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Abstract—In this paper, we investigate the impact the 
contingency of robot feedback may have on the quality of 
verbal human-robot interaction. In order to assess not only 
what the effects are but also what they are caused by, we 
carried out experiments in which naïve participants instructed 
the humanoid robot iCub on a set of shapes and on a stacking 
task in two conditions, once with socially contingent, 
nonverbal feedback implemented in response to different gaze 
and demonstrating behaviors of the human tutor, and once 
with non-contingent, saliency-based feedback. The results of 
the analysis of participants’ linguistic behaviors in the two 
conditions show that contingency has an impact on the 
complexity and the pre-structuring of the task for the robot, 
i.e. on the participants’ tutoring behaviors. Contingency thus 
plays a considerable role for learning by demonstration. 
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I.  INTRODUCTION 
In order for robot behavior to count as a ‘response’ to 

the behavior of a human user, it has to be perceived as being 
in a certain temporal, non-accidental relationship to the 
user’s behavior, i.e. it has to be contingent upon the user’s 
behavior (e.g. Watson [46]). In conversation between 
humans, contingency contributes considerably to joint sense 
making processes between participants and is an essential 
feature of human interaction (Hutchby and Wooffitt [20]; 
Schegloff [37]).  

An important aspect of contingency is the temporal 
proximity between the user’s behavior and the robot’s 
response. In natural conversation between humans, 
communication partners tend to respond to each others’ 
linguistic behaviors in a time frame of 200-300 msecs, with 
some cultural and stylistic differences observable (cf. 
Sidnell and Enfield [30]). Furthermore, adjustments have 
been observed depending on the particular communication 
partner, for instance, in interactions between adults and 
children (e.g. Filipi [12]). While in conversation between 
humans temporal proximity is only partly responsible for the 

perception of responsivity, it is an important part, and 
failure to respond in a timely fashion in human conversation 
is accountable, i.e. in need of explanation (e.g. Levinson 
1983: 320 [25]).  

Besides the timing of the response, also its content plays 
a role (cf. Bavelas et al. [2]); in particular, what behaviors 
are synchronized with what others may provide helpful cues 
to the interlocutor. For instance, contingency is an important 
factor in the tutoring strategies of parents when talking 
about actions and presenting objects to their children. In 
comparison to action demonstrations performed towards 
another adult, demonstrations performed towards children 
are modified such that they exhibit greater contingency: The 
movements are performed in a tight temporal synchrony 
with the speech (Gogate et al. [19]) and are shorter, which 
results in less roundness and more pauses between the 
individual segments (Brand et al. [3]; Rohlfing et al. [35]). It 
seems that young infants learn word-object relations within 
a tightly coupled interaction between infants’ perception, 
joint attention and specific properties of caregivers’ naming 
(Matatyaho and Gogate 2008, p. 172 [28]). 

That contingency is adjusted in child-directed speech 
suggests that it plays a facilitative role in the communication 
with young children and possibly even in language 
acquisition; for instance, Fernald and Mazzie [11] 
demonstrate that when parents are speaking to their 
children, they synchronize prosodic and content cues, which 
informs children on the most important words in an 
utterance and thus helps them segment the speech stream 
and learn word meanings.  

So while contingent response plays a crucial role in 
interactions between humans, and especially in tutoring 
situations such as parent-child interactions, what is its role 
in HRI? Much research in HRI has argued that robot 
responses should be ‘appropriate’ or ‘timely’ (e.g. Breazeal 
[4]; Steinfeld [41]), yet so far it remains open what 
‘appropriate’ or ‘timely’ really mean, what exactly the 
effects of contingency are and, most importantly, what these 
effects are caused by. In this study, we therefore address to 
what extent the contingency of a robot’s nonverbal 
responses to the human tutor’s actions influences these 
users’ understanding of the human-robot interaction 
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situation and, concomitantly, their tutoring behavior. We 
thus address not only what kinds of interactional functions 
contingency has but also how these effects come about, i.e. 
what inferences users make about the robot based on its 
contingent behavior. 

 

II. RELATED WORK 
Yoshikawa et al. (2007) examine the effect of different 

response latencies of mirroring of blinking on people’s 
perception of being looked at by a humanoid robot. The 
authors find that people felt most strongly that the robot 
looked them in their faces when it mirrored their blinking 
with a 500 msec delay. In contrast, both an immediate and a 
much delayed (2 secs) reaction created the effect 
significantly less often. Thus, the timing of the mirroring 
behavior had a considerable impact on the participants’ 
understanding of the quality of the interaction.  

Another relevant investigation is Sidner et al. [39] which 
addresses the effects of contingent robot gestures in 
response to human action. In this study, a penguin-shaped 
robot introduced a novel object to a participant and either 
used participant-directed head movements and gestures or 
not. The results of the study show that human 
communication partners judge a robot producing 
contingent, non-verbal feedback to be more reliable and its 
movements more appropriate, and they interact longer with 
the robot and attend to it more.  

Kose-Bagci et al. [24] experiment with different 
contingency models in non-verbal turn-taking interactions 
with a humanoid and find that human participants preferred 
interactions in which a humanoid robot's turn-taking 
behavior was driven by a contingency model whose 
temporal dynamics was the closest to 'natural' human-
human conversations. Participants in this condition 
furthermore interacted more and longer with the robot. 

A study demonstrating the considerable effect of the 
contingency between different modalities of the robot’s 
own behaviors is Yamazaki et al. [47]. In this study, the 
authors compare a systematic condition in which the 
robot’s head movements were timed to co-occur with the 
transition relevance places of the robot’s speech, i.e. points 
of possible completion (cf. Sacks et al. [36]), with an 
unsystematic condition in which head turns were not 
coordinated with the speech. They find that in the 
systematic condition, people attend to the robot’s transition 
relevance places in their head turns towards the robot and 
show more engagement by means of nodding than in the 
unsystematic condition.  

Another relevant study is Pitsch et al. [34] in which a robot 
reacts contingently to visitors in a museum. In particular, 
the robot detects whether a visitor is looking at it and if so, 
begins to speak. If the visitor then looks away, the robot 
pauses briefly and then restarts the utterance. Among 
humans, this strategy has been found to be efficient to get 

the partner’s full attention, and the authors show that the 
robot’s restarts have a similar effect. Moreover, visitors 
who heard the restarted utterances stayed longer and 
reacted significantly more often politely and in similar 
ways as to other humans to the robot’s closing statement. 
Thus, the robot’s contingent display of attention to visitors’ 
attentional states at the beginning of the interaction has a 
long lasting effect over the course of the entire interaction. 

In our own previous work, we have suggested, based on 
qualitative analyses, that contingent robot behaviors may 
lead people to increased tutoring behavior (Lohan et al. [26, 
27]). That is, people adjusted their action demonstrations to 
the contingent robot more than to the non-contingent one, 
resulting in human-robot tutoring interactions that exhibit 
adjustments similar to those observable in adult-child 
interaction. 

To sum up, previous work suggests that contingency in 
HRI may have a considerable impact; what this effect may 
be caused by, and what the interactional consequences 
really are, is however still open. For instance, while the 
study by Pitsch et al. [34] has shown that prerecorded 
monologues by a robot may be perceived as more personal 
and social if they are delivered depending on the visitor’s 
attentional state, this effect may be due to the fact that it 
makes visitors realize that the robot perceives them at all; 
for instance, Nourbakhsh et al. (2003: 3639 [32]) write that 
‘the single most successful way for a robot to attract human 
interest is for the robot to demonstrate awareness of human 
presence.’ From this perspective, the contingent response 
could just be an indicator that the robot is really perceiving 
the human. On the other hand, the results from the other 
studies discussed above, that people interact more, longer 
and are more engaged because of contingent feedback, 
leave completely unanswered why people react to 
contingent robot feedback in this way and what the effect is 
caused by. Thus, why people interacting with a robot that 
responds ‘timely’ to a human user’s behavior should want 
to interact with it longer than if the robot is not that ‘timely’ 
constitutes a riddle that has no intuitive solution. In the 
current study, we therefore use a method that allows us to 
study users’ reactions to contingent and non-contingent 
robot feedback quantitatively while informing us at the 
same time on the functional differences in people’s 
responses to the different types of robot feedback. In 
particular, we analyze participants’ verbal behavior in the 
interaction with a contingent and a non-contingent robot as 
a means to identify their mental models that inform the 
ways they interact with the robot. 

 



III. OPERATIONALIZING CONTINGENCY IN THE ROBOT 
While robots’ behavior may comprise many different 

modalities, we focus here on how the robot’s nonverbal 
behavior can be coordinated to the human users’ nonverbal 
behavior in terms of contingency, i.e. the production of 
timely, relevant responses to the human tutor’s actions.  

In the operationalization of contingency in the system 
employed in this investigation, contingency is calculated 
based on temporal co-occurrence of visually detected 
ostensive signals of human and robot behavior (see Figure 
1). In order to model timing, we oriented at prototypical 
tutoring interactions, namely interactions between mothers 
and their children. For instance, Keller et al. [23] find that 
in face-to-face interactions, mothers respond to infants with 
contingencies within intervals shorter than one second, 
using a sampling interval of two milliseconds and Watson’s 
[46] method of contingency analysis, across multiple 
communication modalities. This finding correlates with the 
findings presented by Stern [42] concerning gaze and head 
orientation, coded on 16 mm film, 24 frames per second. 
Likewise, Cohn and Beebe [9] report that most mothers and 
infants respond to each other with contingencies of less 
than half a second, using a sampling rate of 1/12 seconds. 
Van Egeren et al. [45] show that while in a human 
communication the sender of an ostensive signal usually 
expects a response within 200-300 msecs, contingent 
behavior between mothers and infants can be organized 
within a three second window (they used a sampling 
interval of one second and an odds-ratio method of 
contingency analysis). Contingent behavior thus seems to 
occur within a time frame of 200 - 3000 msecs.  

In accordance with these findings, robot feedback in our 
model occurs within a window of 200-1000 msecs, 
however, starting no later than 300msecs. With respect to 
the types of reactions modeled, for the tutoring situations 
under consideration, the following behaviors of the robot 
constitute contingent responses to the tutors’ behaviors:  

 
• Reaction Pattern 1 (RP-1): the system detects 

‘participant-gazes-at-elsewhere’ and reacts by gazing 
at random locations and by showing a neutral face, 

• Reaction Pattern 2 (RP-2): the system detects 
‘participant-gazes-at-object’ and reacts by directing its 
gaze at the object and by smiling,  

• Reaction Pattern 3 (RP-3): the system detects 
‘participant-gazes-at-robot’s-face’ and reacts by 
directing its gaze to the co-participant and by smiling,  

• Reaction Pattern 4 (RP-4): the system detects 
‘participant-presents-an-object’ and reacts by 
performing a pointing gesture towards the detected 
location of the demonstration.  

 
 
Figure 1: The implementation controls the robot’s 
interaction with the human tutor by means of responsive 
behavior as a feedback strategy. The difference between tH 
and tR is < 300 msecs. 

 
The implementation monitors participants’ hand 

trajectories with respect to a specific trajectory class, 
namely presenting behavior. As presenting behavior we 
define a behavior by the human tutor during which the 
human tutor moves an object by hand towards the robot and 
reaches a pre-defined minimal distance. The robot responds 
to the presenting gesture by trying to point at the object. In 
principle, the Kinect tracking device used allows easy 
extension of the system to further trajectory classes, yet 
currently, object trajectories are calculated if the tutor is 
looking in the direction of the object. The object is tracked 
by means of an ARToolkitmarker. The ARToolkit system 
[1] returns a 3D location of the marker.  

The classification of the tutor’s eye gaze is obtained by 
geometrical calculations, resulting from locating the 
intersection point between gaze direction and the object 
plane or face plane of the robot. In other words, the eye 
gaze module detects whether the tutor is looking towards 
the object, to the face of the learner or elsewhere (see 
Figure 1). Figure 2 illustrates the interaction between the 
components of the computational model. 

The structure of the robot system, implemented in Java, 
is summarized in Figure 2. The system is structured into 
three components: a module providing the robot’s 
responsive behavior, which controls the feedback strategies 
of the robot, a module analyzing the tutor’s behavior, and 
the contingency detection, which measures online the 
contingency values of the interaction between the robot and 
the human.  

 



 
Figure 2: The structure of the robot system 

The information about whether the tutor is gazing at the 
robot, at the object or elsewhere and whether the tutor is 
presenting the object to the robot by holding it at a certain 
distance towards the robot or not is fed into the contingency 
module. In addition to information about the human tutor, 
the contingency module captures also the ongoing behavior 
of the robot. For the measurement of contingency, thus both 
interaction partners are taken into account (see Figure 2). 
Contingency is measured by two variables, the necessity 
and the sufficiency index. According to Watson, the 
necessity index describes the forward probability of a 
consequence given a (hypothesized) cause. From the 
robot’s perspective, the necessity index refers to the 
probability that the subject’s gaze is on a certain object, 
given that the robot has previously been looking at this 
object. The sufficiency index measures whether there are 
also other sources influencing the subject’s gazing 
behavior. For instance, given that the subject’s gaze is 
towards the object, the probability that the robot has 
previously been looking at this object is calculated. In this 
interaction, the necessity and the sufficiency indices for the 
subject’s behavior are non-symmetric. The above 
description is a computation from the robot’s perspective 
and measures the contingency in the behavior of the subject 
towards the robot. The overall contingency is then 
computed as a product of these two variables. Note that the 
value for contingency lies thus between 0% and 100%, 
where 100% means perfect contingency (like for example 
in a mirror reflection) and 0% no contingency at all. The 
sufficiency measure in our set-up rises if the tutor is 
looking at the robot or at the object or if the tutor is 
presenting an object to the robot. The sufficiency measure 
decreases when the tutor is looking elsewhere or is not 
presenting anything. In our scenario, the necessity measure 
is computed on the robot’s behavior and represents the 
responding behavior of the robot: The measure rises when 
the robot is looking at the tutor or the object and when it 
points at an object. It falls when the robot is looking 
elsewhere or is not showing presentational behavior. The 
whole calculation is event driven such that each classified 

behavior is understood as one event. The iCub robot is 
connected via YARP (Metta et al. [30]) with the system for 
storing and exchanging data. 

IV. EMPIRICAL STUDY 
In the empirical study, we compare human tutors’ 

behavior in two conditions (between subjects): In the 
contingent condition, the robot responds to the human tutor 
in socially-contingent ways as described above. In the non-
contingent condition, the robot’s behavioral inventory is the 
same as in the first condition, making use of the same set of 
robot behaviors, yet driven by a saliency model. The non-
contingent behavior of the robot is based on the nearest 
object that the robot would track, and three different arm 
configurations were executed randomly depending on 
which side of the robot the object was located; for instance, 
if the object was on the robot’s left, the robot pointed at the 
object using its left arm. Thus, in both conditions, the robot 
uses similar behaviors and interacts with its environment; 
however, in the contingent condition, it responds to social 
cues while in the non-contingent condition, it responds to 
features of the object under consideration. 

A.  Participants 
The human-robot interactions were elicited at the 
University of Hertfordshire in February 2011 and comprise 
two sets of interactions in two comparable conditions. In 
both conditions, there were twelve naïve participants who 
interacted with the robot. In the first condition, three of the 
twelve participants were female, in the second condition, 
five of the twelve participants were female. Participants’ 
ages ranged between 21 and 69 (Av: 30, SD: 12). 
Participants were recruited from university administration 
staff or were PhD students from various fields and 
unfamiliar with robotics research.  

Participants’ instructions were to teach the robot about a 
set of colored shapes presented on three blocks of different 
size and then subsequently instruct the robot on how to 
stack the blocks in size order with the smallest block at the 
top. While the participants used both verbal and nonverbal 
instructions, the robot only reacted nonverbally. In the first 
condition, this behavior was limited to the robot tracking 
the objects using head and eye movements. In the second 
condition, the contingency module described above was 
used.  

B. Robot 
In both conditions, the robotic participant was the 

humanoid robot iCub (iCub [21]; Metta et al. [29]).  

C. Method 
To identify the effects of the amount of contingency of 

the robot’s behavior on the interaction, we investigate in 
detail users’ linguistic behavior in the two conditions. The 
methodology permits the identification of different 
behaviors as results of different degrees of contingency in 



the robot’s behavior. The procedure consists of three steps: 
First, we elicited data in two controlled experimental 
human-robot interaction scenarios; second, we carried out a 
quantitative analysis of the linguistic features occurring; 
third, we apply a qualitative analysis of the functions the 
linguistic choices users make fulfill in the respective data 
set (for further details on the method, see Fischer et al. 
[18]). 

Analyses of users’ utterances constitute a useful 
methodology since users' linguistic choices in interaction 
are correlated with their understandings of these robots 
(Fischer [16]; Fischer, Lohan and Foth [18]). Given that 
speakers design their utterances so that they are well suited 
for the particular communication partner in the current 
situation (Sacks et al. [36]; Fischer [16]), investigating the 
linguistic choices speakers make can inform us about what 
users think about the robot they are interacting with, for 
instance, what they expect their artificial communication 
partner to have problems with and what they consider it to 
be good at. Thus, the association of particular linguistic 
features with their functions in interaction provides us with 
qualitative data on speakers’ mental models of their 
artificial communication partners. The linguistic analysis 
furthermore allows us to understand the effects of robots’ 
behavior since it provides not only objectively identifiable 
quantitative differences between conditions, but also 
qualitative measures with respect to the communicative 
functions to which users attend in the interaction. That is, 
because people make their linguistic choices with a 
particular communication partner in mind, the functional 
characteristics of their utterances allow us to infer what 
effects the robot’s behavior in the two conditions have on 
participants’ conceptualizations of the robot and 
consequently on the quality of the HRI interaction.  

The linguistic analyses thus provide evidence not only 
on whether socially-contingent robot behavior improves 
human-robot interactions, but if so, also on why this is the 
case since tutors’ linguistic choices are directly related to 
certain speech functions, which inform us as analysts on 
tutors’ understandings of the affordances of the respective 
situation. 

D. Procedure 
Participants in both conditions were asked to teach a set 

of shapes to the robot. Their utterances were transcribed 
and linguistically analyzed by semi-automatically 
extracting certain linguistic properties from participants’ 
utterances for which linguistic research has established a 
set of communicative functions, which can be informative 
of what users suspect to be at issue in a given situation. 
Thus, no extra data encoding is necessary, just the 
extraction of the occurrences of certain linguistic features 
in users’ utterances. These behavioral measures were 
chosen since unlike post-experimental questionnaires and 
other indirect methods, they provide online indicators of 
users’ understandings of the affordances of the 
communicative situation. 

E. Data Analysis 
The set of features used covers both complexity levels 

and interpersonal aspects of interactions. The features used 
here have been employed in numerous previous studies 
(e.g. Fischer [14-16]; Fischer et al. [17, 18]), where they 
have been shown to be reliable indicators for the 
communicative functions to which people attend in 
interaction; they thus allow us to infer users’ 
understandings of the affordances of the respective 
interaction.  

The set of linguistic features used comprises: 

• verbosity, in particular the number of turns and 
words used in the interaction with the robot; these measures 
also serve to establish a baseline for the other measures; 

• structuring cues, in particular the numbers of 
instances of local structuring items, such as now; 

• attention-getting, for instance, by means of 
imperatives like look or the robot’s name; 

• grounding, in particular the number of items with 
which users refer to entities that can be assumed to be 
sufficiently grounded (cf. Clark & Schaefer [8]); i.e. 
linguistic means to refer to items from the discourse record 
are, for instance, again or other.  

• diversity, in particular the number of different 
words used; 

• interpersonal relationship, in particular the kinds 
of pronouns used to refer to the participants, for instance, I 
versus you versus we; furthermore, evidence on the 
supposed interpersonal relationship are also the amount of 
involvement of the communication partner by means of tag 
questions, questions or, in comparison, statements; 

• complexity, in particular whether expository 
sentences are used in order to reduce the cognitive 
complexity of an utterance by presenting an object first 
before something is asserted about it. In the current dialogs, 
this is usually done by expository utterances like, this is an 
X, and it has property Y. In addition, the number of 
utterances per turn serves as an indicator for complexity, as 
well as the Mean Length of Utterance (MLU), i.e. the 
number of words per sentence. 

The feature set used is intended to cover a broad range 
of respects in which people adjust their speech to particular 
communication partners, such as children (e.g. Snow [40]), 
foreigners (Ferguson [10]), or robots (Fischer [13]). Thus, 
the point of the analysis is not that speech to a particular 
communication partner should differ in all respects from 
other kinds of speech; instead, what is relevant for the 
analysis is in what respects linguistic behaviors in the two 
conditions compared differ, since this reveals to which 
communicative functions people attend (differently in the 
two conditions) and what they consider relevant for a 
particular communication partner.   



V. RESULTS 
The linguistic analyses show that users’ linguistic 

behaviors in the two conditions are significantly different 
with respect to several of the linguistic features 
investigated; however, the differences concern only specific 
kinds of linguistic features. 

First, we find consistent attempts at structuring the 
information to be learnt for the contingent robot, but less so 
for the non-contingent robot; in particular, users produce 
significantly more utterances that introduce a shape first 
before something is asserted about it, thus decomposing the 
complex task into smaller parts, i.e. there are significantly 
more instances of expository utterances.  

Furthermore, there are significantly more structuring 
cues and higher order structures in speech to the contingent 
robot. In particular, while the number of turns is 
comparable across conditions, the numbers of both 
questions and statements are higher in the contingent 
condition, which suggests that people use more, shorter 
utterances within the same number of turns for the 
contingent robot. At the same time, users produce fewer 
different words for the contingent robot. Thus, input to the 
contingent learner consists of longer turns with more, 
shorter and simpler utterances.  

There are furthermore tendencies for users in the 
interaction with the contingent robot to understanding the 
situation as a joint project (Clark [7]) since they tend to use 
more let’s in this condition. However, one might also 
expect more instances of the pronoun we by means of 
which users refer to themselves and the robot together; 
these data do not reach significance. Instead, we observe 
fewer instances of I in the interaction with the contingent 
robot (p < .08). On the whole, however, there are only few 
differences with respect to the interpersonal relationship 
between human and robot in the two conditions. 

That the amounts of tag questions are significantly 
lower in the contingent interactions, yet that the numbers of 
questions tend to be higher could be an indicator that 
participants do not impose any understanding on the robot 
but treat it as a serious communication partner; since tag 
questions basically ask the co-participant to simply agree to 
the statement made, it does not leave much for the partner 
to do, in contrast to a real question. However, tag questions 
also have interactive and attention-managing functions, and 
thus the interpretation of this linguistic difference is not 
without problems. 

What clearly remains the same across conditions are the 
users’ attempts at getting the robot’s attention; thus, 
instances of the robot’s name, instances of attention-getting 
look are not significantly different across conditions.  

Table 1 presents the ANOVA results for the two 
conditions. 

Table 1: ANOVA results for the contingent versus non-
contingent robot (t = p < .10; * = p < .05; ** = p < .01; 
*** p < .001) 
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sd F(1,44) p 

verbosity: turns 118.5 45.6 122.7 32.2 0.13818  

verbosity: words 481.9 203.6 599.6 235.5 3.30534 t 

diversity: different words 0.21 0.06 0.18 0.03 6.57359 * 

complexity: MLU 3.86 1.12 4.82 1.30 7.21429 *** 

complexity: expository 0.06 0.03 0.11 0.08 9.25134 ** 

structuring: now 0.01 0.01 0.01 0.01 4.48447 * 

grounding: other 0.02 0.03 0.01 0.01 3.62421 t 

grounding: again 0.02 0.02 0.03 0.02 2.91095 t 

interpersonal: I 0.02 0.03 0.01 0.01 3.22947 t 

interpersonal: we 0.06 0.00 0.01 0.02 0.34817  

interpersonal: let’s 0.00 0.00 0.01 0.02 3.57125 t 

interpersonal: you 0.04 0.04 0.05 0.07 0.17627  

interpersonal: feedback 0.02 0.02 0.01 0.01 2.04759  

interpersonal: tags 0.00 0.01 0.00 0.00 4.35391 * 

interpersonal: questions 0.01 0.02 0.02 0.02 3.08320 t 

interpersonal: statements 0.83 0.18 0.93 0.03 6.53347 * 

attention: robot’s name 0.00 0.00 0.01 0.03 0.58112  

attention: look 0.00 0.01 0.03 0.01 0.29942  
 

To sum up, these results show that people reduce the 
complexity of their utterances more when speaking to the 
contingent than to the non-contingent robot, and that they 
structure their instructions more and decompose complex 
issues into smaller units. At the same time, they trust the 
contingent robot more to learn from the interaction, as 
evidenced by the marginally higher numbers of instances of 
other and again. On the other hand, contingency seems to 
have no effect on attention-getting functions in interaction, 
and only a small impact on the interpersonal relationship 
between robot and tutor. 

VI. DISCUSSION 
The data show that the contingency of robot behaviors 

has several significant effects on the interaction. Regarding 
the structuring of information, we found that users provide 
the contingent robot with local (now) and global (again, 
other) clues to discourse structure; especially the latter 
presuppose considerable cognitive capabilities and the 
collaborative achievement of a common ground. At the 
same time, we find attempts at simplification (reduced 
diversity, expository strategies), which results in longer 
turns consisting of fewer, shorter utterances. Thus, users 



present the information in smaller chunks for the contingent 
robot. This is in line with a previous, qualitative 
investigation of the same data (Lohan et al. [27]), in which 
a sequential micro-analysis showed how users in the 
contingent condition adjust their utterances to the robot’s 
suspected needs and capabilities. The current findings are 
also in line with results from Fischer et al. [17], in which 
people did not adjust their verbal behavior to a simulated 
robot designed to look like a young child, as the 
comparison with child-directed speech in the same scenario 
revealed. However, people did adjust their gestures to the 
robot’s eye gaze since this provided them with online 
contingent feedback on what the robot was seemingly able 
to understand.  

The results from the current study furthermore point 
into the same direction as results from other asymmetrical 
interactions, such as interactions with children. In 
particular, the findings of the current study are comparable 
to the results of a study by Murray and Trevarthen [31], in 
which the contingency of the infants’ responses was at 
issue. In this study, the authors recorded eight mothers in a 
video-mediated interaction with their two-month olds 
during which mothers believed that they were seeing their 
infants live the whole time; yet only in half of the 
interactions the live image of their infant was transferred. 
The authors find significant differences in mothers' 
behavior depending on whether mothers saw their infants 
live or as replay. The linguistic analysis shows that mothers 
asked more questions, repeated their utterances more often 
and produced fewer negative statements and fewer 
declaratives if their infant was not behaving contingently 
(Murray and Trevarthen 1986: 23 [31]). The linguistic 
features affected in these interactions thus also concern the 
complexity of the mothers’ utterances; these results 
strengthen the observations made here, that contingent 
robot feedback has an impact on speakers’ assumptions 
about the communication partner’s competences.  

The findings from the current study consequently 
demonstrate that the effects of contingent feedback concern 
most importantly users’ understanding of the robot’s 
competence. We can conclude that one reason for the 
considerable impact of contingency is that people interpret 
it as online indicator of the robot’s understanding of the 
interaction. From this perspective, a contingent robot 
response is taken by participants as reliable information 
about the robot’s processing capabilities in general and 
about its processing of the current state of talk in particular; 
contingent robot feedback thus reduces users’ uncertainty 
with respect to their unfamiliar, artificial communication 
partner by virtue of being produced at the ‘right’ moment, 
where the identification of the ‘right’ moment leads to 
inferences about the robot’s general cognitive capabilities. 

VII. CONCLUSION 
The analysis confirms that the amount of social 

contingency in robots’ behavior has a considerable impact 
on users’ expectations and their subsequent tutoring 

behavior. In addition, the results of the current investigation 
allow us to understand what this impact is caused by. In 
particular, the considerable impact of contingent robot 
behavior was shown to be due to the fact that people 
interpret contingent robot feedback as direct, unmediated 
and trustworthy indicators of the robot’s understanding of 
the current state of talk. This interpretation feeds into 
people’s mental models of their artificial communication 
partner, such that they build up a coherent image of the 
robot’s capabilities, strengths and weaknesses.  

VIII. DESIGN IMPLICATIONS 
The results regarding the ways information is structured 

and presented to the robot are likely to have an impact on 
the success of socially guided learning (see Thomaz and 
Breazeal [43], Thomaz and Cakmak [44], Cakmak et al.  [5, 
6]). As Thomaz and Cakmak [44], for instance, 
demonstrate, naïve users structure information for robots 
intuitively in ways that improve learning from 
demonstration. If the ways in which this is done are 
influenced by the amounts of contingency in the behavior 
exhibited by the robot, contingency can be inferred to have 
a considerable influence on the success of learning by 
demonstration. 
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