifies w only on rounds with
prediction errors changing w to w + x if the correctlabelisy = 1 and tow —x ify = —1.
This update rule can be summarized by w = w + yx. The pseudocode of the algorithm
is shown in the left column of Figure 2.4. It is referred to as a primal form to reflect the fact
that it updates the weight vector and the bias directly in contrast to a dual form presented
on the left of Figure 2.4 which will be discussed in a moment.

15

Chapter 2 Online Learning for Natural Language Parsing

Initialize:

e Setb=0.

o SetR = maX1§i§m||5'3iH'

Primal Dual

e Setw® =0. ?Set a=0.
Loop:i=1,---,m

e Get a new instance x; € R".

Primal Dual

e Predict §; = (w®, x;). e Predict §; = E;-;}) aj(zj, ;).
e Get a new label y;.

e Compute L%/t = LYY (w®, (z;,y;)).

e Update:
Primal Dual
0/1 _ (i+1) _ ()

° If L 0 set w wh . If L%/1 = 0 preserve a;.

o IfLYM=Tlsetw™ =w® 4y o IfL' =1lseta;=a;+1

. and set b0 +1) =y, R2. . and set b(itD) — y, R2.
Output:

Primal Dual

o hz) = (w™ x). o h(z) =311, y;(z;, x).

Figure 2.4: The Perceptron algorithm: primal and dual form; cf. [Cra04, CST03]

It does not influence the generality if the initial weight vector is the zero vector as it is
assumed by the Perceptron algorithm. In combination with the additive update rule, this
accounts for the fact that the final hypothesis is a linear combination of the training set:

m
w = § OGYi X,
i=1

where, since the classification y; provides the sign of the coefficient of x;, the o; are pos-
itive values proportional to the number of times misclassification of x; has caused the
weight vector to be updated. Once a sample S has been fixed, one can think of the vec-
tor « as alternative representation of the hypothesis in different or dual coordinates. This
expansion is however not unique: different a can correspond to the same hypothesis
h(x). The o; can also be regarded as an indication of the information content of the ex-
ample x;.

The analysis of the Perceptron algorithm made by Novikoff [Nov62] and Block [Blo62]

has shown that for linearly separable data with non-zero margin, the algorithm termi-
nates and the number of mistakes the Perceptron algorithm will perform is bounded.

16

Chapter 2 Online Learning for Natural Language Parsing

Besides, what makes it especially attractive for present research, thirty years later Freund
and Schapire have extended the analysis for the non-separable case [FS98].

2.1.2 Quadratic Optimization

For what follows, some words should be said about the algorithmic techniques for op-
timizing quadratic convex functions with linear constraints. The general form of the
problem that is particular important for the next discussion is:

Definition 2.2. (Primal optimization problem) Given functions f,g;,i = 1,...,k,and h;,i =
1,...,m, defined on a domain 2 C R"”,
minimize f(w), w € (,
subject to gi(w) <0, 1=1,...,k,
hz(w) :Oa v =1, , M,

where f(w) is called the objective function, and the remaining relations are called, respec-
tively, the inequality and equality constraints. The optimal value of the objective function
is called the value of the optimization problem.

Only a restricted class of convex quadratic optimization problems is important for the
present discussion. That is, the problems in which the objective function is convex and
quadratic and €2 = R and the constraints are linear.

If a function f is convex, any local minimum w* of the unconstrained optimization prob-
lem with objective function f is also a global minimum, since for any u # w?*, by the
definition of a local minimum there exists # sufficiently close to 1 that

fw®) < f(fw” + (1 - 0)u)
<Of(w) + (1 -0)f(u).

And it follows that f(w*) < f(u). It is this property of convex functions that makes
optimization problems tractable when such functions are involved.

Lagrangian treatment of convex optimization problems (see Appendix B) leads to an al-
ternative dual description, which often turns out to be easier to solve than the primal
problem as handling inequality constraints directly is difficult. The dual problem is ob-
tained by introducing Lagrange multipliers, also called dual variables, that become the
fundamental unknown of the problem.

Primal can be transformed into dual by setting the derivatives of the Lagrangian with
respect to the primal variables to zero and substituting the relations obtained back into
the Lagrangian. This way, the dependence on the primal variables is removed and corre-
sponds to explicitly computing the function

0(a, B) = infyecql(w, o, B).

17

Chapter 2 Online Learning for Natural Language Parsing

This transformation is applied to the maximal margin classifier that will be considered in
the next section (2.1.3).

There are also ready-made programmatic applications to the described technique, such
as Hildreth’s algorithm [CZ97] that was specially designed for the case when functions
of the form f(z) = 1||z||*> should be optimized (see Figure 2.5).

It is a primal-dual algorithm that iteratively updates primal {"} and dual {a”} and
iterates in such a manner that only one component v of the dual vector is actually changed
in a single iterative step. The size of the change c, is such that it guarantees dual ascent.
The convergence of Hildreth’s algorithm has been thoroughly analyzed in literature, e. g.
[Hil57, D’E59, LCI1].

Problem:

1
Minimize 3 [|2||? (2.6)

such that (a',) < by, i€ n], (2.7)

where f(z) = 3||lz||>, f:R™ — Randa’:R™ — Rare
convex functions and [n] € N.
Initialization: o° € R is arbitrary and z° = —A’a”.

Iterative step:

't =¥ + 0’V (2.8)
o't =¥ — ¢, e, (2.9)
with
. , b?(l/) _ <ai(u)7wu>
¢, = min <ai(u), Ay TECIE . (2.10)

Relaxation parameters: Forall v > 0, ¢ < A, < 2 — ¢y, for some arbitrary
small but fixed €1, €5 > 0.
Control: The sequence {i(v)} is almost cyclic on [n]; e is the basis vector.

Figure 2.5: Hildreth’s Algorithm; cf. [CZ97].

A geometric interpretation of the algorithm is as follows. At one iteration, ”, & and the
closed half-space L;(,) = {x € R"| (@) x) < bi(v)}, determined by the i(v)th inequality
of (2.7) are given. If " ¢ L;(,), then x”*1 is the orthogonal projection of z* onto L.
If 2 belongs to the bounding hyperplane h;, then "' = x”. Finally, if " € int L;,),
ie., if ('™ x¥) < bi(v), then a move perpendicular to the bounding hyperplane h;(,) is
made. In this case, either ¢, = aj,, or xV*1 is the orthogonal projection of z onto h;,).

These possibilities are shown in Figure 2.6.

18

Chapter 2 Online Learning for Natural Language Parsing

i(v)

Figure 2.6: Possible cases in the iterative step of Hildreth’s algorithm; cf.: [CZ97].
2.1.3 Maximal Margin Classifier

One of the main propositions made by the already mentioned statistical learning theory
is that the generalization error of linear classifiers is bounded in terms of the margin
ms(f) of the hypothesis f with respect to the training set S. The dimensionality of the
space in which the data are separated does not play any role. Besides, the statistical
learning theory proves that this bound will be optimal if the hyperplane separating the
data is the maximal margin hyperplane. It is the geometric margin that is referred to
but the inherent degrees of freedom in the definition of linear classifiers allow to use the
functional margin instead. The function associated with the hyperplane (w, b) does not
change if the hyperplane is rescaled to (Aw, Ab) for A € R*. There will, however, be a
change in the margin as measured by the function output as opposed to the geometric
margin. Hence, the geometric margin can be equally maximized by fixing the functional
margin to be equal to 1 (the hyperplane in this case is referred to as canonical hyperplane)
and minimizing the norm of the weight vector.

Thus, if w is the weight vector realizing a functional margin of 1 on the positive point
™ and the negative point ", the geometric margin can be computed as follows. The
functional margin of 1 implies

(w, ™) +b=+1,
<w7 $_> +b=—1,

while to compute the geometric margin one has to normalize w first. The geometric
margin + is then the margin of the resulting classifier

19

Chapter 2 Online Learning for Natural Language Parsing

Hence, the resulting geometric margin will be equal to ”—iH and the whole result can be
summed up as follows.

Given a linearly separable training sample S = {x;,y;}/~,, the hyperplane (w,b) that
solves the optimization problem

minimize,, (w,w),
subject to yi ((w, ;) +b) > 1,
1=1,...,m,

1

realizes the maximal margin hyperplane with geometric margin v = .

According to the technique borrowed from the Lagrangian theory (Appendix B) and pre-
sented shortly in the previous section, the corresponding dual problem of this quadratic
optimization problem can be derived. The primal Lagrangian is in this case

1 m
L(w,b, &) = o (w, w) - ;ai[yi«w,a:i) +b) — 1]
where o; > 0 are Lagrangian multipliers.

To find the corresponding dual one has to differentiate with respect to w and b

8(15)[) =w — Zyzazwz =0,

8 'wba Zyzaz—O

whereby the following relations are obtained
m
w = Z YiQi i,
i=1
m
0= Z Yi Qs
i=1

the first of them is the optimization theory evidence to the dual representation already
introduced in Section 2.1.1. Substituting both relations into the primal yields

L(w,b,a) = %(w,w> - Zai[yi((w,an) +0b)—1]

5 E YiYj, Q5 wuwj § YiY; 005 wum] +§ Q;

t,j=1 1,j=1
m m
:g - = E yzy]azaj<wuxj>
=1 1,j:1

20

Chapter 2 Online Learning for Natural Language Parsing

Thus, the dual optimization problem that has to be solved is

m m
maximize W(a) = Z oy — % Z Yiyj o (Ti, Tj)
i=1 ij=1
m
subject to Z yio; =0,
i=1
a; > 0,1=1,...,m,

and the weight vector w* =)" | y;afx; realizes in this case the maximal margin hyper-

plane with geometric margin v = ﬁ

2.1.4 Online Learning

The Perceptron algorithm (Figure 2.4) presented in Subsection 2.1.1 belongs to the so-
called group of online learning algorithms. A general form of an online learning algo-
rithm is shown in Figure 2.7. An online algorithm works in rounds. On round ¢, it
receives an instance x;. Given x;, it outputs a prediction y; = h(xz;). It then receives
the correct label y; € Y which is evaluated according to the loss function L(y;, 9;) used.
The algorithm then updates its prediction rule h which for the linear functions means
updating the weight vector w according to the rule specific to the algorithm. The aux-
iliary vector v accumulates the successive values of w so that the final weight vector is
the average of the weight vectors after each iteration which helps to reduce the so-called
overfitting as suggested in [Col02].

Training data: 7 = {(z¢,y,)}1—,
1. w® =0,v=0;i=0
2. forn:1..N
3. fort:1.T
4 Given z;, predict y;
5 Get y; and compute loss L(y;, §;)
6. w1 = update w¥ to minimize loss L
7. v=v+wlth
8 t=1+1
9. w=v/(N=«T)

Figure 2.7: Generic online learning algorithm; cf. [McD06].

Hypotheses are said to overfit if they become too complex to find an accurate fit to the
training data. This happens, for example, if the hypothesis is allowed to grow unbound-
edly in size.

21

Chapter 2 Online Learning for Natural Language Parsing

While the online model focuses on the learning process itself as the goal of an online al-
gorithm is to minimize the cumulative loss during the training process, its opposite, the
batch model, divides the learning process into two phases — a training and a test — and
does not care about the performance in the training phase in which the learning algo-
rithm has access to a finite set of examples and constructs a prediction function taking all
available instances into consideration simultaneously. It optimizes the values so that the
algorithm performs best in the test phase in which the prediction function is not modi-
fied.

On one iteration, online algorithms consider only one instance, whereas batch algorithms
optimize their parameters according to several instances at once. Practical results proved
that this potential weakness is balanced over by the simplicity of online learning which
scales better to large problems than batch algorithms as shown by [McD06].

One essential drawback of the Perceptron algorithm is that is does not optimize any no-
tion of the classification margin which, as shown in the previous subsection, would be a
good way to reduce the generalization error. Y. Crammer [Cra04] has proposed a large-
margin modification of the Perceptron algorithm that does not suffer from this weak-
ness.

The Margin Infused Relaxed Algorithm (MIRA) of Y. Crammer for binary classification de-
rives its update rule (line 6 of the generic online algorithm in Figure 2.7) as the solution
to the following problem

i+1

1 .
w'"" = arg min, EHw —w'|? (2.11)

such that L, (w, (x,y)) = 0,

w'T! is set to be the projection of w’ onto the set of all weight vectors that guarantee a
zero loss. For the problem of binary classification it is a half space, {w : y;(w, z;) > ~}.
On each update,MIRA attempts to keep w'*! as close to w' as possible, while forcing
w' ™! to provide a zero loss on the most recent example. Thus, the algorithm maximizes
the margin on the current example.

As shown in [Cra(04], the solution to the optimization problem in (2.12) yields the follow-
ing update rule:

w!™) = w® ¢ oty (2.12)
where o' is the corresponding dual with value

L o).
O[Z — 'Y(w7 (w127 yZ)) (2'13)
o4l
MIRA algorithm has been successfully adapted to the setting of the structural classifica-
tion by B. Taskar [TGK04]. The next section will demonstrate how these adaptations were
used for syntactic parsing by R. McDonald.

22

Chapter 2 Online Learning for Natural Language Parsing

2.2 Natural Language Parsing as Structured Classification
Problem

In syntactic parsing, the provided input in form of a sentence, should be mapped to the
output in form of, e.g., a dependency tree which can be abstractly seen as an ordered set
of labels. That is why, syntactic parsing fits into the setting of the structured classification
problems in machine learning.

Formally, for parsing we want to know a function s : X —)/, where X is a set of sentences
and) is a set of valid parse trees according to a fixed grammar G. G maps aninputz € X
to a set of candidate parses G(z) C). The function s is further referred to as the score
function and takes the following linear form

S(.%,y) = (w,@(x,y)), (2.14)

where w € R? is a weight vector and @ is a feature-vector representation of a parse tree
® : X x Y — R% The goal of learning is to obtain w so that correct outputs are given a
high score according to s and incorrect outputs a low score.

As shown by B. Taskar [TGK04], maximal margin methods can be successfully used for
this setting, too. He defines the margin of the parameters w on the example i and parse
y as the difference value between the true parse y; and y:

s(xi,yi) — s(x4,9) = (w, B(x4, 1)) — (w, B(x4,9)) = (w, AP;), (2.15)

whereby the size of the margin quantifies the confidence in rejecting the mistaken parse
y using the score function s, modulo the scale of the parameters ||w||. This rejection
confidence has to be larger when the mistake is more severe, i. e. L(y, 9) is large.

B. Taskar [TGKO04] shows through the standard transformations (similar to those shown
in Section 2.1.3) that maximizing the margin in this case corresponds to minimizing the
norm of the weight vector w and the following optimization problem should be solved
as a result:

min [|w||
such that (w, A®;) > L(y,)
Vg € G(z;).

R. McDonald uses the MIRA algorithm introduced in the previous section to solve this
problem as maximizing the margin is already the internal property of MIRA and thus the
MIRA update rule (2.12) will look like:

w(th) = arg min_, [|w" — w@| (2.16)
such that (w, A®;) > L(y, y), with respect to w*
Vg) € G’bestk (':E’L)a

23

Chapter 2 Online Learning for Natural Language Parsing

where Gicgt, (7;) denotes the k parses of x with the best score as constraints derived
from all the possible parses of x make the quadratic program intractable. Still even small
values of k yield near optimal performance as shown in [McD06].

The loss function chosen is closely related to the Hamming loss often used in sequences
and is defined for a graph as the number of words with incorrect incoming edges relative
to the correct parse.

The problem in 2.16 is a quadratic problem that is solved in the McDonald’s framework
with the help of Hildreth’s algorithm shown in Section 2.1.2.

Hildreth’s algorithm gets the values of A®; and d; denoting
di = L(y, §) — (w, A®;) (2.17)

for each of the parses k of a sentence z. The constraint according to which 2.16 should be
optimized takes the form d; < 0Vi € [k]. The sequence i(v) is chosen to be dependent on
the largest value d,q, of d; so that in one iteration the most broken presently constraint
is chosen.

Not to depend on the weight vector w during iterations, the update rules from the general
Hildreth’s algorithm are slightly modified. First, the parameter ¢, (cf. Eq. 2.10) can be
computed faster by

¢, — min | o &
v i(v)? w2 |
AP

A, is assumed to be equal 1. Second, because of the inequality sign direction change in
the constraint of 2.16, the dual will be updated by

au+1 — o — (_Cyei(u)) = o + cyei(u)
Besides, the update rule for the weight vector (Eq. 2.8) substituted into the expression for
d; (2.17) yields

L(y.§) — (w"™, A®;) =

L(y,9) — (0" + ¢y APppaz), AP;) =
Ly, 9) — (w", A®;) — ¢, (APpaz, AP;) =
dY — ¢y (AP0, AD), Vi € [K],

so that one has to actually update the expression for d; during each iteration to
A =dY —) (AB00, AD), Vi € [K] (2.18)

Thus, the update rule becomes independent of the value of the weight vector w.

The algorithm terminates if one of the d; gets smaller than, e.g., ¢ = 1078 or the maximum
allowed iteration number (set to 10%) has been reached.

24

Chapter 2 Online Learning for Natural Language Parsing

2.3 Summary

The background knowledge necessary for understanding of discriminative learning in
general and one of its online algorithm, MIRA, in particular has been presented in this
chapter. This algorithm was chosen for the dependency parsing framework of R. Mc-
Donald, because of the three following reasons. It is accurate — it outperforms the stan-
dard perceptron algorithm and performs not worse than batch alternatives; it is efficient
— with the exception of the perceptron algorithm, MIRA is the fastest discriminative
learning algorithm [MCP05]. Besides, its implementation is simple — it only relies on
inference and Hildreth’s algorithm to solve the quadratic programming problem.

25

Chapter 3

Dependency Parsing as Maximum
Spanning Tree Search

This chapter revises the parsing algorithms used by the MSTParser. ! The main idea
behind all the algorithms is to reduce the parsing problem to finding maximum spanning
trees in dependency graphs which enables to find the correct parse through a search for a
tree with a maximum score based on the introduced scoring functions. If only scores over
single edges are taken into consideration when calculating the score of a dependency tree,
the corresponding algorithms are referred to as first-order parsing algorithms in contrast
to second-order algorithms which also incorporate information about adjacent edges in
addition to single edges. This chapter also covers the features used in the MSTParser and
the approaches taken to add labels to the parsing decision.

3.1 First-Order Parsing Algorithms

According to the definition of R. McDonald [McD06], the score of an edge is the dot product
(.,.) between a high dimensional representation of the edge and a weight vector,

S(ihj) = <w7f(i7j)>a (3.1)

where (i, j) € y if there is a dependency in the generic dependency tree y from word z;
to word z;.

Then the score of a dependency tree, if only single edge scores are taken into consideration,
is given by,

s(woy)= > s(i,g) = > (wf(i,5)).
(i.9)€y (i.9)€y

If an appropriate feature representation is chosen and the weight vector w is known
then the dependency tree with the highest score will present the dependency parse for a
sentence x.

'For details s. [McD06, MLP06].

26

Chapter 3 Dependency Parsing as Maximum Spanning Tree Search

For a directed graph G = (V, F) in which each edge (i, j),v;, v; € V, has a score s(, j), the
maximum spanning tree (MST) is defined as a tree y that maximizes Z(i’ ey s(i,), such
that (i, j) € E and every vertex in V' is used in the construction of y.

The properties of the maximum spanning trees can be applied for dependency trees since
for each sentence x a directed graph G4 = (V, E) can be defined such that

Ve = {zo =root, x1,...,z,},
Eo={(i,J) : i # xj,7; € Vg, x5 € Vg — roOt}.

Thus, if the score of a tree is factored into the sum of single edge scores as defined previ-
ously then finding the (projective) dependency tree of highest score is equivalent to find-
ing the maximum (projective) spanning tree in G, with an artificial root. This problem is
referred to as the first-order maximum spanning tree problem, or first-order dependency
parsing problem. The MSTParser uses separate algorithms for first-order projective and
non-projective parsing which will be presented next.

3.1.1 Eisner Projective Parsing Algorithm

Projective parsing algorithms are actually suitable for languages the syntactic structures
of which are mostly projective (e.g., English — the largest source of the English depen-
dency trees, the Penn Treebank [MSM93], only includes projective sentences) which is un-
fortunately not true for the German language having around 14 percent of non-projective
sentences. 2 Still, the first-order projective parsing algorithm used by the MSTParser is
an important element on the way to understanding the approximate second-order non-
projective algorithm most promising for parsing German and so it also deserves its at-
tention here.

hl hl
hi hi ho ho Fy ha b i
AN NN s e
s Ry i v rtl hy he ¢ s Ry fq ke ha ¢ s Ry fy i

Figure 3.1: Eisner algorithm (first-order); cf [McDO06].

Projective parsing algorithms in the MSTParser are based on the algorithm introduced
by J. Eisner [Eis96] which was a successful attempt to reduce the complexity of the well-
known chart parsing CKY (Cocke, Younger, Kasami) algorithm [You67]. Whereas the
chart parsers derived directly from the CKY algorithm, such as [Als96, Col96], need O(n?)
time to create the whole dependency tree forest in practice, Eisner observed that if the
left and right dependencies of a word are parsed independently and combined only later
then it is possible to parse in O(n?®) whereby no additional head indices of the original
algorithm are needed any more and only two additional variables to gather left and right
dependencies respectively are required.

2See 5.2 for information about different corpora for German

27

Chapter 3 Dependency Parsing as Maximum Spanning Tree Search

In Figure 3.1 illustrating the Eisner algorithm, r, s, and ¢ represent the start and end in-
dices of chart items, h; and hs stay for the indices of the heads of chart items. Initially,
the items are complete (shown by right angle triangles). The first step creates an incom-
plete item with h; as the head of iy and the second checks whether it can be completed.
Larger items are created bottom-up from pairs of smaller items as in the normal CKY
parsing. Each chart item also stores the score of the best possible subtree it has been
created from. 3

The Eisner dependency parsing algorithm is a bottom-up dynamic programming chart
parsing algorithm and, in fact, it provides the solution of the maximum spanning tree
problem if a linear ordering of the vertices in the graph, such as the order of words in the
sentence, is given [McDO06]. k-best extensions of this algorithm that increase complexity
by a multiplicative factor of O(klog k) also exist.

3.1.2 Chu-Liu-Edmonds Non-Projective Parsing Algorithm

For the non-projective case, the entire space of spanning trees has to be searched with
no restrictions and the MSTParser applies the algorithm of Chu-Liu-Edmonds [CL65,
Edmé67] * for directed graphs for that purpose. During successive steps, each vertex of
the graph greedily selects the incoming edge with highest score. If the formed structure
is not a tree, there must be a cycle. The cycle is identified and contracted into a single
vertex whereby the weights of the edge going into and out of the cycle are recalculated.
As soon as a tree is formed after a succession of such steps, it should be the maximum
spanning tree. The algorithm can recursively call itself on the contracted graph as Geor-
giadis showed [Geo03] that the MST on the contracted graph is equivalent to the MST
of the original graph. Besides, Tarjan’s efficient implementation of the algorithm [Tar77]
counts for only O(n?) time complexity and the k-best case extensions are possible with
O(kn?).

3.2 Second-Order Parsing Algorithms

Second-order spanning tree parsing methods factor the score of the tree into the sum of
adjacent edge pairs and, thus, allow to benefit from the previous parse decisions.

For second-order spanning tree parsing, the score function (Eq. 3.1) has been modified to
s(i, k, j), which is the score of creating a pair of adjacent edges, from word x; to words
7y, and z;, and thus, for a word z;, having the m modifies z;,, ..., z;;, z, ., %i,,, the first

3See Appendix C for a complete listing of the Eisner algorithm (Figure C.3).
*See Appendix C for a complete listing (Figure C.4) and a detailed example (Figure C.5) of the Chu-Liu-
Edmonds algorithm.

28

Chapter 3 Dependency Parsing as Maximum Spanning Tree Search

J modifiers of which are on its left and the rest m — j on its right, it is formally defined
by
1

<.
|

S(i7k7j) = S(i07ik+17ik)+5(i07_7ij)+
k=1
m—1
+ S(i07 _7ij+1) + Z S(i(]aikv ik:-l-l)v
k=j+1

where s(i, —, j) is the score when z; is the first left/right dependent of word z;. The
left/right independence assumption made in this definition is common and allows to
define polynomial second-order projective parsing algorithms. This function is reduced
to the standard first-order function if this score function ignores the middle modifier, or
sibling.

The score of a tree for second-order parsing becomes equal to the sum of adjacent edge
scores,

s(wy)= > s(ik,j).
(i.k.j) ey
The notion of adjacent edges can be applied only to graphs having a fixed order over
their vertexes, and it is fortunately the case for the words of a sentence comprising a
dependency tree.

The gain introduced by the second-order features is the ability to use most recent parsing
decisions and condition on the last dependent found for a particular word. As in the
first-order case, algorithms for projective and non-projective case have been presented.

3.2.1 Extension to Eisner Algorithm

The algorithm of Eisner in its original form [Eis96] has the extension for the second-order
case which is running in O(n3). The principle of the algorithm is sketched in Figure 3.2,
which shows that h; creates a dependency to h3 with the second-order information that
the last dependent of h; was hsy. Part (B) of the figure shows how this is done through
the creation of a sibling item. °> The main difference to the first-order case is the delay of
the completion of the items until all the dependencies of the head have been found. This
allows for the collection of pairs of sibling dependents in a single stage without increasing
the cubic time. With this algorithm, the k-best parses can be found in O(k log(k)n?).

3.2.2 Approximate Non-Projective Algorithm

R. McDonald has proved that the second-order non-projective MST parsing is N'P-hard [MP06],
but provided an efficient approximate algorithm for the non-projective case. It is similar

*See Appendix C for the listing of the second-order Eisner algorithm (Figure C.6).

29

Chapter 3 Dependency Parsing as Maximum Spanning Tree Search

hy fiy hi

hz hg hg hz hz ha hS
h [\ /‘) h) ﬁ
fi fio hin s r+1 [hi ho ho hs hi hs

(A) (B ©

Figure 3.2: Eisner algorithm (second-order); cf [McDO06].

to the approach applied in WCDG [FMS00] which to overcome the difficulties in a stan-
dard constraint dependency grammar starts with a suboptimal solution and does subse-
quent attempts to reach the global optimum through local constraint optimizations.

The approximate algorithm is based on the projective parsing algorithm just presented.
First, the highest scoring projective parse is found with the second-order projective al-
gorithm, and then the edges in the tree are rearranged, one at a time, as long as such
rearrangements increase the overall score and do not violate the tree constraint. © The
approach is based on the fact that even in non-projective languages like German the ma-
jority of the sentences are projective and even in non-projective sentences most edges but
a few are projective. [McDO06] has analyzed the properties of this algorithm and proved
its termination.

3.3 Second-Stage Labeling

As already mentioned in Section 1.2, an important quality of a good parser nowadays is
its ability not only to find the correct dependency structure, but also to assign labels to
result edges. The algorithms presented in this chapter identify only the modifiers of a
word and although it is easy to enrich the edge score functions with labeling information
and then incorporate labeling into the parsing algorithms directly, this approach leads to
the growth of the complexity of the algorithms. The complexity of the first-order pro-
jective algorithm becomes O(n3 — |T'|n?) and for the non-projective algorithms O(|T|n?),
where T’ is the set of labels used. For the respective second-order algorithms time require-
ments are even higher, O(|T'|n?) and O(|T|*)n3, respectively, the latter with a potential to
become a problem for large label sets.

That is why, in correspondence with the idea of Dan Klein who showed that it is much
harder to find the correct structure for dependency trees than to assign labels to ready-
made trees [Kle04], a second stage that takes the result parse y and classifies each edge
(i,7) € y with a particular label ¢ € T, was added into the MSTParser [MLP06]. In ad-
dition to the complexity reduction of the overall system, one gets the possibility to con-
sider all the available information about the fixed output and not restrict oneself to single

®See Appendix C for the listing of the second-order non-projective approximate algorithm (Figure C.7).

30

Chapter 3 Dependency Parsing as Maximum Spanning Tree Search

edges or pairs of edges as suggested by the scoring functions used by the corresponding
algorithms.

The idea is to consider an edge (i,j) € y as input for sentence « and check for the label
with the highest score,

t = arg m?X s(t, (i,7),y,x)

Even more benefit can be assured if the labels of nearby edges are taken into considera-
tion, especially for a word and its dependents. Specifically, if a word z; has M dependents
zj,..., %, thenlabeling of the edges (i, j1),..., (i,jum) is treated in the MSTParser as a
sequence labeling problem,

(t(i,ﬁ)v . ,t(m-M)) =t=arg max s(t,i,y,x).

The scores of the adjacent edges (3, j,,) and (7, j,,—1) in the tree y are thus seen as factors
of a first-order Markov factorization

M
t= arg m?X ZQ S(t(iujm)’ t(iz.jm—l)’ i’ Y ﬂf)
m=

The score functions are, as in the other algorithms, standard dot products between high
dimensional feature representations and a weight vector. The highest scoring label se-
quence can be found with Viterbi’s algorithm. The MIRA online learning algorithm pre-
sented in Section 2.1.4 is used to set the needed weights in this case as well.

3.4 Feature Space

For all the algorithms, the choice of the proper feature space seems to be one of the cru-
cial reasons for their actual success. It should be noted that the features in this approach
should be chosen in such a way that when a single edge is considered the whole infor-
mation needed to that point is present and one is independent of the parsing decisions
taken outside this edge.

First-order features used in the MSTParser are summarized in Table C.1 (a), (b), (c) and an
illustration to building features for one edge of an English sentence is given in Figure C.1
(both in Appendix C). The first two most general feature groups, referred to as uni-gram
and bi-gram according to the number of the elements that are considered, take the word
identities and their parts of speech (POS) categories into account combining the informa-
tion about the head or the modifier of the edge or both in all possible variations. The
third group of features includes the in-between features, the trigrams built of the POS
of the head and the modifier and the POS of the word between them for all the words
in between, as well as 4-gram features including the information about the POS of the
words before and after the head and modifier pair and thus reflecting the local context
information. In the first version of the MSTParser, the example in the Appendix is based

31

Chapter 3 Dependency Parsing as Maximum Spanning Tree Search

on, for words longer than 5 characters, the same features are added for the 5-gram prefix
as for the entire words which is just an ad-hoc measure to extract the lemma from an
inflected form, beginning from the CoNLL task the MSTParser uses word lemmas.

A number of specific features for second-order parsing (Table C.1 (d) in Appendix C)
add the information about the word as well as the POS of the middle modifier, or sib-
ling, according to the meaning used in Section 3.2. Whereas all the first-order features
include the direction of attachment and the distance between the head and the modifier
(that are not reflected in the tables of the Appendix), second-order features exist in two
variations, the first with and the second without the distance between the two siblings
and the direction of attachment.

The feature set of the MSTParser was optimized for the English language. The impact
of each of the feature groups was tested with common (in the discriminative learning
setting) leave out feature tests, a simple approach to compare the test results obtained
after the parsing models have been successively trained without a certain feature group.
For the first-order model, the performance is shown to be highly dependent on knowing
the attachment direction as well as the distance from the head to the modifier. When re-
moved, the performance drops from 90.7 % to 88.1 %. Even stronger is the dependence on
the POS context and in-between features which, when removed together, are responsible
for a modest performance value of only 86.0 % which is in fact smaller than when all the
edge relevant features about the head and the modifier are removed (87.3). In fact, the
POS context and the in-between features can be seen as simulating higher order feature
representations.

The second-order model shows other dependencies, the highest performance degrada-
tion occurs contrary to the first-order case if one removes all the edge relevant informa-
tion about the head and the modifier from 91.5 % to 89.5 %. The POS context together
with in-between features or even attachment direction and distance seem to be overlap-
ping with other second-order features as their removal has much smaller impact on the
performance than in the first-order case (91.3 % accuracy in both cases instead of 91.5 %
for the full feature set).

To allow for the labeling stage, appropriate features are added to those already men-
tioned. Choosing labeling features, there is no need to restrict oneself to the scope of
only one edge as labeling is not based on the local factorization (see Section 3.3), the gain
which should be paid for with the renouncement of the knowledge of the combination
about the label and the structure that could be done if labeling were made together with
the structural analysis. Thus, the edge, sibling and context features that are similar to
those defined for the dependency algorithms, such as head and modifier POS, attach-
ment direction or words in between and their POS, or add other, e.g., sharing the same
suffix, sharing the same POS), are extended by non-local features, such as the number of
modifiers for the modifier in question or whether the modifier is the left- or right-most of
the head (see Figure C.2 for the complete list of labeling features).

Furthermore, the features have been extended for the case that the training and testing
data are enriched with the language specific morphological information to benefit from

32

Chapter 3 Dependency Parsing as Maximum Spanning Tree Search

it as well. For this purpose, the structural feature representation for each edge between
the head z; and the modifier z; having morphological features M; and M respectively
is extended with M; as head features and M; as modifier features and a conjunction of
features from both sets. It is a way to easily find such common properties between a head
and a modifier like gender, case, or number. Morphological additions are also made for
the second-stage labeler, they are labeled with (M) in Figure C.2, in Appendix C.

3.5 Summary

To consider the dependency trees as directed graphs and to view syntactic parsing as a
problem of finding maximum spanning trees in directed graphs, is a novel abstraction
on the parsing problem successfully applied by R. McDonald. Similar approaches have
been described in [Hir01] and [Rib04], but they are known for their complexity and lack
of description abstractions. The formalism of maximum spanning trees allows to find
efficient solutions for both the projective and non-projective cases. The existing projective
algorithm of Eisner is the starting point for both first-order (incorporating features over
only one edge) and second-order (adding features about adjacent edges) cubic parsing
algorithms. The non-projective algorithm of Chu-Liu-Edmonds using first-order features
has an even lower complexity of O(n?) and although the use of the second-order features
makes it intractable, an approximate algorithm for this case is also suggested. Besides,
these algorithms are extended with a second stage to add labeling.

Thereby, the role of the discriminative learning framework itself should not be under-
estimated for the success of the MSTParser. R. McDonald stresses that “the weaknesses
of edge-based factorization can be overcome with discriminative learning that exploits
rich feature sets describing properties of each dependency as well as their local con-
text” [McDO6]. So the weights for statistically dependent features, such as the edge fea-
tures and part of speech context together with the in-between features can be efficiently
learned. The success of the methods is directly connected with online learning.

In the CoNLL-X 2006 shared task [BMDKO06], the MSTParser achieved the best results
compared to other present-day parsers. Its structural accuracy ranged from 79.3% for
Arabic to 91.5% for English. The reported results for German in the CoNLL-X task are
90.4% and 87.3% structural and labeled accuracy respectively. The German model was
trained on 39,216 sentences from the the TIGER treebank [BDH'02] previously automat-
ically translated into the dependency structures, and 357 sentences of it were used for
testing.

33

Chapter 4

WCDG System

There are many paths to the top of the
mountain, but only one view.

Harry Millner

This chapter shortly presents the WCDG system. ! The details about it can be obtained
from [Fot06, FHS'05, Sch02] reflecting the milestones of its development as well from
more recent publications [FM06b, FM06¢c, FBMO06] this chapter is mostly based on. The
most important practical aspects are summed up in [FHS*05].

4.1 Weighted Constraint Dependency Grammar

The formalism of a Constraint Dependency Grammar, CDG, was first introduced by Ma-
ruyama [Mar90] and suggests modeling natural language with the help of constraints.
Later [Sch02], it was extended to a Weighted CDG, on the one hand, following the aware-
ness of the graded nature of grammaticality [Abn96, Kel00], and on the other hand, with
the motivation to use the weights of the constraints during parsing to disambiguate be-
tween alternatives. A WCDG models natural language as labeled dependency trees and
is entirely declarative, i.e., it has no derivation rules. How well-formed trees may be built
is expressed with the help of constraints.

Every constraint of WCDG carries a weight, also referred to as a penalty, in the interval
from zero to one, a lower value of the weight reflects its greater importance. If a parse
analysis found by the system, or, more precisely a set of dependency edges, violates
any of the constraints, it is registered as a constraint violation or a conflict between the
structure and the rules of the language. The score of an analysis is the product of all
the constraints that are violated by it. In the described setting, it becomes possible to
differentiate between the quality of different parse results: the analysis with a higher

'The WCDG system is freely available for download at http://nats-www.informatik.uni-
hamburg.de/view/Main/NatsDownloads/.

34

http://nats-www.informatik.uni-hamburg.de/view/Main/NatsDownloads/
http://nats-www.informatik.uni-hamburg.de/view/Main/NatsDownloads/

Chapter 4 WCDG System

score is considered preferable. Surely, under these conditions, an analysis having only
a few grave conflicts may unfortunately be preferred by the system against another one
with a great number of smaller constraint violations. But an analysis violating any of
the constraints with a weight of zero would get the lowest value. These constraints are
referred to as hard, reflecting their prohibitive nature. The constraints having a weight
greater zero, also called defeasible, may express universal principles or vague preferences
for language phenomena.

In the following examples that are expressed in the WCDG constraint language, the first
prohibits adverbs to follow attributive expressions directly and the second helps to rec-
ognize incorrectly assigned SUBJC labels if an adverb modifies the conjunction.

{X/SYN/Y\SYN} : "adverb after attribute’ : order : 0.0
X.label = ATTR —> Y.label != ADV;

{X/SYN\Y/SYN} : ’SUBJC should be NEB’ : category : 0.0
X@word = so & Y.label = KONJ
—->
“is(Y"id, SUBJC) ;

In this more or less intuitive notation, X and Y are the edges, SYN in the signature stays
for the syntactic level of analysis as extrasyntactical analysis is also conceptually possible
within the WCDG (at the moment, there is also the REF level that is used to connect
relative pronouns with their antecedents) and X@ and Y~ are used to express the modifier
and the regent respectively. > The sign in the signature between the edge and the analysis
level is a direction indicator for this edge. Thus, {X/SYN} and {X\SYN} refer to an
edge X pointing to the right or left, {X|SYN} means that X points to the root which is
opposed to {X!SYN} meaning that X does not point to the root while {X:SYN} does not
impose any restriction on the edge under analysis. The constraints in the examples have
referred to two edges so the information about their relative position is also included into
the signature. Thus, {X:SYN/Y:SYN} means that X is above Y and {X:SYN\Y:SYN} is
the opposite.

The following defeasible constraint refers to adjacent and connected genitive construc-
tions and would in most situations disprefer a second genitive that is on the left of its
regent.

{X/SYN\Y!SYN} : ’'nested genitive’ : category : 0.1
X.label = GMOD
->
Y.label != GMOD;

2Section 1.4 of [FHS*05] describes the constraint syntax in detail.

35

Chapter 4 WCDG System

The concrete weights for a constraint are chosen by the grammar writer. Attempts have
been made to compute the weights of a WCDG automatically by observing which weight
vectors perform best on a given corpus, but the computations did not bring improve-
ments to the manually assigned scores [SPMF(01]. Much more important are the relative
values of the weights, so that more often constructions are preferred, but seldom varia-
tions are also allowed.

At the moment, there are around 1000 constraints defined to cover modern German lan-
guage completely [FDMO05] that are robust against many kinds of language errors. The
last fact accounts for a very great number of defeasible constraints to allow an error prin-
cipally to happen, but, as a result, the search space of possible trees gets even larger than
for a prescriptive grammar.

Parsing problem is being treated in the WCDG system as a Constraint Satisfaction Prob-
lem which is “the problem of assigning values to a finite set of variables while obeying
a set of conditions on combined assignments” [Fot06]. The expressiveness of the con-
straint language comes at the expense of complexity, the parsing problem becomes N P-
complete. Still, a reliable heuristic alternative to a complete search has been suggested:
the transformation-based solution methods that make a guess to get the initial variant of the
optimal tree and the constraint violations are used as a control mechanism leading to the
change of labels, subordinations, or choice of the lexical variants. The basic algorithm
for heuristic transformational search is shown in Figure D.1 of Appendix D. It has been
described in great detail in [FMS00] and [Fot06].

The transformation-based search cannot guarantee to find the best solution to the con-
straint satisfaction problem, but in comparison to a complete search that requires much
time and space, it only needs limited resources and can be interrupted at any time. Be-
sides, a complete search will not always return a solution as it will probably not terminate
at all. The transformation-based algorithm, even interrupted, will always return an anal-
ysis, together with a list of the violated constraints that it probably has not fixed yet. The
algorithm terminates on its own before the timeout when no violated constraints with a
weight over a predefined threshold remain.

4.2 Statistical Enhancements

Realistic broad-coverage parsing should operate on raw data. In this respect, several
limitations of WCDG can be observed. If the input is annotated with part of speech (POS)
information, the parser reaches 90.4% structural and 88.8% labeled accuracy. But if this
information is not available, the accuracy drops down to 72.6%/68.3% respectively.

There exist weaknesses in the constraint formalism itself, that cannot be overcome only
by writing more constraints, e.g., having lexicalized constraints is possible, but practically
infeasible. Besides, the success of the parse entirely depends on a human grammar writer
and there are language phenomena that can be easily overlooked.

36

Chapter 4 WCDG System

Moreover, the solutions should always be searched by WCDG from scratch, the parser
does not learn from previous errors or successful decisions.

These are the main problems statistical methods should help to overcome. At the present
moment, WCDG successfully integrates five additional statistical components: POS tag-
ger, chunker, supertagger, PP attacher and a shift-reduce oracle parser.

POS Tagging

As already mentioned, possessing reliable POS information about the input is one of the
essential conditions for the parsing success. Purely stochastic methods have achieved
very good results as contextual information can be very effectively used to disambiguate
the categories of the words in the utterance. The TnT tagger [Bra00] was added to
WCDG [HF02] and after some improvements were applied to the tagger [Fot06] it has
brought the parser onto almost the same accuracy level it had with the knowledge of the
tags from the gold standard (89.7%/87.9%). One of the important aspects of the integra-
tion of the tagger is that it submits its decisions to the parser in form of graded predictions
of the POS categories of which the parser may choose basing its choice on the value of the
prediction which is incorporated into the weight of the tagger constraint for this purpose.
Thus, the parser is not forced to accept the decision of the tagger and may overwrite it if
enough evidence is present against it.

Chunk Parsing

The chunker is responsible for predicting the boundaries of the main constituents in a
sentence and reduces the number of search alternatives during parsing. According to
the WCDG constraint, all chunk heads should be attached outside the chunk itself. For
chunking, the tree model TreeTagger [Sch94] was used after it has been trained on articles
from Stuttgarter Zeitung and achieved a precision of 88.0% and a recall of 89.5%.

Supertagging

Supertagging is another level of category disambiguation that takes not only the syntactic
category into consideration, but also the local syntactic environment of each word. In an
approach, most similar to that of [WHO02], the predictions used in WCDG were the label
of each word, whether it follows or precedes its regent, and what other types of relations
are found below it and are obtained after a re-train of the TnT. As in other cases, a con-
straint with a preference to a predicted value of the supertag was added to the constraint
grammar. If one measures the average accuracy of the supertag predictions according to
the individual predictions for distinct properties, it reaches around 84.5% [FBMO6].

37

Chapter 4 WCDG System

PP Attachment

The attachment of prepositional phrases depends to a very high extent on the semantics
of the words in their vicinity and presents a big problem for syntactic parsing as it should
be based on the lexicalized information that cannot be incorporated into the constraints
in the needed amount. To disambiguate PP-attachment, a probabilistic model that counts
only occurrences of prepositions and potential attachment words and ignores the identity
of the words that belong to the preposition, has been trained on both the treebanks and
raw text and achieved an accuracy of 79.4% and 78.3% respectively [FM06a]. All the
solutions that do not correspond to the prediction of the PP-attacher are penalized by
another WCDG constraint.

Shift-Reduce Oracle Parser

Most relevant for the present work are the previous experiments to integrate a full parser
as a predictor of the attachment for all words. The probabilistic shift-reduce parser con-
structed for this purpose according to the model described in [Niv03] sees parsing as a
series of simple actions — shift, reduce and attach — that are used to construct depen-
dency trees. A maximum likelihood model that takes such properties of the current state
into account as the categories of the current and following words, the environment of the
top stack constructed so far, and the distance between the top word and the next word,
predicts parse actions with an accuracy of 84.8%/80.5% [FMO06b]. But it can only predict
projective trees, the limitation that was tolerated during the first experiments with a full
oracle predictor for simplicity and that should be resolved by this work.

4.3 Summary

Although Weighted Constraint Dependency Grammar has limitations typical for a rule-
based system, such as the development and parsing effort, the formalism turned out
to be flexible enough to incorporate other sources of knowledge with the help of the
same constraints that describe grammar rules serving as parsing guidelines in general.
What is even more important, it allows the parser not only to avoid error propagation
successfully although the predictor components show an accuracy that is mostly — with
the exception of the tagger — below that of the parser itself, but also improve its own
results in the range of very slight improvements to tens of percent (Table 4.1). Moreover,
in this successful realization of hybrid parsing methods, multiple components may be
used according to the same principles. Table 4.1 shows that the accuracy improves also
in parsing experiments in which multiple components interact.

The WCDG system benefits from additional sources of knowledge both in those cases
where it does not possess the information that comes from the predictors itself, such as
it is almost entirely unreliable in determining PP-attachments or POS-tags, and in situa-
tions where it is able to find a similar solution, but only after probably inefficient heuristic

38

Chapter 4 WCDG System

Accuracy, %

Experiment | structural labeled
none 726 683
POS only 89.7 879
POS+CP 90.2 884
POS+PP 909 89.1
POS+ST 921 90.7
POS+SR 914 90.0
POS+PP+SR 91.6 90.2
POS+ST+SR 923 90.9
POS+ST+PP 921 90.7
all five 925 911

Table 4.1: WCDG parsing accuracy with various predictor components (from [FM06b]). POS —
part of speech tagger, CP — chunker, ST — supertagger, PP — prepositional attacher,
SR — shift-reduce oracle parser.

search, so that a global optimum can in the end be found much faster when the predictors
are used than without them.

This work goes on investigating the benefits that combinations of different sources of
knowledge may bring for syntactic parsing. In the following chapters, the prospects of
adding another oracle parser to WCDG will be evaluated. In comparison to the presently
integrated shift-reduce parser, the MSTParser has shown a much higher accuracy in ex-
ternal experiments and uses a parsing algorithm that is able to produce non-projective
trees. Before integrating the MSTParser into the WCDG system as an oracle predictor,
it is sensible to evaluate it on the WCDG compliant data which will be done next, in
Chapter 5.

39

Chapter 5

Parsing German with the MSTParser

When all else fails, read the manual.

Anonymous

In this chapter, the results of the evaluation of the MSTParser on the German data will be
presented. The experiments were aimed at comparing the performance of the MSTParser
and WCDG and showing the perspectives of integrating the former as an oracle parser
for WCDG.

Two goals were pursued during the performance measurements. On the one hand, back-
ward comparison with the previous WCDG results should be achieved. On the other
hand, the comparison with the largest available study of the performance of the present
parsers, the CoNLL-X shared task, should also be made possible. With respect to these
two goals, measurements were done both according to the CoNLL standard where the
data is provided with the correct POS tags and morphological features as well as under
more realistic conditions with a real and not a gold POS tagger, a challenge broad cover-
age parsers should be able to cope with. When not said otherwise, results will be given
including the punctuation into the overall score as done in WCDG as well as MSTParser
internal tradition. Still, the more important results will be doubled excluding the punc-
tuation to allow for a comparison with the CoNLL-X task results which also ignore it.
The performance of the parser will be evaluated according to the accuracy measures pre-
sented in Section 1.2 1.

5.1 Parsing Experiments

The experiments used the MSTParser version 0.4.3b from April 4, 2007, freely down-
loadable from sourceforge.net/projects/mstparser/, and were performed on a
32-bit 4-processor Athlon with GNU/Linux which allowed to use 2000 MB for the Java

'The MSTParser did fail on extremely long sentences due to out of memory errors so that the three measures
would differ slightly sometimes, but in the absolute majority of cases a parse was returned so these
measures can be simplified and the exceptions will be pointed out specially.

40

http://sourceforge.net/projects/mstparser/

Chapter 5 Parsing German with the MSTParser

heap (JDK1.5.0_.10). As input, the MSTParser needs data that has already been tagged
with POS information. Optionally, the data may also include base forms of the words
and morphological information. Certainly, the training data should also be annotated
with the correct regent and label.

Experiment Settings

The evaluations were performed on a thousand sentences (18,602 — 19,601) from the
NEGRA treebank. It is the same data set that was previously used in the performance
evaluations of WCDG (e.g., [FM06b] and [Fot06]) and, thus, it provides a good oppor-
tunity for the comparison of the results. The NEGRA treebank is a collection of newspa-
per articles; in the original, it stores phrase structure annotations. These were available
in the form after being translated into dependency trees with the DEPSY tool [DFM04]
and manually improved afterward. The manual corrections were necessary to bring the
dependency trees in accord with the internal annotation guidelines of WCDG. Most in-
consistencies were removed in the cases where the annotation guidelines of the WCDG
differ from those of NEGRA, such as in their treatment of non-projectivity (WCDG only
allows non-projectivity in the attachment of verbal arguments, relative clauses and coor-
dinations, i.e., the cases where it would decrease ambiguity) and in situations in which
the annotations of NEGRA itself turned out to be inconsistent (e.g., in connection with
the co-ordinated and elliptical structures, adverbs and subclauses). In addition, the ex-
isting version of DEPSY still uses 33 labels, while WCDG already uses 36, although two
of them are, in fact, rather rare (ETH and NP2). The third, OBJP, occurs more often, it was
introduced to set apart the prepositional phrases that are required by the valency of the
verb.

The choice of the data set on which to train the parser was not so straightforward. The
performance of a data-driven parser depends strongly on the similarity of the training
set to the data used for the test. As parts of the same corpus usually have a greater
similarity to each other than parts from different corpora, it would be a good decision
to train the MSTParser on the NEGRA corpus as well. The problem is that although the
whole treebank has been translated into the dependency trees using DEPSY, only another
three thousand of them have been manually corrected, a quantity that seems too small
for effective training. Moreover, previous evaluations of the MSTParser have used much
larger training sets. E.g., during the CoNLL-X shared task 39,216 sentences from the
TIGER Treebank [BDHT02] were used.

Another candidate to become a training set is the heiseticker corpus. It contains the texts
from the online archive of www.heise.de, 70,000 of which have been manually annotated at
NATS according to the WCDG guidelines. The texts in this corpus are all from roughly the same
domain, and although very many technical terms and proper nouns are used, the sentences have
only a slightly longer mean length which is an advantage for the training.

A cross-corpus experiment between NEGRA and heiseticker was performed first. As the
NEGRA training set all the available NEGRA sentences excluding the test set were taken (sen-
tences 1 — 18,601 and 19, 602 — 20, 602) independent of the fact whether they were manually im-
proved or not. Twenty thousand sentences from the heiseticker corpus, 10,000 - 29, 000, were

41

http://www.heise.de

Chapter 5 Parsing German with the MSTParser

used as the other training set. For the heiseticker test set, sentences 6,001 — 7,000 were arbi-
trary chosen.

Training data Test data
NEGRA | heiseticker | NEGRA | heiseticker

Sents. 19,601 20,000 1,000 1,000
Tokens 337,425 | 369, 688 16, 687 18,050
Mean length 17.2 18.5 16.7 18.1
Longest s. 117 79 66 68
% PUNC 14.5 11.7 14 13
% LEMMA 0.05 47.1 36.3 49.7
%H.=0 0.9 1.0 1.08 1.0
% H. left 45.2 45.5 43.6 46.7
% H. right 47.0 48.1 48.9 46.7
% N.P.sents. | 18.2 16.8 14.5 16.2
% N.P. edges | 0.03 0.02 0.02 0.02
Lex. units 49,703 43,833 9,154 9,191
% new lex. (n) | - - 29.8 38.2
% new lex. (h) | - - 57.6 30.0

Table 5.1: Characteristics of the training and test data sets.

The properties of the data sets, similar to those provided during the CoNLL-X task [BMDKO06] are
summarized in Table 5.1 which presents the following characteristics,

e Sents.: The number of sentences in the data set.

o Tokens: The number of tokens in the data set.

e Mean length: Mean length of a sentence.

e Longest s.: The longest sentence in the data set.

e % PUNC: Percentage of punctuation tokens.

¢ % LEMMA: Percentage of non-punctuation data annotated with lemmas (base forms).

e % H. = 0: Percentage of words per sentence whose head is the root of the graph (excluding
the punctuation).

e % H. left: Percentage of words whose head is on its left (excluding tokens having the root
as their head).

e % H. right: Percentage of words whose head is on its right (excluding tokens having the
root as their head).

e % N.P. sents.: Percentage of sentences with at least one non-projective edge.

e % N.P. edges: Percent of all non-projective edges.

o Lex. units: Number of different lexical units in the data set.

e % new lex. (n) Percentage of new lexical units in the test set (not present in the NEGRA
training set).

e % new lex. (h) Percentage of new lexical units in the test set (not presentin the heiseticker
training set).

42

Chapter 5 Parsing German with the MSTParser

Then four experiments were made, all with the second-order non-projective algorithm: one pars-
ing model was trained on NEGRA and the other on heiseticker and each was tested on both
test sets. Although the data is annotated with morphological features, they could not be included
as they caused the MSTParser to stop because of out of memory errors, 2 still the lemmas were
preserved. The results summarized in Table 5.2 show that both models achieve the same struc-
tural accuracy of 91.9% on the NEGRA test set, the labeled accuracy of the heiseticker model
is even slightly better (89.3% vs. 89.1%) whereas the accuracy of the heiseticker model on
the own test set is over two percent higher than of the NEGRA parsing model on it (93.8 % vs.
91.4 % structural and 89.3 % vs. 88.4 % labeled accuracy). This asymmetric behavior can be ex-
plained, on the one hand, by the already mentioned annotation inconsistencies inside the part
of the NEGRA treebank available for training, on the other hand, by the lack of lemmas in the
annotations of NEGRA and the smaller number of words in general in it. Besides, the NEGRA
model encounters almost twice so many new lexical units on the heiseticker test set. These
factors also explain the difference in the number of features between the two models: the training
on heiseticker creates over 1.5 milion features more, another quality making the model better
for generalizations.

Accuracy, %

Experiment structural labeled | Features Time
Training on NEGRA: 9,121,567 | 8h1llminé6s
Test on NEGRA 919 89.1 7 min 37 s
Test on heiseticker 914 88.4 7min 36 s
Training on heiseticker: 10,785,884 | 8h 16 min 19 s
Test on NEGRA 919 89.3 9min4s
Test on heiseticker 93.8 91.7 9min 19s

Table 5.2: The influence of the training set (heiseticker vs. NEGRA). With the approximate
algorithm.

Leaving out the lemmas from the annotations dropped the performance of the heiseticker
model on the NEGRA testset by ca. 3 percent down to 88.3%/86.2% and to 90.1% /88.3% on the
heiseticker test set. Although this shows a strong dependency of the MSTParser to the pres-
ence of lemmas in the data, they were left in the annotations for the other experiments for if the
MSTParser should be integrated into WCDG as a predictor it would be quite easy to automatically
add the lemmas from the lexicon to the data sent to the MSTParser for pre-processing. Surely, this
automatism would introduce some errors into the lemma information which should be noticeable
in the performance, but, on the other hand, all the data, and not some percent of it, as presently,
would be annotated, and this would also bring some improvements.

Another test was done to see how strong the dependency on the annotation correction really
is. For this purpose, the MSTParser was trained on the first 3 thousand sentences of NEGRA that
have been manually annotated as well as on 4 disjunct sets of sentences, of 3 thousand items each,
that have been returned by DEPSY. All five parsing models produced this way were compared on
the standard NEGRA test set (manually reannotated) and alternatively on another thousand of
the sentences transformed by DEPSY. Table 5.3 shows a comparison of the results on the manually
annotated and automatically extracted dependency sets. Although the training on the manually

’In fact, the choice of only twenty thousand sentences to train on is also motivated by the memory issues
as this was the limit manageable by the JVM on the used architecture.

43

Chapter 5 Parsing German with the MSTParser

annotated set (m) has the best results on the manually annotated test set, it cannot outperform
any of the other models built as a result of training with sentences automatically annotated by
DEPSY (d1 to d4). Still, the dependency on what kind of data is used for training is really not
strong and the difference is never greater than 1.5 percent for structural accuracy and 2 percent
for labeled accuracy what allows to conclude that the manual corrections do not change the main
principles according to which the dependency trees have been built automatically.

Train | Features | Labels | Accuracy on reannotated | Accuracy on transformed
set structural labeled (%) | structural labeled (%)
m 2,744,966 | 36 89.7 87.0 89.1 86.0
dl 1,979,592 | 33 88.7 85.5 90.0 87.3
d2 1,932,997 | 33 88.1 85.0 89.3 86.6
d3 | 2,085,645 | 33 88.7 85.6 89.4 86.5
d4 1,904,947 | 33 88.2 85.1 89.3 86.3

Table 5.3: Comparison of the results on the automatically transformed and reannotated data.
With the approximate algorithm.

All said has disqualified NEGRA as a training set, but it also proved that heiseticker is a
decent alternative. It should also be pointed out that 91.9% structural accuracy is a really good
state-of-the-art result, but this is still below the performance that WCDG achieves. On the other
hand, it is 1.5% higher than what WCDG could reach with the POS annotations from the gold
standard and no statistical enhancements ([Fot06] reported 90.4% structural and 88.8% labeled
accuracy on the same test set). More details about the performance of the heiseticker model
can be extracted from Table 5.4 that together with presenting a typical dependency of the parsing
accuracy on the sentence length, provides an alternative measurement excluding the punctua-
tion. It turns out that the accuracy reached on the NEGRA corpus (90.5%/87.5%) is comparable
to that reported by the authors of the MSTParser for the TIGER data during the CoNLL task
(90.4%/87.3%).

With punctuation, % Without punctuation, %

Sentence length Instances | structural labeled | structural labeled
1-10 340 943 911 932 89.4
11-20 323 92.8 90.2 91.7 887
21-30 229 920 895 90.7 87.8
31-40 76 89.8 87.3 88.1 852
> 40 32 89.1 86.5 872 843
overall 1000 919 893 90.5 87.5

Table 5.4: Dependency on the sentence length (training on heiseticker and testing on
NEGRA with POS annotations from the gold standard with the approximate algo-
rithm).

44

Chapter 5 Parsing German with the MSTParser

Tests on Other Corpora

An important quality of a broad-coverage parser is its ability to generalize well to other domains,
it is also an essential property of a parser-predictor. The MSTParser was used to parse the follow-
ing collections of the dependency trees:

e Grundgesetz: The German federal constitution (Revision 2003).
o Genesis: The German translation of Genesis from 1960.

e wyvern: A part of a contemporary fantasy novel.

o EU: Constitutional Treaty proposal for Europe in German (2005).
e azure: A German translation of a fantasy roleplay.

All corpora were parsed completely, the only reduction was necessary for the EU corpus, because
of out of memory errors on extremely long sentences. Sentences EU-s2 (433 words), EU-s767 (292
words), EU-s1644 (238 words) and EU-s2525 (255 words) were removed from the test set. Thus,
the longest sentence that could be parsed with the MSTParser with the available hardware was
217 words long (EU-s1057).

Grundgesetz | Genesis | wyvern | EU azure
Sents. 1,154 2,709 9,547 2,564 | 10,706
Tokens 21,256 43,127 | 131,886 | 61,370 | 151,123
Mean length 18.4 15.9 13.8 23.9 14.1
Longest s. 150 115 103 217 74
% PUNC 10.0 14.6 19.5 8.8 184
% LEMMA 47.8 51.7 31.0 58.8 30.0
%H.=0 0.9 0.9 1.0 0.8 1.0
% H. left 46.2 52.2 44.3 48.1 43.1
% H. right 471 39.6 46.3 46.5 47.8
% N.P. sents. 12.0 154 10.0 19.1 11.3
% N.P. edges | 0.02 0.02 0.02 0.03 0.02
Lex. units 3,332 3,793 10,727 | 5,461 | 13,546
% new lex. (n) | 35.1 48.6 50.6 439 54.9
% new lex. (h) | 42.6 59.1 63.2 46.5 65.9

Table 5.5: Characteristics of the corpora used in the tests.

The details about the properties of these corpora can be seen in Table 5.5. The following Table (5.6)
summarizes the results (including the punctuation) achieved with heiseticker as the training
set and using the gold POS tags during the test. 3

The results show that the same parsing model can be successfully applied to parsing data of vari-
ous complexity from quite different domains. While the model has been trained on online article

3 Alternative results were achieved with NEGRA as the training set. In addition, alternative measurements
excluding the punctuation as well as measurements of accuracy dependent on sentence length are pre-
sented in Tables E.1, E.2, E.3 and E.4 in Appendix E.

45

Chapter 5 Parsing German with the MSTParser

Accuracy, %

Corpus Length Instances | structural labeled
Grundgesetz 18.4 1,154 91.1 882
Genesis 15.9 2,709 91.7 86.7
wyvern 13.8 9,547 93.0 88.7
EU 239 2,564 920 89.7
azure 14.1 10, 706 93.3 89.0

Table 5.6: Testing the heiseticker model on other corpora (including punctuation).

material it achieves good results on both simple language of the fantasy novel (93.3%/89.0%) and
on the complex structured constitution (91.1%/8.2%). It turns out that the mean sentence length
is not the main factor influencing the performance. For example, the parser performs almost three
percent better on the sentences from the EU collection having over 40 words per sentences on av-
erage than on the sentences of the comparable length from the Grundgesetz collection. Known
lexical information seems to play a more important role for the success of the parser. Thus, in
the previous example, 58.8% of the EU corpus are annotated with lemmas vs. only 47.8% of
Grundgesetz that have lemmas while other data properties are comparable. Another reason may
also be the greater part of flat structures in Grundgesetz in comparison to EU.

Parameter Variation

Although the available hardware did not allow to test the full version of the MSTParser that
includes the morphological features, this configuration could be evaluated on a training set of
three thousand sentences long which was used as another chance to compare the performance
of training on NEGRA (first three thousand manually corrected sentences) and on heiseticker
(sentences 10,000 — 12, 999). Table 5.7 shows that the accuracy increased by an approximately half
a percent for the NEGRA model and quite surprisingly got slightly worse for the heiseticker
model in comparison to the case when the morphological features are not included. Unfortu-
nately, the reasons for this decline are not obvious. In each of the chosen training sets, around
100 morphological feature values come across, they differ in 30 positions, but around the same
number of differences exist with each of the test sets. Thus, to the question which of the morpho-
logical features were really responsible for the performance degradation no fast answer can be
given. One can be said for sure, the morphological features are not repeated often in all necessary
combinations so that the parsing model would become flexible enough to cope with different in-
put. In any case, the usage of morphological features is not realistic for broad coverage parsing at
the moment for it has to be investigated first as to how the parser has to adjust its behavior to deal
with errors introduced by the morphological tagger after the POS tags from the gold standard are
substituted by a real automatic mechanism — and it should be noted than no reliable means exist
so far to predict the morphological information.

Another important conclusion that can be made of the previous experiment with morphologi-
cal features is that the heiseticker test set is easier to parse since the results of both parsing
models are much better on the heiseticker test set than on the NEGRA test set. Besides, this
comparison shows that the result of the parse depends on what corpus has been used for training.
Neither of the two can outperform the model that is tested on the same corpus it was trained on.
Thus, one can claim that the MSTParser would achieve a better result (that would influence all the

46

Chapter 5 Parsing German with the MSTParser

Without morphology With morphology

Experiment structural labeled (%) structural labeled (%)
(a) Training on 3 thousand sentences of NEGRA:

Test on NEGRA 89.7 87.0 90.1 87.3

Test on heiseticker 90.5 87.5 91.0 88.0
(a) Training on 3 thousand sentences of heiseticker:

Test on NEGRA 89.5 86.6 89.4 86.5

Test on heiseticker 914 88.6 91.2 883

Table 5.7: Influence of the inclusion of the morphological features. With the approximate algo-
rithm.

results presented in this work) if, by a happy chance, the manual annotations were consequently
provided for the complete NEGRA treebank and one could use it to train the MSTParser.

The benefit of the k-best extensions of the MIRA learning algorithm can only be evaluated for
the non-projective algorithm of the first order (because of the approximation of the second-order
non-projective algorithm). Here, the accuracy has slightly improved for £ = 10 in comparison
to the results obtained for k£ = 1 used otherwise by default, the structural by 0.1% from 91.1% to
91.2%, and the labeled by 0.2% from 88.5% to 88.7% at the expense of additional six and a half
hours of training. This result corresponds to the previously published data [McD06] and is in any
case worse than that of the approximate non-projective algorithm of the second-order without
k-best extensions.

Until now all the experiments had access to the gold standard part of speech annotation. But,
unfortunately no real POS tagger produces ideal output, thus, an important feature for a good
parser is to be robust to tagging errors.

With gold tagging With real tagging
Experiment ‘ structural labeled (%) ‘ structural labeled (%)
Training on heiseticker 919 89.3 91.0 88.0
Training on NEGRA 919 89.1 91.0 878

Table 5.8: Influence of an automatic tagger (training on heiseticker, test on NEGRA with
the approximate algorithm).

Table 5.8 draws the comparison between the results of parsing with an ideal and a real POS tagger,
in the latter role the POS tagger of WCDG was used (see Section 4.2). As the used version of the
MSTParser does not allow to submit POS tag variants to the parser, only the tag variant with the
highest score returned by the POS tagger was provided. The results suggest that the MSTParser
is much more sensitive to the absence of lemmas in the test data than to the errors in the POS tags.
The structural accuracy has dropped by less than one percent to 91.0%, for the labeled accuracy
the use of the POS tagger had a slightly greater effect: it is reduced by 1.3%. It is interesting that
the accuracy changes by exactly the same values for both the heiseticker and the NEGRA
model.

47

Chapter 5 Parsing German with the MSTParser

5.2 Error Analysis

This section primarily concentrates on the parse results on the same NEGRA test set obtained after
the parser has been trained on heiseticker with the approximate non-projective algorithm. To
eliminate the dependency of the following error discussion on the failures of the POS tagger, the
results of the MSTParser are analyzed based on the results obtained using POS tags from the gold
standard.

Accuracy, %

Algorithm structural labeled | Features Time (to train and test)
Projective:

first-order 83.0 80.7 10,381,139 | 4h 16 min 59 s

second-order 829 80.7 10,785,884 | 7h 56 min 5s
Non-Projective:

first-order 91.1 88.5 10,381,139 | 4h24 min35s

second-order 919 89.3 10,785,884 | 8h20min 12 s

Table 5.9: Performance of the MSTParser algorithms (training: heiseticker, test: NEGRA).

Non-Projectivity

The reduction of the parsing accuracy in connection with the sentence length has already been
pointed out in the previous section. Differences in the performance of the different MSTParser
algorithms are presented in Table 5.9, thereby projective algorithms reach a 10 percent lower ac-
curacy than non-projective on the German data. When the accuracy on non-projective sentences
is compared to that on projective sentences, for projective algorithms the difference between the
two reaches around 5 percent (the accuracy of the projective first-order algorithm on the non-
projective sentences equals 78.8%/77.0%, second-order — 78.5%/76.7%; and on the projective
sentences they reach both 84.1%/81.8%.

For the non-projective algorithms, this difference is reduced to three and a half percent. The
accuracy of the non-projective approximate algorithm on the non-projective vs. projective sen-
tences including the dependency on the sentence length is summed up in Table 5.10. It should
be mentioned that the overall values in this table actually cannot be directly compared as the
non-projective sentences tend to be longer, in the test set their mean length is 25.0 vs. 15.3 for
projective sentences. It is notable that the accuracy for the non-projective sentences (Table 5.10)
quite untypically increases with the length of the sentence (excluding extremely long sentences
with more than 40 tokens). This may be ascribed to the fact that in the training set the mean length
of the non-projective sentences was 24.5 (vs. 17.3 for the projective) and the scoring function does
not generalize well for shorter sentences, e.g., as they can have a smaller number of dependents
than longer sentences.

Table 5.11 suggests that the non-projective algorithms generally tend to find much more non-
projective edges than the data has, while the precision remains restricted. The number of non-
projective edges is in this case incremented by one if some edge crosses some other edge once.
Thus, Figure 5.1 shows three non-projective edges and Figure 1.3 (Chapter 1) has one. Itis surely a
rather strict measure. Under the non-projective edge precision in Table 5.11, the absolute number

48

Chapter 5 Parsing German with the MSTParser

Non-projective, %

Projective, %

Sentence length | Instances | structural labeled || Instances | structural labeled
1-10 8 85.2 83.6 332 946 914
11-20 44 88.6 85.6 279 93.5 90.9
21-30 57 89.4 86.8 172 92.8 90.4
31-40 22 89.8 87.5 54 89.7 87.2
> 40 14 88.3 86.4 18 89.6 87.0
overall 145 89.1 86.6 855 92.6 90.0

Table 5.10: Accuracy on non-projective vs. projective sentences of the test set.

Non-projective edges

Non-projective sentences

Algorithm recall precision recall precision
non-projective second-order | 346 (29%) | 102 (39%) | 90 (84%) | 76 (52%)
non-projective first-order 393 (23%) | 90 (34%) | 78 (85%) | 66 (46%)
projective second-order 0 0 0 0
projective first-order 0 0 0 0
Gold 261 (100%) 145 (100%)

Table 5.11: Precision and recall of the non-projective edges and sentences for different

MSTParser parsing algorithms.

of correct edge-crossings is given as well as the ratio of these to the corresponding value in the
gold standard. Under non-projective edge recall, all the non-projective edges that were found by
the MSTParser algorithms are included as well as the ratio of the correctly found non-projective
edges to all non-projective edges found.

= |

word;

words wordg wordy words wordg

Figure 5.1: An example of three non-projective edges.

A more relaxed measure presented in the same table is the precision and recall of non-projective
sentences. If at least one edge-crossing is correctly identified in a non-projective sentence, it has
been added to the correctly identified non-projective sentences shown under non-projective sen-
tences precision. When the identified edge-crossing is actually not present in the sentence, but
the sentence still has some other non-projective edges, the non-projective sentence recall is incre-
mented by one. Under these conditions, the non-projective second-order algorithm correctly iden-
tifies slightly more than a half of the non-projective sentences and over a third of non-projective
edges. In fact, WCDG under harder conditions — with a real POS tagger instead of the POS

49

Chapter 5 Parsing German with the MSTParser

tags from the gold standard — finds 91 non-projective sentences and 138 edges correctly which
corresponds the non-projective sentence precision of 63% and the non-projective edge precision
of 53%. Still, WCDG finds even more incorrect non-projective sentences and edges than present.
More importantly, as the present shift-reduce predictor is not reliable for non-projective parsing,
its participation reduces the non-projective sentence and edge precision — to 80 (55%) and 123
(47%). This question whether it is beneficial to have MSTParser as a predictor for hybrid non-
projective parsing will be addressed again in the next chapter.

Per Label Accuracy

The information about per label accuracy is summarized in Table 5.12. Structural precision stays
in this case for the amount of those edges that have a given label in the gold annotation and
are correctly attached in the MSTParser result independent of the label assigned. Label recall is
understood as the ratio of those edges that are assigned a correct label to the number of all edges
with the corresponding label in the gold annotation. Label precision represents the ratio of those
edges that were assigned a specific label correctly to all that are having that label in the parse
result. The last column of Table 5.12 lists the labels with which the correct labels are mixed by
the MSTParser. If some alternative is chosen often, the percentage of its occurrences in the wrong
solution is given next to it. Labels in the last column for which the percentage is not given are
mixed with the correct solution only occasionally.

Most strong and weak sides of the MSTParser read off Table 5.12 are connected to the locality of
the decisions made by its algorithm. Best performance is observed for the labels which can be
easily assigned based on the local context, such as AUX, DET, ATTR, PN, PART, and seem not very
difficult for syntactic parsing in general. As for KONJ and AVZ, it seems that lexicalization has
added up to the locality accounting for the absolute label recall.

For those labels that are more or less often in general, three main groups of errors can be identified.
The first concerns faults at finding the correct verb compliments, such as SUBJ, OBJA, OBJD,
PRED, EXPL that are mistaken for each other, but also for GMOD or APP. The MSTParser does
not know at a concrete point of analysis whether any other verb compliment has already been
assigned, and, thus, sentences with multiple verb compliments of the same kind are as often
as those having no subject. An example can be found in the very first sentence of the test set
presented in Figure 5.2 4 in which two objects have been assigned to “stellen” in the first clause
and two subjects are assigned to “erhélt” in the second clause. Another example where a second
GMOD instead of an OBJA is indentified is shown in Figure 5.3. Parallel to the label confusion,
most of these labels, excluding SUBJ, also have attachment accuracy below 80% which seems to
be connected to the erroneous labels. Thus, if a word is attached to a full verb, it also has a SUBJ
as its label more often than an OBJA or EXPL (the latter has not been identified as such in the
example sentence presented in Figure 5.4).

As the labels are assigned by the MSTParser algorithm only in the second stage, this seems to be
an error coming from the parsing algorithm of the first stage that deals only with the structure.
The present features used by the MSTParser and tuned with the help of the English data very
probably do not allow it to differentiate enough about the different cases of German.

The second source of errors are all subordinate clauses in the broad sense, such as NEB, REL, OBJC,
OBJI, or SUBJC that are often mixed with each other, where the label NEB is assigned more often
than the other labels of the group, such as in the structure of the same sentence that was used

“Example sentences have been shortened for better presentation.

50

Chapter 5 Parsing German with the MSTParser

Gold, Structural Label
Label (items) | precision | precision recall | Label error
EXPL 14 100.0 50.0 429 | SUBJ:57.1%
DET 2015 99.4 100.0 100.0
PN 1723 99.4 99.1 994 | OBJA, ATTR
PART 87 98.9 98.9 100.0
AVZ 85 98.8 100.0 100.0
AUX 635 98.7 98.7 98.6 | NEB, CJ, SUBJC
ATTR 1156 98.6 98.8 99.0 | PN, OBJA, CJ
KONJ 185 95.1 100.0 100.0
SUBJ 1210 93.0 84.0 88.8 | OBJA: 7.8%, GMOD, PRED
SUBJC 36 91.7 48.3 389 | NEB: 27.7%, OBJC, OBJI
cJg 430 91.2 934 91.6 | PP, S, KON, SUBJ
APP 470 90.2 842 919 | OBJA, SUBJ, GMOD, ZEIT
S 1126 89.6 94.7 909 | APP: 2%, KON, ADV, OBJA
PRED 144 88.9 75.2 63.2 | SUBJ: 13.2%, PP: 15%, ADV
OBJP 53 88.7 48.6 32.0 | PP: 68.0%
GMOD 354 88.4 81.6 85.3 | SUBJ: 5.1%, APP: 4.2%, OBJA
KOM 86 86.0 98.9 100.0
OBJA 604 84.8 71.5 743 | SUBJ: 16.1%, GMOD: 5.6%, APP
OBJI 57 82.5 74.2 86.0 | NEB: 12.2%, SUBJC
ADV 1234 81.0 98.1 98.5 | PRED, CJ
ZEIT 50 80.0 70.8 68.0 | APP, OBJA, SUBJ
KON 436 79.6 93.2 87.8 | APP, S, OBJC, AUX
PP 1697 79.3 95.8 98.4 | OBJP: 1.1%, PRED
OBJD 88 77.3 61.3 21.6 | OBJA: 39.8%, SUBJ: 27.3%, GMOD
NEB 122 75.4 529 66.4 | OBJI: 8.2%, OBJC, S, SUBJC
GRAD 16 75.0 84.6 68.8 | OBJA, ZEIT
ETH 15 73.3 66.7 13.3 | SUBJ: 40%, GMOD, OBJA, OBJD
REL 122 65.6 855 77.0 | NEB: 11.5%, OBJC, S
OBJC 53 54.7 457 39.6 | NEB: 47.2%, REL
PAR 23 13.0 0.0 0.0 | s:73.9%, KON

Table 5.12: Per label accuracy of the MSTParser on the NEGRA testset — sorted according to
the structural precision (trained on heiset icker; tested with POS annotations from

the gold standard).

for illustration last (Figure 5.4) the label NEB is assigned instead of SUBJC. All of these labels ex-
cluding SUBJC also experience attachment problems which is actually not untypical for syntactic
parsers. Thus, in the sentence presented in Figure 5.5 (A1) an edge assigned a NEB instead of a
REL is incorrectly attached under the full verb of the main clause instead of its reference. The

attachment problem seems to be the reason for the incorrect labeling again.

The MSTParser is having a preference for attaching the subordinate clauses (in the broad sense)
to the full verb of the main clause and while doing so it suggests its labeler assigning a NEB to

51

Chapter 5 Parsing German with the MSTParser

OBJA (1)

(- OBJA (2) ﬂ

In Rosbach kann die Stadt das Baugrundstiick kostenfrei zur Verfiigung stellen,

SUBJ (4)

SUBJ (3) W
N

auflerdem erhdlt der Bautrdger ein Darlehen von 579000 Mark.
(B)

(A)*

SUBJ OBJA

S r h

In Rosbach kann die Stadt das Baugrundstiick kostenfrei zur Verfiigung stellen,

OBJA

SUBJ W
auflerdem erhélt der Bautrdger ein Darlehen von 579000 Mark.
©)
1:2: (0.0) double object 3:4: (0.0) double subject
1:2: (0.0) double compliment 3:4: (0.0) double compliment

Figure 5.2: Example of verb compliment errors in NEGRA sentence 18602: (A) the analysis by the
MSTParser; (B) the correct analysis; (C) WCDG constraints violated by the incorrect
edges.

(A)*
GMOD (1) ~ GMOD (2)

4 e D

...sondern um von Praktikern die Realitit der Arbeitswelt zu erfahren.
OBJA
(B) J

GMOD W

...sondern um von Praktikern die Realitdt der Arbeitswelt zu erfahren.
©
1: (0.01) GMOD without genitive

Figure 5.3: Example of a verb compliment error in NEGRA sentence 18718: (A) the analysis by

the MSTParser; (B) the correct analysis; (C) a WCDG constraint violated by an incor-
rect edge.

them incorrectly as the structures where NEB is attached to the full verb are more often than if
an OBJC is attached to the full verb. NEB itself is most often mixed with OBJI, this happens in

52

Chapter 5 Parsing German with the MSTParser

SUBJC (2)

SUBJ (1) W
o

Undso war es schlichtweg ein Versehen, dafy wir gestern berichteten:

SUBJC (2)

EXPL (1) W
N

Undso war es schlichtweg ein Versehen, dafl wir gestern berichteten:
(©)

(A)*

(B)

1:2 (0.0) double subject

Figure 5.4: Example of a verb compliment error in the NEGRA sentence 18700: (A) the analysis
by the MSTParser; (B) the correct analysis; (C) a WCDG constraint violated by an
incorrect edge.

the structures similar to the one of sentence in Figure 5.5 (B1). According to the WCDG model
of German edge 2 going to the “zu”-infinitive in this sentence should be assigned a NEB label
as the whole clause is introduced with the conjunction “um”. A probable cause of errors of the
MSTParser in such situations is that the distance to the conjunction is much larger than to the
particle “zu” that has an influence on how the features about these edges are scored.

The group of context-dependent labels (ADV, PP, KOM, KON) that will be the last one mentioned at
this place has shown typical structural attachment problems. But it should be noted that 79.3% of
correctly attached PP, 81.0% of ADV, 79.6% of KON and 86.0% of KOM correctly attached are quite
state-of-the-art for these difficult cases of disambiguation.

Using WCDG as Evaluator

A very useful property of WCDG is that it cannot only be used as a parser, but also as an analyzer
of the output of the other parsers as any dependency trees can be translated into the WCDG
constraints easily. The constraint violations show what is grammatically wrong with the parse
according to the WCDG constraint grammar. For the MSTParser output the top of the list of the
most often violated hard constraints (those with zero weights) is the list presented in Table 5.13.
It should be noted that the figures in this table should not be understood as the number of errors
in the input. Several different constraints may become violated by one single edge, the examples
have already been given in this section. Besides, each figure of this section presenting a parsing
analysis of the MSTParser also points out which constraint violations of WCDG have happened to
localize the error. Third on the constraint violation list comes the projectivity °. How an incorrect
analysis may cause non-projectivity is shown in Figure 5.5 (C1). In this case, crossing of edges
1 and 2 is prohibited by WCDG, because it does not fall into any category of non-projectivity
described in the constraint grammar.

SUnder “projectivity”, all kinds of projectivity violations have been summed up. The WCDG, in fact, dif-
ferentiates between finer kinds of projectivity violations.

53

Chapter 5 Parsing German with the MSTParser

WCDG constraint name Occurrences
double complement 230
double subject 156
projectivity 117
double object 78
literary clause without comma 28
NEB without conjunction 28
AUX and object 24
OBJA in passive 22
REL without relative pronoun 18
KOUS at the first position 17
OBJA not allowed 15
conjunction without a clause 14
REL should be NEB 14
adverb under adverb 13
root token 13

Table 5.13: WCDG constraints active on the MSTParser output.

5.3 Summary

This chapter reported about the evaluation of the MSTParser on the same part of the NEGRA
corpus WCDG was previously evaluated on. Although the former does not outperform WCDG,
having it as a predictor would be beneficial. It is a rather reliable parser itself having a very good
accuracy of 91.9%/89.3%. Or, without the punctuation, the accuracy equals 90.5%/87.5% which is
not far from the previous evaluations. However, the result of 90.4%/87.3% during the CoNLL-X
shared task has been obtained with morphological features of the gold standard used. Although
the parsing accuracy of the MSTParser depends on the presence of lemmas in the data strongly,
what is more important, the use of a real tagger only makes the performance decrease by around
one percent.

The approximation of the second-order projective algorithm allows the MSTParser to perform
well on non-projective input in general. Although the evaluation has shown that the precision
in identifying the non-projective edges correctly on the edge or even on the sentence level is
higher in the WCDG system, the advantages to have the MSTParser as a predictor for parsing
non-projective sentences in particular are still to be evaluated in the next chapter.

This chapter also analyzed typical errors that the MSTParser does on German data. Most helpful
in identifying the errors was the WCDG system. Although the comparison to the gold annotation
shows which regent or which edge label have been identified incorrectly, it does not “explain”
the syntactical reasons. WCDG helps identify the source of failure and even provides the gram-
matical explanation for the errors in form of violated constraints. The success of WCDG on the
output of the MSTParser in this respect may be referred to the fact that WCDG itself has another

54

Chapter 5 Parsing German with the MSTParser

source of knowledge and, thus, combining both approaches seems to be a very promising task
the realization of which will be described in the next chapter.

For all the evaluations, twenty thousand sentences from the heiseticker corpus were used as
a training set. The choice was motivated by the annotation guidelines of WCDG to which most
of NEGRA dependency trees extracted automatically are not compliant. Still, it was shown that
similar results can be obtained when the parsing model is trained on NEGRA itself. At last, it
should be noted that the training set of the heiseticker corpus was chosen arbitrary and the
limitation to only twenty thousand sentences for training was caused by the technical properties
of the computational resources used. Alternative training on another arbitrarily chosen twenty
thousand sentences set of heiseticker (30,000 — 49,999) had a slightly worse accuracy (90.8%
and 87.8%).

55

9¢

(A1)* NEB (1)

O

Die Zeltstdadte, mit denen Hessen sich auf einen Fliichtlingsansturm aus dem Jugoslawien vorbereiten wollte, werden abgebaut.
(A2)
1: (0.0) NEB should be REL 1: (0.0) NEB without conjunction
(B1)* OBJI (2)

(- KONJ (1) ﬂ

Eine Biirgerfahrt nach Stralburg veranstaltet die SPD, um den Tag der Einheit mit dem Europagedanken zu verkniipfen.

(B2)
1: (0.0) OBJI not allowed 1:2: (0.0) OBJI should be NEB
(C1)* GMOD (1)
pGMOD 3) A OBJI (2)
e i D

Aus Angst vor dem Vorwurf der Wirtschaft, “Wohnungszwangsbewirtschaftung” zu wollen, unterblieben bisher die Mafinahmen.

(C2)
2: (0.0) object definition 2: (0.0) OBJI not allowed 1:2: (0.0) projectivity
1: (0.01) GMOD without genitive 1:3: (0.1) double GMOD

Figure 5.5: Some errors of the MSTParser on NEGRA test set and the WCDG constraints violated by the incorrect edges. (A1) NEGRA sentence
18904: “wollte” should be a REL of “Zeltstadte”; (B1) NEGRA sentence 18672: edge 2 should be NEB; (C1) non-projectivity based
on false attachment in NEGRA sentence 18649: “wollen” should be an OBJI of “Vorwurf” and “Wohnungszwangsbewirtschaftung”
should be an OBJA of “wollen” (A2), (B2), (C2) — the WCDG constraints violated at the incorrect edges.

ISIEJ[SIN 243 UM uewrdn) Suisie] ¢ 1opdey)

Chapter 6

MSTParser as Predictor for WCDG

2 + 2 = 5 for extremely large values of 2.
Old wisdom

The previous chapter confirmed that the MSTParser is a very promising predictor for the WCDG
as the accuracy it achieves is almost domain independent, it is not very sensitive to POS tagging
errors and it can deal with the non-projective data. Moreover, it incorporates information from
a complementary source in comparison to that of WCDG. All these are motivating aspects for
integrating the MSTParser as a predictor for WCDG. In comparison to the previously used shift-
reduce predictor, it is essential that non-projective structures can be parsed by the MSTParser,
even while the performance of the combined approach is to be investigated first as the MSTParser
has shown to be not very precise about the non-projective edges in comparison to WCDG. Besides,
the MSTParser, when used together with the present POS tagger, outperforms the shift-reduce
predictor by 6% and 7.3%, structural and labeled accuracy respectively. The last fact also hides
a potential danger that WCDG might not be flexible enough to deal with such a good input,
because in an attempt to fix some errors WCDG might not only correct a few, but also introduce
additional ones.

6.1 Constraint Weights for MST Predictor

To evaluate the MSTParser as a predictor component for WCDG, the plug-in architecture of the
WCDG system can be used efficiently. The most important thing to decide on is how valuable
the information the predictor provides relative to the already present information in the system
is. This gradation is expressed in WCDG with a constraint weight. It is assumed that if the
information is considered reliable enough then low constraint weights could be used, but in this
case the chance that the errors committed by the predictor would get corrected is lower than
in the case that higher weights have been chosen since the predictor input was not considered
reliable enough from the very beginning. Typically for WCDG, the best suitable weights are to be
determined experimentally.

For each experiment a separate WCDG driver file including the parameter settings is prepared
(see E.1 for details). The driver loads the MST. cdg file extending the WCDG grammar with
three additional constraints and switches the predictor (referred from now on as the MST predic-
tor) on:

57

Chapter 6 MSTParser as Predictor for WCDG

#pragma predict MST ’'mst.pl -v 3 -’ cat

{X!SYN} : "MST:regent’ : stat : W :
predict (XQ@id, MST, gov) = X"to;

{X|SYN} : 'MST:null’” : stat : W :
predict (X@id, MST, gov) = 0;

{X:SYN} : 'MST:label’ : stat : W :
predict (X@id, MST, lab) = X.label;

The first two constraints advise WCDG on the structural information whereby the second deals
with the elements modifying the root and the first with all the others; the third fetches the edge
label predicted. W, 0 < W < 1, stays for the constraint weight chosen for the experiment. These
constraints do not differ from those used for the shift-reduce predictor in the previous experi-
ments [Fot06].

The first set of the experiments uses the same weights for the label and the structural constraints.
Actually, the MSTParser is not so reliable in edge labeling as in the structural information, but
this difference can be tuned in a successive experiment. For easier comparison to the previous
results, the timeout value has been set to a very large value of 10 ms, the time during which the
search terminates on its own for over 90 percent of the sentences. All the experiments described in
this chapter were done with the POS tagger of German that is embedded into WCDG. The other
predictors are switched on only when explicitly mentioned.

Correct (of 16687) Accuracy, %

Weights | head label structural labeled | Time

0.1 15335 15011 91.9 90.0 85.26
0.3 15411 15117 924 90.6 110.86
0.5 15480 15228 928 913 160.59
0.7 15526 15270 93.0 915 174.81
0.75 15533 15275 93.1 915 173.95
0.8 15516 15279 93.0 91.6 174.50
0.85 15512 15294 93.0 917 180.43
0.9 15523 15313 93.0 91.8 189.11
0.95 15516 15302 93.0 917 216.00
1.0 14934 14668 89.5 87.9 199.38

Table 6.1: Search for MST constraint weights.

Table 6.1 summarizes the results of the experiments. The highest structural accuracy of 93.1% is
achieved for the MST constraint weights set to 0.75 and the highest labeled accuracy of 91.8% is
reached for value of 0.9. Constraint weights equal 1.0 actually switch the constraints off mak-
ing the experiment correspond to the one without them with the difference that the grammar is
three constraints longer, more time is needed to load it, and less time is available for the search
before the timeout is reached which is perceptible by a slight difference to the result referenced in

58

Chapter 6 MSTParser as Predictor for WCDG

Weight for Correct (of 16687) Accuracy, %

label constraint | head label structural labeled | Time

0.8 15535 15294 93.1 917 160.61
0.85 15533 15319 93.1 918 156.23
0.90 15538 15326 93.1 91.8 154.78
0.95 15533 15311 93.1 91.8 171.09

Table 6.2: Search for MST label constraint weights (with structural constraints at 0.75).

Chapter 4. Slight variations in the performance are also possible due to the heuristic nature of the
search algorithm.

The difference in the constraint values for which the optimal structural and labeled accuracy is
achieved suggests another experiment which has the purpose to find the optimal combination of
both. The results in Table 6.2 show that a slight improvement of the labeled accuracy to 91.8%
is possible if the structural constraints are left at 0.75 and the label constraint weight is changed
to 0.9 whereby the optimal structural accuracy value of 91.1% is preserved. In fact, the number
of correctly analyzed edges is even greater than in the previous experiments with the same con-
straint values achieved: for 5 more edges the correct regent is found (15538 vs. 15533) and 13
more get a correct label (15326 vs. 15313).

Best solutions are also paid off with time reduction. Both 0.75-weight experiment in Table 6.1 and
0.9-weight experiment in Table 6.2 have spent the least time to find the solution parse among all
the alternative experiments referenced in the corresponding table.

With punctuation, % Without punctuation, %

Sentence length Instances | structural labeled | structural labeled
1-10 340 96.0 93.5 95.1 923
11-20 323 941 928 932 917
21-30 229 93.1 92.0 920 90.8
31-40 76 91.0 90.0 89.5 883
> 40 32 90.3 89.1 88.6 87.3
overall 1000 93.1 918 920 90.5

Table 6.3: Dependency on the sentence length (MST as predictor for WCDG, real POS tagger,
constraint weights 0.75/0.90).

A better reliability of the MSTParser as a predictor than that of the shift-reduce parser is also
reflected in the determined constraint values. With the shift-reduce predictor, the optimal per-
formance was achieved when the corresponding constraints were set to a greater value of 0.9.
Besides, the difference in the constraint weights for the regent vs. that for the label determined
for the MST predictor confirms the previously made assumption about the difference in the relia-
bility of these two types of information provided by it.

59

Chapter 6 MSTParser as Predictor for WCDG

The details about the values for the structural and parsing accuracy for the best combined experi-
ment are summarized in Table 6.3. It also shows that even under the exclusion of the punctuation
the structural accuracy is well over 90 percent and the labeled accuracy steps over the 90 percent
boundary, too.

6.2 Results Analysis

The performance of the combined experiment is well above the values that each of the participat-
ing parsers could reach alone. This section will outline the main cases in which the synergy has
brought good improvements and in which probably not.

In the absolute figures, the output of the MSTParser has 1509 errors of which 902 are fixed by
WCDG. While fixing, it adds 542 of its own errors, so that the result still has 1149 errors. There
are only 220 different constraints (by name, not by amount of edges) violated by the output of
WCDG and all hard conflicts are resolved from the viewpoint of WCDG. This is how the top of
the list looks like now (compare to Table 5.13):

fragment (0.05) 124
isolated subordinate clause (0.4) 9
noun as ethic dative (0.4) 6
absent conjunction (0.2) 6
number of subject (0.1) 6
category of co-subordination (0.1) 5
isolated relative clause 0.1) 4
case of DET-object (0.19) 4
parenthesis around object 0.3) 4
shortened subordinate clause (0.4) 3
OBJI without zu (0.1) 3
absent antecedent 0.1) 3

This does not in any case mean that there are no errors left in the output, even the constraints with
the weight of 0.1 are rather prohibitive and identify most probable cases of errors. But those cases
that were explicitly forbidden by the grammar (see Table 5.13) have been fixed, at least a solution
was found that the grammar allows, although in some cases not the correct one.

Thus, errors in sentences 18602 and 18718 shown in Figures 5.2 and 5.3 respectively that concern
double verb compliments and GMOD without genitive have been correctly fixed. But, for example,
an attempt to deprive sentence 18700 (Figure 5.4) of a second subject has chosen the wrong sub-
ject to remove: it changed the previously correct SUBJC to NEB so that EXPL was never identified
and remained as a subject. The relative clause in sentence 18904 (Figure 5.5 (A1)) has been iden-
tified correctly (but incorrectly attached in the part of the sentence that is not shown). Changing
OBJI for NEB as suggested by the constraints in sentence 18672 (Figure 5.5 (B1)) has worked quite
properly. The projectivity issue in sentence 18649 (Figure 5.5 (C1)) has been removed, but the
attachment difficulty remained: thus, “Angst” and not “Vorwurf” erroneously became the regent
of “wollen” although the edge has been assigned an OBJI correctly, only “Wohnungszwangsbe-
wirtschaftung” has been misattached to “Vorwurf” with an APP label at the edge.

The values of the per label accuracy of WCDG, the MSTParser and both combined (all with the
same POS tagger whereas all the other statistical enhancements of WCDG were not working)

60

Chapter 6 MSTParser as Predictor for WCDG

Gold, WCDG (POS) MSTParser (POS) WCDG (POS + MST)

Label (items) | str. pr. lab. rec. | str. pr. lab. rec. | str. pr. lab. rec.
DET 2015 98.4 993 98.7 99.5 99.3 99.5
PN 1723 974 974 98.0 98.0 98.0 98.7
PP 1697 67.6 98.1 783 974 80.1 98.5
ADV 1234 76.6 947 794 954 822 972
SuBJ 1210 94.0 90.9 91.3 86.4 95.8 94.0
ATTR 1156 952 95.8 97.7 982 98.3 984
s 1126 89.2 90.1 89.3 90.5 90.5 91.0
AUX 635 95.9 94.2 98.6 97.8 98.7 97.6
OBJA 604 87.9 83.9 83.8 725 925 887
APP 470 85.1 88.5 88.9 90.9 90.9 94.0
KON 436 789 88.1 789 88.3 86.0 89.2
cJ 430 85.6 86.5 90.9 914 93.0 93.5
GMOD 354 90.7 90.7 89.0 85.3 96.3 95.8
KONJ 185 88.6 91.9 919 95.7 951 95.7
PRED 144 90.3 75.0 854 60.4 91.7 764
NEB 122 68.9 82.8 73.0 66.4 79.5 90.2
REL 122 64.8 779 59.0 77.0 68.9 86.9
OBJD 88 92.0 864 76.1 205 89.8 85.2
PART 87 96.6 98.8 96.6 96.6 96.6 96.6
KOM 86 779 93.0 79.1 988 814 96.5
AVZ 85 | 100.0 953 98.8 929 100.0 94.1
OBJI 57 912 947 82.5 86.0 82.5 86.0
OBJP 53 79.2 66.0 943 321 943 83.0
OBJC 53 73.6 73.6 56.6 37.7 62.3 60.4
ZEIT 50 76.0 86.0 780 66.0 82.0 80.0
SUBJC 36 83.3 69.4 944 389 944 778
PAR 23 435 435 87 0.0 39.1 348
GRAD 16 50.0 43.8 81.2 625 81.2 75.0
ETH 15 86.7 86.7 733 133 93.3 933
EXPL 14 | 100.0 50.0 100.0 429 100.0 78.6

Table 6.4: Per label accuracy in comparison. Structural precision (str. pr.) vs. label recall (lab.
rec.).

are shown in comparison in Table 6.4. The most typical result suggested by this table is that the
performance in the combined experiment reaches a higher level than in each of the parsers alone.
Especially large difference between the label recall WCDG could reach alone and that became

61

Chapter 6 MSTParser as Predictor for WCDG

possible with the predictor is observed for APP, CJ, NEB, REL and OBJD; the same is true for the
structural precision of PP and NEB.

In this respect, the result about the increase of the structural precision of the PP-attachment
seems interesting as the MSTParser attaches 79.3 percent of PPs correctly which is even more
than WCDG combined with the PP-attacher that achieves 78.7 percent structural precision for PP
edges. (Cf.: if MSTParser is trained on NEGRA itself it achieves an even greater performance of
80.4%). This result is not very surprising. As the MSTParser is itself a statistical parser trained on
a full corpus there seem to be no reasons why it should deal PPs worse that a PP-attacher that has
been trained on restricted four-tuples input.

As for the errors in the output of the MSTParser that are most often corrected in the hybrid experi-
ment, this happens for both the structural precision and label recall of the most verb compliments,
such as OBJA, OBJD, PRED, OBJC, or for such subordinate clauses like NEB and REL.

GMOD is an interesting case: structural precision and label recall increase for it by around 6%
although the MSTParser has predicted it correctly quite more seldom than WCDG alone (the
label recall of the MSTParser for GMOD was over 5% below that of WCDG).

The cases in which WCDG would perform worse with the predictor than its predictor alone can
be hardly found. The only example of a very slight decline is the label recall of KOM.

Still, one may observe many cases in which the predictor had a negative influence on the per-
formance of WCDG, such as for different kinds of objects (OBJD, OBJC and OBJI) and PAR. For
all, the result of the MSTParser was below that of WCDG with no other enhancements with the
exception of the POS tagger. Same can be said about the labeled accuracy for AVZ, PART and
ZEIT. This worsening effect can be attributed to the lower values of the WCDG constraints for
the corresponding labels and edges than for the MST predictor. Thus, the search could not find a
decision scoring better than that when the MST prediction has been followed.

One area where the synergy of both approaches was not so successful is that of non-projectivity.
The WCDG grammar specially includes hard constraints for the violations of non-projectivity so
that the search algorithm does not lose its time in vain on non-projective paths (and these would
present a substantial increase to the number of paths).

Non-projective edges Non-projective sentences
Algorithm recall precision recall precision
WCDG (POS) 377 (37%) | 138 (53%) || 178 (51%) | 91 (63%)
MSTParser (POS) 413 (23%) | 94 (36%) || 182 (35%) | 64 (44%)
WCDG (POS + MST) | 289 (48%) | 139 (53%) | 145 (61%) | 89 (61%)
WCDG (POS + SR) 304 (41%) | 123 (47%) | 140 (57%) | 80 (55%)
Gold 261 (100%) 145 (100%)

Table 6.5: Precision and recall of the non-projective edges for different parsing runs.

Table 6.5 shows the same measures of non-projective edges and sentences precision and recall
as in the previous chapter. The experiment WCDG (POS + SR) shows the values of the WCDG
experiment with the shift-reduce predictor for comparison. The table makes clear that WCDG

62

Chapter 6 MSTParser as Predictor for WCDG

Non-projective sentences Projective sentences

Algorithm structural labeled structural labeled
WCDG (POS) 87.2 85.9 90.2 88.5
MSTParser (POS) 88.2 85.7 91.7 88.7
WCDG (POS + MST) 91.3 90.0 93.6 924
WCDG (POS + SR) 88.7 874 922 90.6
Gold 261 (100%) 145 (100%)

Table 6.6: Structural and labeled accuracy for different parsing runs for non-projective vs. pro-
jective sentences.

using only the POS tagger is preciser than the MSTParser finding the cases of non-projectivity.
Although the comparison of the overall structural and labeled accuracy on non-projective vs.
projective sentences that is generally done to evaluate the performance of the parser on the non-
projective sentences speaks clearly for the combination of the two (on the non-projective sentences
the accuracy increases by 4% percent over that of WCDG and by 3% over that of the MSTParser),
the absolute number of correctly identified non-projective edge pairs increases only by one, and
of the correctly identified sentences with non-projectivity even reduces by 2. Still, in comparison
to the accuracy improvements on the projective sentences that is equal 2 and 3 in the respective
cases, the benefits for parsing non-projective sentences with the combination of the two parsers
becomes obvious.

Not the same non-projective sentence or edges of the WCDG (POS) experiment are present in the
result of the WCDG (POS + MST), but while a quarter of new non-projectivity cases is added to
the non-projective set, around the same number of cases resolved without the external predictor
is lost.

In any case, the overall result is better than when the shift-reduce parser is used as a predictor. For
the WCDG (POS + SR) experiment the number of identified non-projective sentences is reduced
by 11 and the number of correctly identified non-projective edge pairs is reduced by 15. The
overall accuracy on the non-projective sentences (Table 6.6) is increased only slightly when the
shift-reduce parser is used as a predictor in comparison to the WCDG (POS) experiment, both
structural and labeled accuracy increase by 1.5%.

6.3 Combining Different Predictors

At last, the MST predictor was experimentally evaluated in combination with other predictors
available in WCDG. The results of the experiments are shown in Table 6.7. Every combination
of the MST with other predictors (first four experiments) improves the accuracy further by addi-
tional tenths of a percent. In combination with the supertagger, the increase is the highest and
equals 0.4%. In the previous experiments in which different predictors were combined, the su-
pertagger also brought the highest gains.

The accuracy reaches its maximum at 93.9%/92.6% (if finer comparison about the absolute num-
ber of the correct edges and labels is done) when all the available predictors of WCDG excluding

63

Chapter 6 MSTParser as Predictor for WCDG

Correct (of 16687) Accuracy, %

Experiment | head label structural labeled | Time
PP + MST | 15540 15331 931 919 178.10
CP + MST | 15549 15335 932 919 169.97
SR + MST | 15569 15341 93.3 919 190.49
ST + MST | 15598 15381 93.5 922 291.56
CP + SR + MST | 15576 15350 93.3 92.0 203.19
CP + ST + MST | 15618 15402 93.6 923 272.91
ST + SR + MST | 15658 15448 93.8 92.6 316.27
PP+ CP + ST + MST | 15632 15413 93.7 924 294.86
PP + ST + SR + MST | 15657 15443 93.8 925 316.46
CP + ST + SR + MST | 15664 15454 93.9 92.6 309.14
PP + CP + ST + SR+ MST | 15663 15451 939 92.6 311.59

Table 6.7: Combinations of predictors.

the PP-attacher are involved: the chunker, the supertagger as well as the shift-reduce and MST
predictors. Unforunately, the PP-attacher brings accuracy reductions in those cases when it is
working parallel to the shift-reduce predictor. This effect has already been observed in the exper-
iments that combined the two alone. In the experiment in which the MST was combined with
the PP-attacher, the increase of the performance was also below a tenth of a percent. The possible
reasons why the use of an additional information source does not improve the performance in
this case may be the disadvantages of the PP-attacher compared to a full parser that were already
outlined in the previous section.

6.4 Summary

The experiments that were described in this chapter and the analysis done have proved that inte-
grating the MSTParser in WCDG as a full predictor is beneficial for both parsers. Since they take
their decisions based on completely different sources of knowledge, combining both helps avoid
many mistakes each of the parsers would do alone as well as find solutions in situations in which
every of them has been unable to do it. Moreover, the accuracy grows to 93.1%/92.9%. These
accuracy values are greater than any previous parsing experiments on the used NEGRA test set
could achieve.

Still, the expected benefits for the non-projective sentences have not yet been observed to the
full extent. The precision of the combined system to find non-projective sentences and edges
remained limited by the value that WCDG could achieve alone. While the MSTParser in many
cases predicts non-projectivity correctly — although this amount could be sufficiently greater for
an external predictor — WCDG is seldom capable of accepting this external evidence. On the
contrary, WCDG often accepts an incorrect projective solution of the predictor instead of relying
on its own cues. In its interaction with external predictors WCDG should typically decide about
the alternatives. The difference for the described case of non-projectivity disambiguation is that

64

Chapter 6 MSTParser as Predictor for WCDG

the existing framework apparently does not allow to take decisions about non-projectivity based
on various sources of knowledge. Whether the reasons are incorrect relations between different
constraint weights that control the decisions made about non-projectivity or whether this is a
grave lack of the system that is a topic of separate research. However, it should be mentioned
that the accuracy achieved on the non-projective sentences has improved in general when all the
edges and not only non-projective ones are considered (but so did the accuracy on the projective
sentences, t0o).

65

Chapter 7

Concluding Remarks

Tempus fugit (time flies)
Ovid

7.1 Summary

This work has one more time showed that hybrid parsing methods outperform parsers built ac-
cording to only one parsing paradigm. In this work, a combination of two different sources of
knowledge was investigated, one that is coming from a rule-based system and the other that is
based on a novel statistical solution in combination with maximum spanning tree parsing algo-
rithms. Weighted Constraint Dependency Grammar presented in Chapter 4 is a system of the
first type that allows for efficient integration of external sources of knowledge due to its flexible
constraint grammar.

The external predictor the integration of which into WCDG has been investigated in Chapter 6, is
a dependency parser, the MSTParser, developed by R. McDonald. The reasons for the efficiency
of the MSTParser lie in the successful combination of online learning explored in Chapter 2 and
maximum spanning tree search as a solution method for the parsing problem that allows to for-
mulate efficient algorithms for both projective and non-projective cases that were presented in
Chapter 3.

The high accuracy, the MSTParser achieved previously on German data, has been confirmed on
the data annotated according to the internal guidelines of WCDG. The results of the experiments
have been reported in Chapter 5. The errors that the parser makes on German data have been
systematized and analyzed. An important role during this analysis was played by the WCDG
system that provides comfortable options to analyze output of external parsing solutions.

The integration of the MSTParser into WCDG has improved the parsing results previously achiev-
able by each of the parsers alone and reached 93.1% structural and 91.8% labeled accuracy. Both
types of accuracy have improved by further 0.8% to 93.9%/92.6% after the MSTParser was used
in combination with other external predictors of WCDG.

The main experiment results are presented Table 7.1 that shows them both with and without
punctuation. Table 7.1 (A) shows the experimental results obtained with a real POS tagger that
were reported in Chapters 5 and 6 in comparison to the previous WCDG result under similar

66

Chapter 7 Concluding Remarks

conditions. Table 7.1 (B) summarizes the results of similar experiments in ideal conditions, i.e.,
when the POS tags from the annotation and not a real POS tagger is used. In this case, the accuracy
increases further to 94.2%/93.1%.

With punctuation, % Without punctuation, %

Experiment Components | structural labeled | structural labeled
(A) 1 WCDG (POS only) 89.6 88.0 87.8 86.0

2 MSTParser 91.0 88.0 89.5 86.0

3 WCDG + MST 93.1 91.8 92.0 90.5

4 WCDG + all 939 92.6 929 914
(B) 5 WCDG (POS only) 904 89.1 88.9 873

6 MSTParser 919 893 90.5 875

7 WCDG + MST 93.8 925 929 913

8 WCDG + five 942 93.1 93.3 92.0

Table 7.1: Overview of the main results with and without punctuation. (A) with a real POS
tagger; (B) with tagging from the gold standard.

A special emphasis during the analysis of the results has been made on exploring the benefits of
parsing non-projective sentences with an external predictor as this was the first time a predictor
has been used that allows to parse non-projective input.

7.2 Outlook

Two perspectives on further research can be pointed out. One deals with the improvements of
the MSTParser and the other with its integration into WCDG.

The analysis of the errors that the MSTParser does on German data that was carried out in Chap-
ter 5 can be used as a basis for the German specific extensions of it. This area of further research
was already mentioned by the author in [McD06] who pointed out that the features the MSTParser
considers were tuned with the help of English data and new features would be helpful for other
languages, especially if these languages, like German, have a more flexible word order than En-
glish. For the simplification of this task, the MSTParser also provides an interface to add new
features.

On the other hand, it seems promising to use WCDG specially to fix the errors that occur in
the MSTParser output most often, such as verb compliments confusion or projectivity violations.
Such corrections would probably be possible on the restricted grammar variant having much less
constraints than in the present constraint collection.

Although the evaluation has shown that the MSTParser is a very promising predictor for WCDG
to have, the integration of it into WCDG for broad coverage tests was prevented by the memory
usage issues of the MSTParser. It needs at least 1800 GB memory for the Java heap and this is
something not every computer has at disposal nowadays. Presently, the whole parsing model is
stored in one file and even to parse only one sentence, the MSTParser still loads the whole model,

67

Chapter 7 Concluding Remarks

i.e.,, hundreds of megabytes, into operational memory. The memory usage of the MSTParser
could be surely reduced much if it separated the parsing model among many files and the search
management for the file where the features needed at the moment lie was added. Most of the
features saved in the model are lexicalized featured that store information about a given word and
so they do not have to be loaded for every sentence. Besides, the number of the POS features for
a given language is restricted and they do not take so much place in the model as the lexicalized
features. Having a model partitioned between many files would make it necessary to load only
the files important for the given sentence and ignore the rest. This model management could
also be easily enhanced with a simple lexicon storing, e.g., the base forms of the words on the
presence of which the MSTParser is so dependent as it was stated in the experiments. Surely,
all these changes would come at the expense of the time lost for searching the necessary files —
probably this suggestion should only refer to the testing phase as time losses during training
are not desired since it already lasts rather long — but it would allow to deploy the parser at
more computer systems, besides, the proposed changes would also enable the parser to use more
training data, to get larger parsing models and integrate different data sources in one model.

Although the algorithm of the MSTParser works on non-projective data, in the combination with
WCDG the gains were only perceived for the non-projective sentences on the whole, but not in
the number of the recognized non-projective edges. The reasons why this improvement was not
achieved should be investigated.

Now that at least two full predictors, the shift-reduce predictor and the MST are available for
WCDG and their strengths and weaknesses have been investigated in detail one should attempt
to formulate more precise rules for WCDG that would allow to choose the predictor whose input
is more reliable in the concrete context. An attempt to differentiate the weights of the predictions
according to the label of the edge with the MST predictor alone has unfortunately reduced and not
improved the performance. A possible reason is that for no label does the MST achieve the abso-
lute performance and such rules are better formulated not absolutely prohibitively, but relative to
some other information sources so that the heuristic search is guided about other alternatives.

68

Appendix A

Some Mathematical Definitions

The definitions A.1 to A.5 in this appendix are drawn from [SS02].

Definition A.1. (Real vector space) A set H is called a vector space (or linear space) over R if addition
and scalar multiplication are defined, and satisfy for all z, z’, " € H,and X\,)’ € R

z+ (2 +2")=(x+ ') + ",
z+ax' =x' +xcH,
OcH,z+0==x,
—zeH,—xz+x=0,
Ax € H,

lx =,

AN)zx) = (AN,

Mz + ') =z + A\,

A+ XNz =z + N

Definition A.2. (Linear combination of vectors) Given a set of vectors x; € H and a set of scalars
Ai € R, then the linear combination of those vectors with those scalars as coefficients is

m
i=1

Definition A.3. (Basis) A set of vectors x; that allows us to uniquely write each element of H as a
linear combination is called a basis of H. For the uniqueness to hold, the vectors have to be linearly
independent, i.e., none of the vectors x; can be written as a linear combinations of the other vectors
from the set. E.g., the canonical basis of RY is {ei,...,en}, whereforj =1,..., N, lej]i = d;5. And
d;; is the Kronecker symbol defined as

1 ifi=j
0ij = .
0 otherwise.

Definition A.4. (Inner product) An inner product (dot product) on a vector space H is a symmetric
bilinear function

() HxH—-R (z,2)— (z,2),

that is strictly positive definite, i. e., it has the property that for all x € H, (x, ") > 0 with equality
only for ¢ = 0.

69

Appendix A Some Mathematical Definitions

Definition A.5. (Norm) Any dot product defines the corresponding norm via

]l == v/ (z, ®).

Definition A.6. (Signum function) The signum function is defined as

-1 :z<0,
sgn(x) = 0 :x=0,
1 :z>0.

Definition A.7. (Infimum) The infimum, or the greatest lower bound, of a subset of some set is the
greatest element, not necessarily in the subset, that is less than or equal to all other elements of the
subset. In analysis, the infimum of a subset S of real numbers is denoted by inf(.S) and is defined
to be the biggest real number that is smaller than or equal to every number in S. It is defined
that if no such number exists (because S is not bounded below), inf(S) = —oco and if S is empty,
inf(S) = oo.

Definition A.8. (Almost cyclic sequence) {i(v)}5%, is almost cyclicon I = {1,2,... . m}if i(v) € I
for all v > 0, and there exists an integer C' > m such that forall v > 0, I C {i(v +1),i(v + 2),...,
i(v+ C)} [CZ97].

Definition A.9. (Hamming loss) The Hamming loss is a standard loss function which measures the
number of places that the hypothesized output ¢’ differs from the true output y.

70

Appendix B

Optimization Theory Fundamentals

This appendix is based on [CST03, SS02].

Definition B.1. (Convex set) A set Q C R™ is called convex if, Vw, u € , and for any ¢ € (0, 1), the
point (w + (1 — O)u) € Q.

Definition B.2. (Convex function) A real-valued function f(w) is called convex for w € R", and for
any 0 € (0,1), if

f0w + (1= 0)u) < 0f(w) + (1 -0)f(u).
If a strict inequality holds, the function is said to be strictly convex.
Definition B.3. (Affine function) An affine function is one that can be expressed in the form
f(w) =Aw+b,

for some matrix A and vector b. Affine functions are convex.

o * i 1 Of(w™) _
Theorem B.1. (Fermat) A necessary condition for w* to be a minimum of f(w), f € C*,is =5~ = 0.

This condition, together with convexity of f, is also a sufficient condition.

Definition B.4. (Lagrangian function) Given an optimization problem with domain 2 C R",

minimize f(w), w € ()
subjectto g;(w) <0, i=1,...,k,
hi(w)=0, i1=1,...,m,
the Lagrangian function is defined as
k m
L(w, o, B) = f(w) + Y cigi(w) + Y Bihi(w) (B.1)
i=1 i=1
= f(w) + &’g(w) + B'h(w), (B.2)

where the coefficients «; and §; are called Lagrange multipliers.

Theorem B.2. (Lagrange) A necessary condition for a normal point w* to be a minimum of f(w) subject
toh;(w) =0,i=1,...,m, with f,h; € C',is

oLw.B)
ow ’
oL B)
19J] 7

for some values 3*. The above conditions are also sufficient provided that L(w, 3") is a convex function

of w.

71

Appendix B Optimization Theory Fundamentals

Definition B.5. (Lagrangian dual problem) The Lagrangian dual problem of the primal problem of
Definition 2.2 in Section 2.1.2 is the following problem:

maximize 6(«, 3),

subjectto o >0,
where 0(a, B) = infecq L(w, a, B).
Theorem B.3. (Kuhn-Tucker) Given an optimization problem with convex domain Q@ C R",

minimize f(w), w €
subject o g;(w) < ;

with f € C* convex and g;, h; affine, necessary and sufficient conditions for a normal point w* to be an
optimum are the existence of a*, 3% such that

IL(w*,a”, B%)

ow =0,
OL(w*, a*, B%) I
)] ’
afgi(w*)=0,i=1,...,k,
gi(w*) <0,i=1,...,k,
af >0,i=1,...,k.

The third relation is known as Karush-Kuhn-Tucker (KKT) complimentary condition.

The solution point in the above theorems can be in one of two positions with respect to an in-
equality constraint, either in the interior of the feasible region, with the constraint inactive, or on
the boundary defined by that constraint with the constraint active. In the first case, the conditions
for the optimality for that constraint are given by Fermat’s theorem, so the «; need to be zero. In
the second case, one can use Lagrange’s theorem with a non-zero «;. So the KKT conditions say
that either a constraint is active, meaning g;(w*) = 0, or the corresponding multiplier satisfies
af = 0. This is summarized in the equation g;(w*)o} = 0.

72

Appendix C

MSTParser Resources

Here we show a concrete example of the feature rep-
resentation of an edge in a dependency tree. The tree
is given below and the edge of interest is the depen-
dency between the main verb /it and its argument
headed preposition with. We use simplified part-of-
speech tags for illustrative purposes only.

roat, BT
hit, V'
=
Jaohn, W ball, W with, P
the, D bat, N
the, D
f(hit,with)

Basic Features

p-word="hit”, p-pos="“V”, ¢c-word="with”, c-pos="P”
p-pos="“V”, ¢c-word="“with”, ¢-pos="P”
p-word="hit”, c-word="with”, c-pos=“P”
p-word="hit”, p-pos=“V”, ¢c-pos=“P”
p-word="hit”, p-pos=V”, c-word="with”
p-word="hit”, c-word="with”

p-pos="V7, ¢c-pos="P”

p-word="hit”, p-pos=-V”

c-word="with”, ¢-pos="P”

p-word="hit”

p-pos=<V”

c-word="with”

c-pos="P”

Extended Features

p-pos="“V”, b-pos=D”, ¢c-pos="P”

p-pos="“V”, b-pos=N”, ¢-pos="P”

p-pos="V7, p-pos+1="D”, c-pos-1="N7, c-pos="P”
p-pos="“V”, c-pos-1="N", ¢-pos=P”

p-pos="V”, p-pos+1="D", c-pos="P”

p-pos-1="N", p-pos="V”, ¢-pos-1="N", ¢-pos="P"

p-pos="V7, ¢c-pos-1="N", ¢c-pos="P”

p-pos-1="N", p-pos="V”, c-pos="P”

p-pos="V7, p-pos+1=-D", c-pos="P”, c-pos+1="D"”
p-pos="V”, ¢-pos="P”, c-pos+1="D"

p-pos="V”, p-pos+1="D", ¢-pos="P”

p-pos-1="N", p-pos="V”, ¢-pos="P”, ¢-pos+1="D"
p-pos="V”, ¢-pos="P”, c-pos+1="D"

p-pos-1="N7, p-pos="V7, c-pos="P”

Note that since 7zt and with are not longer than
5 characters we do not have any additional 5-
gram back-off features. If, however, the verb was
smashed, we could have the feature,

p-word:5=“smash”, c-word="“with”

along with other 5-gram back-off features.

All features are also conjoined with the direction
of attachment and the distance between the words.
So, in addition to the feature,

p-word="hit”, c-word="“with”
the system would also have the feature,
p-word="hit”, c-word=“with”, dir=R, dist=2

to indicate that the child with is to the right of the
parent Ait and that they are separated by 2 words.
Distances were calculated into buckets with thresh-
olds of 1, 2, 3, 4, 5 and 10.

Figure C.1: Feature example from [McDO06]. In this example, w;-pos+1 stays for w;1-pos.

73

Appendix C MSTParser Resources

(a)

(c)

Basic Bi-Gram Features

Basic Uni-Gram Features

x;-word, x;-pos
x;-word
2-pos (b)
xj-word, x;-pos
xj-word

X ;-pos

x;-word, x;-pos, x;-word, x;-pos
x;-pos, xj-word, x;-pos
x;-word, x;-word, z;-pos
x-word, 2;-pos, ;-pos

x;-word, x;-pos, xj-word
x;-word, x;-word

x;-PpOs, T ;-pos

In Between POS Features

Z;-Ppos, b-pos, z;-pos

Surrounding Word POS Features

Z;-PpOS, Li+1-POS, Tj—1-PpOS, T;-pOS
Z;—1-POS, Z;-poOS, L;—1-POS, X;-POS
X;-pOS, Ti4+1-pOS, T;-POS, T;41-PpOS
X;—1-PpOS, T;-poOS, T;-POS, X ;41-pOS

(d)

Second-Order Features

Z;-POS, Ti-POS, L ;-POS
ZR-POS, T;-POS
xp-word, z;-word
xp-word, z;-pos
Zp-pos, x;-word

Table C.1: Features used by the MSTParser (cf.: [McDO06]).

Features as f(i,7) in (a), (b), and (c) or f(i, k, j) in (d), where

x; — the head in the dependency relation

x; — the modifier in the dependency relation;

x;-word/-pos — the word /POS of the head in the dependency edge;

xj-word/-pos — the word /POS of the modifier;

x;4+1-pos — the POS of the word to the right of the head in the sentence;

x;—1-pos — the POS of the word to the left of the head;

xj41-pos — the POS of the word to the right of the modifier;

xj_1-pos — the POS of the word to the left of the modifier;

b-pos — the POS of the word between the head and modifier;

xp-word/-pos — the word /POS of the middle modifier (cf. Section 3.2).

74

Appendix C MSTParser Resources

o Edge Features: Word/pre-suffix/POS feature identity of the head and the modifier (suffix
length 2 and 3).
Same for the morphological feature identity (M).
Does the head and its modifier share a prefix/suffix? Attachment direction.
Is the modifier the first/last word in the sentence?
What morphological features do head and modifier have the same value for? (M)

e Sibling Feattures: Word/POS/pre-suffix feature identity of the modifiers left/right sib-
lings in the tree?
Same with the morphological feature identity (M).
Do any of the modifier siblings share its POS?

o Context Features: POS tag of each intervening word between head and modifier.
Do any of the words between the head and the modifier have a head other than the head?
Are any of teh words between the head and the modifier not descedent of the head?

e Non-Local Features: How many modifiers does the modifier have?
Is this the left/right-most modifier for the head?
Is this the first modifier to the left/right of the head?
What morphological features of the grandparent and the modifier have identical val-
ues?(M)

Figure C.2: Second-stage labeling features (cf.: [McDO06]). Features labeled with (M) are only
used if the data has extended morphological features.

75

Appendix C MSTParser Resources

Initialization: C[s][s][d][¢c] = 0.0 Vs,d,c
fork:1.n
fors:1.n
t=s+k
if ¢ > n then break

% First: create incomplete items
Cls][t][][0] = maxs<r<: (C[s][r][
Cls][t][=][0] = maxs<r<: (C[s][r][

L1
=
Q

% Second: create complete items

Cls][t][«][1] = maxs<r<; (C[s][r][«][1] + Cr][t][][0])
Cls][t][=][1] = maxs<r<; (C[s][r][=][0] + Cr][t][—=][1])
end for
end for

Figure C.3: Pseudo-code for bottom-up first-order Eisner parsing algorithm (from [McD06]).

Cls][t][d][c] is a dynamic programming table to store the score of the best subtree from
position s to ¢, with s < ¢. The direction d, d € {«—, —}, indicates whether the subtree
is gathering left or right dependents and if d =« then ¢ must be the head of the subtree
and if d =— then s is the head. The comlete value ¢, ¢ € {0, 1} means that the subtree is
complete and there are no more dependents if ¢ = 1, and the value ¢ = 0 means that it is
incomplete and needs to be completed.

Then, to find the best score for an incomplete left subtree C|s][t][«<—][0], one needs to
find the index s <r <t that gives the best score for joining two complete subtrees
Cls][r][—][1] and C[r + 1][t][«][1], the score of joining these two complete subtrees be-
ing the score of these subtrees plus the score of creating an edge from word z; to word .
Besides, it is guaranteed to be the score of the best subtree as by enumerating over all
values of r all possible combinations are considered. With a unique root at the left-hand
side of the sentence, the score of the best tree for the entire sentence is C[1][n][—][1].

76

Appendix C MSTParser Resources

Chu-Liu-Edmonds(G, s) Graph G = (V,E)
Edge weight function s: &/ — R

. Let M = {(z*,2) : v € V,2* = arg max_, s(z’,)}
. Let Gy = (V, M)

. If G has no cycles, then it is an MST: return G,
. Otherwise, find a cycle C' in Gy,

Let < G¢, ¢, ma >= contract(G, C, s)

. Let y = Chu-Liu-Edmonds(G¢, s)

NSO U A W N e

. Find vertex z € C
such that (¢, ¢) € y and ma(2/,¢c) =

. Find edge (2", z) € C

Qo

9. Find all edges (c,2"") € y

10. y =y U {(ma(c,z"),2"") }vic.ar)ecy
U CuU{(e,2)} —{(",2)}
11. Remove all vertices and edges in y containing ¢
12. Return y
contract(G = (V, E),C, s)
1. Let G¢ be the subgraph of G excluding nodes in C
2. Add anode c to G¢ representing cycle C
3. Forz e V—-C: Jpec(d’,z) € E
Add edge (¢, z) to G¢ with
ma(c, z) = arg max,, . (',)
' = ma(e, x)
s(e,x) = s, x)
4. Forz eV —-C: Jpecc(zr,2’) € E
Add edge (z, ¢) to G¢ with
ma(z,c) = arg max,, . [s(z,2') — s(a(z),2")]
' = ma(z,c)
s(z,¢) = [s(z,2') — s(a(a),2") + 5(C)]
where a(v) is the predecessor of v in C
and S(C) = Z?)EC S("’(”)a v)

5. Return < G¢, ¢, ma >

Figure C.4: Chu-Liu-Edmonds algorithm for finding maximum

directed graphs (from [McD06]).

77

spanning

trees

in

Appendix C MSTParser Resources

We illustrate here the application of the Chu-Liu- ;) this graph. Note that we need to keep track of
E.dmonds algorithm to dependency parsing on the he real endpoints of the edges into and out of Wis
simple examplex = J ?h” saw Mary. We aSSUME for reconstruction later. Running the algorithm, we
that we know w. The directed graph representation ..« find the best incoming edge to all words,

(., of sentence x is

K__\ 9 root” 40
root 10 -
/ d\ - 7 sauw ;30
9 20 squw 30 -7 e o \
\, / /\ \ I/J,c)hn/,//’ Mary
John‘_,go 0-__Mary \‘__/,’
&11 —
3 This is a tree and thus the MST of this graph. We

now need to go up a level and reconstruct the graph.
The first step of the algorithm is to find, for each The edge from w;, to Mary originally was from the
word saw, so weinclude that edge. Furthermore, the
edge from root to w;, represented a tree from roof to
saw to John, so we include all those edges to get the
—3g MST,

20 7 saw

/7 \ root

word, the highest scoring incoming edge

root

30
John . Mary ~ 10
Y
Sauw
-~ ~
If the result were a tree, it would have to be the 30 0.
John Mary

maximum spanning tree. However, in this case we
have a cycle, so we will contract it into a single node
and recalculate edge weights according to Figure 3.

This is obviously the MST for this graph.

root 40 9

-~
21
P A
-~ saw j 30
P -
L7 Wi -

- - .
r John .- Mary

\“’& 31 /

The new vertex w;, represents the contraction of
vertices John and saw. The edge from w;, to Mary
is 30 since that is the highest scoring edge from any
vertex in w;,. The edge from roof into wj, is set to
40 since this represents the score of the best span-
ning tree originating from root and including only
the vertices in w;,. The same leads to the edge
from Mary to w;,. The fundamental property of the
Chu-Liu-Edmonds algorithm is that a MST in this
graph can be transformed into an MST in the orig-
inal graph. Thus, we recursively call the algorithm

Figure C.5: Chu-Liu-Edmonds algorithm example (from [McDO06]).

78

Appendix C MSTParser Resources

Initialization: C|[s][s][d][¢c] = 0.0 Vs,d,c
fork:1.n
fors:1..n
t=s+k
if t > n then break

% Create Sibling Items
Cls][t][-][2] = maxs<r< {Cls][r][=][1] + Clr + 1 [E][][1]}

% First Case: head picks up first modifier
Cls][t][][0] = Cls][t = 1][=][1] + C[t = t)[][] + s(t, -, 5)
Cls][t][=]0] = Clsl[sl[=1[1] + Cls + [[][1] + 5(s,-,1))

% Second Case: head picks up a pair of modifiers (through a sibling item)
Cls|[t][][0] = max {C[s][t][][0], maxs<,<¢ {Cls][r][-][2] + Clr][¢][][0] + s(t, 7, 5)}}
Cls][t][=][0] = max{C[s][t][=][0), maxs<,<; {Cs][r][=][0] + Cr[A[][2] + s(s,m 1)}

% Ceate complete items

Cls][t][][1] = maxs<r<: {C[s][r][—][0] + C[r + 1][t][«][0] + s(¢, s)}
C[s][tl[=][1] = maxs<,r<¢ {C[s][r][=][0] + Clr + 1[][][0] + s(s,)}
end for
end for

Figure C.6: Pseudo-code for bottom-up second-order Eisner parsing algorithm (from [McDO06]).

Cls][t][d][c] is a dynamic programming table to store the score of the best subtree from
position s to positiont, s < t, with direction d and complete value c (see C.3). In the
second-order case, ¢ € {0,1,2} with ¢ = 1 to represent that a subtree is complete (has
no more dependents), ¢ = 0 to indicate an incomplete tree (that has to be completed),
and ¢ = 2 to mark sibling subtrees. As sibling subtrees have no inherent direction, it is
assumed that for ¢ = 2 d = null, represented by (—) in the listing.

79

Appendix C MSTParser Resources

2-order-non-proj-approx(x, s)
Sentence x = xq ... Ty, Tg = root
Weight function s : (4,k,j) — R

1. Lety = 2-order-proj(x, s)
2. while true

3. m=—oo,c=—1,p=-1

4. forj:1---n
5. fori:0---n
6. y' =yli —j]
7. if —tree(y’) or 3k : (i,k,j) € y continue
8. §=s(z,y’') — s(xz,y)
9. ifo >m
10. m=4dc=jp=1
11. end for
12. end for
13. ifm>0
14. y=ylp—
15. else return y

16. end while

Figure C.7: Second-order non-projective approximate algorithm (from [McD06]).

In line 1 of the above listing, y is set to the highest scoring second-order projective tree
that can be found with the Eisner algorithm (Figure C.6). The loop between lines 2 — 16
exits only when no further score improvement is possible. Within each iteration, the
single highest-scoring change in dependency graph of y that does not break the tree
constraint is searched for. The test tree(y) is true if and only if the dependency graph
y satisfies the tree constraint. The nested loop in lines 4 and 5 enumerates all (7, j) pairs
and line 6 sets y’ to the dependency graph identical to y except that z;’s head is z; instead
of what it was in y. Line 7 checks the validity of that change and line 8 computes the score
change for the new graph. If this change is greater than the previous best change, lines
9 — 10 record that a new tree was created. After considering all valid edge changes to the
tree, the algorithm checks that the new tree does have a higher score and if this is the
case, the change is saved and the loop is re-entered. Otherwise, the algorithm ends since
no single edge change can improve the score.

80

Appendix D

WCDG Resources

Label Function Label Function

<empty> used for punctuation OBJA2 second direct object

ADV adverbial modification OBJD indirect object

APP apposition OBJG genitive object

ATTR prenominal attribute OBJC clausal object

AUX auxiliary phrases OBJI infinitive object

AVZ split verb prefixes OBJP prepositional object

CcJ co-ordinated element PAR parenthetic matrix clause
DET determiner PART discontinuous morphemes
ETH ethical dative PN PP kernel

EXPL expletive pronoun PP prepositional phrase
GMOD possesive modifications PRED predicate

GRAD nominal degree expression REL relative clause

KOM comparison S main clause

KON co-ordinating conjunction SUBJ surface nominal subject
KONJ subordinating conjunction SUBJC subject clause

NEB modal subclause VOK vocative

NP2 stranded NP in co-ordination | ZEIT nominal time expression
OBJA direct object

Table D.1: Dependency labels used in the WCDG grammar of German.

81

Appendix D WCDG Resources

A := the set of level of analysis

W := the set of all lexical readings of words in the sentence

L := the set defined dependency labels

E :=AxW x W x L = the base of set dependency edges

D := A x W = the set of domains d, ,, of all constraint variables
B := @ = the best analysis found

C := @ = the current analysis

{ Create the search space }
forec I/

if eval(e) > 0

then d, ., := dg . U {e}

{ Build initial analysis }
for dia,w) € D
eg = arg maxeeq, , score(C U {e})
cC.=CuU {60}
B:=C
T := @ = tabu set of conflicts removed so far
U := @ = set of removable conflicts
i := the penalty threshhold above which conflicts are ignored
n:=20

{ Remove conflicts }
while 3¢ € eval(C)\U : penalty(c) > i
and no interruption occurred

{ Determine which conflict to resolve }

Cn = arg MaX .ceval(c)\v pPenalty(c)
T =TU{c}

{ Find the best resolution set }

Ry, := arg maxpe x domains(c,,) Score(replace(C, R))
where replace(C, R) does not cause any c € T
and |[R\C| <2

if no R,, can be found
{ Consider ¢; unremovable }
n:=0,C:=B,T:=2,U:=UU{c}
else
{ Take a step }
n:=n-+1,C = replace(C, R;)
if score(C') > score(B)
n:=0,B:=C,T:=2,U :=Uneval(C)
return B

Figure D.1: Basic algorithm for heuristic transformational search (from [Fot06]).

82

Appendix E

Details of Experiment Results

load MST.cdg

set timelimit 600000
set cache off

set debug on

set edges off

set profile on

set progress on

set showdeleted on
set usenonspec off

newnet SENTENCE

frobbing method=dynamic execute=q

renewnet

frobbing method=combined execute=v, zSENTENCE.mst, g
quit

Figure E.1: A sample WCDG driver file.

83

Appendix E Details of Experiment Results

Accuracy, %

Corpus Length Instances structural labeled
Grundgesetz: 1-10 409 97.0 93.8
11-20 327 939 90.5
21-30 221 91.8 89.3
31-40 95 89.4 86.8
> 40 102 86.7 84.0
overall 18.4 1,154 91.1 88.2
Genesis: 1-10 1106 96.5 90.8
11-20 873 925 87.3
21-30 456 90.6 85.9
31-40 169 89.2 845
> 40 105 88.4 83.9
overall 15.9 2,709 91.7 86.7
wyvern: 1-10 3905 953 912
11-20 3966 93.6 89.2
21-30 1299 91.7 875
31-40 295 89.8 85.0
> 40 82 88.3 84.4
overall 13.8 9,547 93.0 88.7
EU: 1-10 763 98.7 97.1
11-20 606 95.0 927
21-30 462 93.0 90.7
31-40 330 91.6 89.0
> 40 403 89.5 87.3
overall 23.9 2,564 92.0 89.7
azure: 1-10 4186 96.1 917
11-20 4487 93.8 894
21-30 1580 920 878
31-40 371 90.1 86.0
> 40 82 88.2 844
overall 14.1 10,706 93.3 89.0

Table E.1: Testing the heiseticker model on other corpora (including punctuation).

84

Appendix E Details of Experiment Results

Accuracy, %

Corpus Length Instances structural labeled
Grundgesetz: 1-10 409 96.6 929
11-20 327 932 895
21-30 221 91.0 882
31-40 95 88.3 854
> 40 102 852 823
overall 18.4 1,154 90.0 86.9
Genesis: 1-10 1106 95.8 88.8
11-20 873 91.3 852
21-30 456 89.1 837
31-40 169 874 82.1
> 40 105 86.6 814
overall 15.9 2,709 90.3 845
wyvern: 1-10 3905 93.7 88.0
11-20 3966 921 86.6
21-30 1299 90.1 85.1
31-40 295 879 822
> 40 82 86.0 81.3
overall 13.8 9,547 914 86.0
EU: 1-10 763 98.5 96.7
11-20 606 945 92.0
21-30 462 924 899
31-40 330 90.8 88.0
> 40 403 88.5 86.1
overall 23.9 2,564 91.2 88.7
azure: 1-10 4186 94.7 88.9
11-20 4487 924 87.1
21-30 1580 90.5 85.6
31-40 371 88.3 834
> 40 82 86.1 81.6
overall 14.1 10,706 91.8 86.5

Table E.2: Testing the heiseticker model on other corpora (excluding punctuation).

85

Appendix E Details of Experiment Results

Accuracy, %

Corpus Length Instances structural labeled
Grundgesetz: 1-10 409 96.9 935
11-20 327 935 904
21-30 221 914 888
31-40 95 89.3 87.0
> 40 102 86.0 83.7
overall 18.4 1,154 90.7 88.0
Genesis: 1-10 1106 969 91.8
11-20 873 926 87.7
21-30 456 90.7 86.2
31-40 169 89.7 85.1
> 40 105 88.9 84.1
overall 15.9 2,709 920 872
wyvern: 1-10 3905 954 918
11-20 3966 93.4 894
21-30 1299 91.6 87.5
31-40 295 89.3 8438
> 40 82 87.6 834
overall 13.8 9,547 929 889
EU: 1-10 763 947 93.2
11-20 606 943 92.0
21-30 462 923 90.0
31-40 330 91.0 88.7
> 40 403 88.3 86.4
overall 239 2,564 90.9 88.8
azure: 1-10 4186 96.1 921
11-20 4487 93.7 89.6
21-30 1580 91.7 87.6
31-40 371 90.5 86.5
> 40 82 877 84.1
overall 14.1 10,706 93.2 89.2

Table E.3: Testing the NEGRA model on other corpora (including punctuation).

86

Appendix E Details of Experiment Results

Accuracy, %

Corpus Length Instances structural labeled
Grundgesetz: 1-10 409 96.5 92.6
11-20 327 928 894
21-30 221 90.4 87.6
31-40 95 88.2 85.6
> 40 102 84.5 82.0
overall 18.4 1,154 89.6 86.7
Genesis: 1-10 1106 96.2 90.0
11-20 873 914 85.6
21-30 456 89.1 84.0
31-40 169 88.0 827
> 40 105 872 817
overall 15.9 2,709 90.6 85.0
wyvern: 1-10 3905 93.7 88.8
11-20 3966 92.0 87.0
21-30 1299 90.0 85.1
31-40 295 87.3 819
> 40 82 85.2 80.2
overall 13.8 9,547 91.2 86.2
EU: 1-10 763 940 923
11-20 606 93.7 912
21-30 462 916 89.1
31-40 330 90.2 87.6
> 40 403 87.1 85.0
overall 23.9 2,564 90.0 87.7
azure: 1-10 4186 947 894
11-20 4487 924 874
21-30 1580 90.2 853
31-40 371 88.9 84.1
> 40 82 85.5 81.2
overall 14.1 10,706 91.7 86.7

Table E.4: Testing the NEGRA model on other corpora (excluding punctuation).

87

Bibliography

[Abn96]

[Als96]

[BDH*02]

[Blo62]

[BMDKO06]

[Bra00]

[BVZ98]

[CCO04]

[Chob55]

[CL65]

[Col96]

[Col02]

ABNEY, S.: Statistical Methods and Linguistics. In: J. Klavans and P. Resnik, editors,
The Balancing Art: Combining Symbolic Approaches to Language, 1996

ALSHAWI, H.: Head automata for speech translation. In: Proceedings of the fourth
International Conference on Spoken Language Processing, 1996

BRANTS, S. ; DIPPER, S. ; HANSEN, S. ; LEZIUS, W. ; SMITH, G.: The TIGER treebank.
In: Proceedings of the First Workshop on Treebanks and Linguistic Theories (TLT), 2002

BLOCK, H. D.: The Perceptron: A Model of Brain Functioning. I. In: Reviews of Modern
Physics (1962)

BUCHHOLZ, S. ; MARSL E. ; DUBEY, A. ; KRYMOLOWSKI, Y.: CoNLL-X shared task on
multilingual dependency parsing. In: Proceedings of the Conference on Computational
Natural Language Learning (CoNLL), 2006

BRANTS, T.: TnT — A Statistical Part-of-Speech Tagger. In: Proceedings of the Sixth
Applied Natural Language Processing Conference (ANLP-2000), 2000

BOYKOV, Y. ; VEKSLER, O. ; ZABIH, R.: Markov random fields with efficient approxi-
mations. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 1998

CLARK, S. ; CURRAN, J. R.: The Importance of Supertagging for Wide-Coverage CCG
Parsing. In: Proceedings of the 20th International Conference on Computational Linguistics,
2004

CHOMSKY, N.: Syntactic Structures. Mouton, 1955

CHU, Y. J.; L1y, T. H.: On the shortest arborescence of a directed graph. In: Science
Sinica (1965)

COLLINS, M.: A new statistical parser based on bigram lexical dependencies. In:
Proceedings of the 34th Annual Meeting of the Association for Computational Linguistics
(ACL), 1996

COLLINS, M.: Discriminative training methods for hidden Markov models: Theory
and experiments with perceptron algorithms. In: Proceedings of the Empirical Methods
in Natural Language Processing (EMINLP), 2002

88

Bibliography

[CRO4]

[Cra04]

[CST03]

[CZ97]

[D’E59]

[DFMO04]

[DHS00]

[Edm67]

[Eis96]

[FBMO6]

[FDMO5]

[FHS'05]

[Fis52]

[FMO06a]

[FMO6b]

COLLINS, M. ; ROARK, B.: Incremental parsing with the perceptron algorithm. In:
Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL),
2004

CRAMMER, Y.: Online Learning of Complex Categorial Problems, Hebrew University,
Diss., 2004

CHRISTIANINI, N. ; SHAWE-TAYLOR, J.: An Introduction to Support Vector Machines and
other kernel-based methods. Cambridge University Press, 2003

CENSOR, Y. ; ZENIOS, S.: Parallel Optimization: Theory, Algorithms, and Applications.
Oxford University Press, 1997

D’EsoPO, D. A.: A convex programming procedure. In: Naval Research Logistics
Quarterly (1959)

DAUM, M. ; FOTH, K. ; MENZEL, W.: Automatic transformation of phrase structure
treebanks to dependency trees. In: Proceedings of the 4th International Conference on
Language Resources and Evaluation, 2004

Dupa, R. O. ; HART, PE. ; STORK, D. G.: Pattern Classification. 2nd edition. Wiley,
2000

EDMONDS, J.: Optimum branchings. In: Journal of Research of the National Bureau of
Standards (1967)

EISNER, J.: Three new probabilistic models for dependency parsing: An exploration.
In: Proceedings of the International Conference on Computational Linguistics (COLING),
1996

FortH, K. ; By, T. ; MENZEL, W.: Guiding a constraint dependency parser with su-
pertags. In: Proceedings of the 21st International Conference on Computational Linguistics,
2006

FoTtH, K. ; DAUM, M. ; MENZEL, W.: Parsing unrestricted German text with defeasible
constraints. In: H. Christiansen, P. R. Skadhauge, and J. Villadsen, editors, Constraint
Solving and Language Processing, 2005

FoTH, K. ; HAMERICH, S. ; SCHRODER, . ; SCHULZ, M. ; By, T.: [X]CDG User Guide.
Hamburg University, 2005

FISHER, R.: Contributions to Mathematical Statistics. Wiley, 1952

FoTH, K. ; MENZEL, W.: The benefit of stochastic PP-attachment to a rule-based
parser. In: Proceedings of the EACL Workshop, Robust Methods in Analysis of Natural
Language Data, 2006

FoTH, K. ; MENZEL, W.: Hybrid Parsing: Using Models as Predictors for a Symbolic

Parser. In: Proceedings of the 21st International Conference on Computational Linguistics,
2006

89

Bibliography

[FMO6c]

[FMS00]

[Fot06]

[FS98]

[Geo03]

[HBO02]

[HF02]

[Hil57]

[Hir01]

[JH99]

[JM00]
[Kel00]

[Kle04]

[LC91]

[LS06]

[Mar90]

FoTtH, K. ; MENZEL, W.: Robust parsing: More with less. In: Proceedings of the 21st
International Conference on Computational Linguistics, 2006

FoTH, K. ; MENZEL, W. ; SCHRODER, L.: A transformation-based parsing technique
with anytime properties. In: Proceedings of the International Workshop on Parsing Tech-
nologies (IWPT), 2000

FotH, K.: Hybrid Methods of Natural Language Analysis, Hamburg University, Doctoral
Thesis, 2006

FREUND, Y. ; SCHAPIRE, R. E.: Large margin classification using the perceptron algo-
rithm. In: Proceedings of the 11th Annual Conference on Computational Learning Theory,
1998

GEORGIADIS, L.: Arborescence optimization problems solvable by Edmonds” algo-
rithm. In: Theoretical Computer Science (2003)

HENDERSON, J. ; BRILL, E.: Exploiting Diversity in Natural Language Processing:
Combining Parsers. In: Proceedings of the 1999 Joint SIGDAT Conference on Empirical
Methods in Natural Language Processing and Very Large Corpora, 2002

HAGENSTROM,]. ; FOTH, K.: Tagging for robust parsers. In: Proceedings of the 2nd
International Workshop, Robust Methods in Analysis of Natural Language Data, 2002

HILDRETH, C.: A quadratic programming procedure. In: Naval Research Logistics
Quarterly (1957)

HIRAKAWA, H.: Sematic dependency analysismethod for Japanese based on opti-
mum tree search algorithm. In: Proceeding of the Pacific Association for Computational
Linguistics, 2001

JAAKKOLA, T. ; HAUSSLER, D.: Exploiting generative models in discriminative clas-
sifiers. In: Advances in Neural Information Processing Systems, 1999

JURAFSKY, D. ; MARTIN, J. H.: Speech and Language Processing. Prentice Hall, 2000
KELLER, E: Gradience in Grammar, University of Edinburgh, PhD thesis, 2000

KLEIN, D.: The Unsupervised Learning of Natural Language Structure, Stanford Univer-
sity, PhD Dissertation, 2004

LENT, A. ; CENSOR, Y.: The primal-dual algorithm as a constraint-set manipulation
device. In: Mathematical Programming (1991)

LONG, P. M. ; SERVEDIO, R. A.: Discriminative Learning can Succeed where Genera-
tive Learning Fails. In: Information Processing Letters (2006)

MARUYAMA, H.: Structural disambiguation with constraint propagation. In: Proceed-
ings of the 28th Annual Meeting of the Association for Computational Linguistics (ACL),
1990

90

Bibliography

[McDO06]

[McKO03]

[MCPO05]

[MLPO6]

[Moo05]

[MP69]

[MPO6]

[MSM93]

[Niv03]

[Nov62]

[Ras06]

[Rat99]

[Rib04]

[Ric94]

[Rij79]

[RM90]

MCcCDONALD, R.: Discriminative Learning and Spanning Tree Algorithms for Dependency
Parsing, University of Pennsylvania, PhD Dissertation, 2006

McKAYy, D. J. C.: Information theory, inference, and learning algorithms. Cambridge
University Press, 2003

McDONALD, R. ; CRAMMER, K. ; PEREIRA, F: Online Large-Margin Training of
Dependency Parsers. In: Proceedings of the 43rd Annual Meeting of the Association for
Computational Linguistics (ACL), 2005

McCDONALD, R. ; LERMAN, K. ; PEREIRA, F.: Multilingual Dependency Analysis with
a Two-Stage Discriminative Parser. In: Proceedings of the 10th Conference on Computa-
tional Natural Language Learning (CoNLL), 2006

MOORE, R.: A discriminative framework for bilingual word alignment. In: Pro-
ceedings of the Joint Conference on Human Language Technology and Empirical Methods on
Natural Language Processing (HLT/EMNLP), 2005

MINSKY, M. ; PAPERT, S.: Perceptrons — Expanded Edition: An Introduction to Computa-
tional Geometry. MIT Press, 1969

MCDONALD, R. ; PEREIRA, E: Online learning of approximate dependency parsing
algorithms. In: Proceedings of the Annual Meeting of the European American Chapter of
the Association for Computational Linguistics (ACL), 2006

MARCUS, M. ; SANTORINI, B. ; MARCINKIEWICZ, M.: Building a large annotated
corpus of English: the Penn Treebank. In: Computational Linguistics (1993)

NIVRE, J.: An Efficient Algorithm for Projective Dependency Parsing. In: Proceeding
of the 4th International Workshop on Parsing Technologies (IWPT-2003), 2003

NOVIKOFF, A. B. J.: On convergence proofs on perceptrons. In: Proceedings of the
Symposium on the Mathematical Theory of Automata, 1962

RASMUSSEN, C. E.: Gaussian processes for machine learning. MIT Press, 2006

RATNAPARKHI, A.: Learning to parse natural language with maximum entropy mod-
els. In: Machine Learning (1999)

RIBAROV, K.: Automatic building of a dependency tree, Chrles University, PhD thesis,
2004

RICHARDSON, S.: Bootstrapping Statistical Processing into a Rule-based Natural Lan-
guage Parser. In: The Balancing Act: Combining Symbolic and Statistical Approaches to
Language. Proceedings of the Workshop, 1994

VAN RIJSBERGEN, C. J.: Information Retrieval. 2nd edition. University of Glasgow,
1979

R. MALOUF, G. van N.: Wide Coverage Parsing with Stochastic Attribute Value
Grammars. In: The 1st International Joint Conference on Natural Language Processing

91

Bibliography

[RSCJ04]

[RSNMO04]

[Sch94]

[Sch02]

[SLO6]

[SPMFO1]

[SS02]
[Tar77]

[Tas04]

[TGKO4]

[Vap00]

[WHO2]

[YMO3]

[You67]

[Zu05]

Workshop Beyond Shallow Analyses — Formalisms and statistical modeling for deep analy-
ses, 1990

ROARK, B. ; SARACLAR, M. ; COLLINS, M. ; JOHNSON, M.: Discriminative language
modeling with conditional random fields and the perceptron algorithm. In: Proceed-
ings of the Annual Meeting of the Association for Computational Linguistics (ACL), 2004

RAINA, R.; SHEN, Y. ; NG, A. Y. ; MCCALLUM, A.: Classification with hybrid gener-
ative/discriminative models. In: Neural Information Processing (2004)

SCHMID, H.: Probabilistic part-of-speech tagging using decision trees. In: Interna-
tional Conference on New Methods in Language Processing, 1994

SCHRODER, L.: Natural Language Parsing with Graded Constraints, University of Ham-
burg, PhD Thesis, 2002

SAGAE, K. ; LAVIE, A.: Parser Combinations by Reparsing. In: Human Language
Technology Conference of the North American Chapter of the Association of Computational
Linguistics, Proceedings (HLT-NAACL), 2006

SCHRODER, L. ; Popr, H. F. ; MENZEL, W. ; FOTH, K.: Learning grammar weights using
genetic algorithms. In: Proceedings of the Euroconference Recent Advances in Natural
Language Processing, 2001

SCHOLKOPF, B. ; SMOLA, A.: Learning with Kernels. MIT Press, 2002

TARJAN, R. E.: Finding optimum branchings. In: Networks (1977)

TASKAR, B.: Learning Structured Prediction Models: A large Margin Approach, Stanford
University, PhD Dissertation, 2004

TASKAR, B. ; GUESTRIN, C. ; KOLLER, D.: Max-Margin Markov Networks. In: Ad-
vances in Neural Information Processing Systems (NIPS 2003), 2004

VAPNIK, V.: The Nature of Statistical Learning Theory. Springer, 2000

WANG, W. ; HARPER, M. P.: The SuperARV language model: Investigating the ef-
fectiveness of tightly integrating multiple knowledge sources. In: Proceedings of the
Conference on Empirical Methods in Natural Language Processing (EMINLP-2002), 2002

YAMADA, H. ; MATSUMOTO, Y.: Statistical dependency analysis with support vector
machines. In: Proceedings of the International Workshop on Parsing Technologies (IWPT),
2003

YOUNGER, D.H.: Recognition and parsing of context-free languages in time n3. In:
Information and Control (1967)

ZEMAN, D. ; ZABOKRTSKY, Z.: Improving Parsing Accuracy by Combining Diverse
Dependency Parsers. In: Proceedings of the 9th International Workshop on Parsing Tech-
nologies (IWPT), 2005

92

	Introduction
	Sentence as Dependency Structure
	Parsing Paradigms
	Scope of This Thesis

	Online Learning for Natural Language Parsing
	Classification Problem in Machine Learning
	Linear Classification
	Quadratic Optimization
	Maximal Margin Classifier
	Online Learning

	Natural Language Parsing as Structured Classification Problem
	Summary

	Dependency Parsing as Maximum Spanning Tree Search
	First-Order Parsing Algorithms
	Eisner Projective Parsing Algorithm
	Chu-Liu-Edmonds Non-Projective Parsing Algorithm

	Second-Order Parsing Algorithms
	Extension to Eisner Algorithm
	Approximate Non-Projective Algorithm

	Second-Stage Labeling
	Feature Space
	Summary

	WCDG System
	Weighted Constraint Dependency Grammar
	Statistical Enhancements
	Summary

	Parsing German with the MSTParser
	Parsing Experiments
	Error Analysis
	Summary

	MSTParser as Predictor for WCDG
	Constraint Weights for MST Predictor
	Results Analysis
	Combining Different Predictors
	Summary

	Concluding Remarks
	Summary
	Outlook

	Some Mathematical Definitions
	Optimization Theory Fundamentals
	MSTParser Resources
	WCDG Resources
	Details of Experiment Results
	Bibliography

