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Abstract. Non-intuitive styles of interaction between humans and mobile robots
still constitute a major barrier to the wider application and acceptance of mobile
robot technology. More natural interaction can only be achieved if ways are found
of bridging the gap between the forms of spatial knowledge maintained by such
robots and the forms of language used by humans to communicate such knowl-
edge. In this paper, we present the beginnings of a computational model for rep-
resenting spatial knowledge that is appropriate for interaction between humans
and mobile robots. Work on spatial reference in human-human communication
has established a range of reference systems adopted when referring to objects;
we show the extent to which these strategies transfer to the human-robot situ-
ation and touch upon the problem of differing perceptual systems. Our results
were obtained within an implemented kernel system which permitted the perfor-
mance of experiments with human test subjects interacting with the system. We
show how the results of the experiments can be used to improve the adequacy and
the coverage of the system, and highlight necessary directions for future research.

Keywords. Natural human-robot interaction, computational modeling of spatial
knowledge, reference systems

1 Introduction and Motivation

Many tasks in the field of service robotics will profit from natural language interfaces
that are capable of supporting more ‘natural’ styles of interaction between robot and
user. Most typical scenarios include a human user instructing a robot to perform some
action on some object. But a precondition for the successful performance of this kind
of task is that human and robot establish joint reference to the objects concerned. This
requires not only that the scene description created by the robot’s object recognition
system and the visual system of the human instructor be matched, but also that the



robot can successfully mediate between the two kinds of description—that is, between
its internal spatial representations of the position and identity of objects and the styles
of language that humans use for achieving reference to those objects. There are two
substantial problem areas facing solutions to this task: one arising out of the very non-
human-like perceptual systems employed by current robots, the other out of the fact
that human language users rarely employ the complete and unambiguous references to
objects that might be naively expected.

In this paper, we present an experimental system that employs a computational
model designed for the mapping of human and robotic systems. Based on a more de-
tailed analysis of the results of an exploratory study which has been previously de-
scribed in [Moratz et al., 2001], we show how the two problem areas at hand need to
be addressed, present an expanded version of the earlier computational model that was
used in the study, and open up perspectives for necessary future research.

1.1 Two problem areas in achieving spatial reference

The first problem area, concerning the differing perceptual capabilities of humans and
robots, gives rise to a range of divergences between strategies found in human-human
communication and those applicable to the human-robot domain. Between humans, ref-
erence objects can usually be specified by the class name of the object. However, when
the robot has no detailed a priori knowledge about all of the relevant objects (for exam-
ple, CAD data, knowledge from a large training set), the current state of the art does not
allow correct object categorization by class. Although modern automatic object recog-
nition systems are increasingly good at identifying individual objects if the system has
been trained for the specific object features, recognizing known objects is only one
important aspect of successful communication between humans and robots. Very of-
ten, it is new objects in an open scenario that have to be categorized correctly in order
to identify the object referred to by the speaker. This may cause severe communica-
tion problems that compromise the interaction. For example, while in human-to-human
communication reference is often established by using the object category name, such
as: “the key on the floor,” a corresponding natural language human-to-robot instruction
that accommodates the perceptual abilities of the robot may need to be more like: “the
small reflecting object on the ground, to the left of the brown box.” This is because
robots have limited perceptual capabilities that often preclude accurate recognition of
broadly similar objects and, moreover, may not have access to the necessary world
knowledge that would identify the object by class.

The second problem area, the partiality of human strategies for achieving spatial ref-
erence, is clearly shown by work on achieving reference to objects undertaken within
the field of natural language generation. Reiter and Dale (1992) , for example, have
shown both that the general task of producing a guaranteedly unambiguous referential
expression for some object from a set of potential referents is NP-hard and that hu-
mans (perhaps as a consequence) do not in any case attempt to construct guaranteedly
unambiguous references. The referential strategies adopted in natural human-human
communication usually employ perceptual salience, recent mention in the discourse,
and deictic modifiers (this, that, etc.) in order to achieve successful reference with-
out requiring a solution to the problem of creating an optimal (i.e., shortest uniquely



identifying) reference expression. Furthermore, since the possibility of error is in-built,
interactive strategies are employed by all participants in an interaction in order to pro-
vide opportunities both for inobtrusively exhibiting what has been understood and for
smoothly correcting misunderstandings that have occurred. Only when reference is still
not successful does the human interactant need to resort to explicit correction of the
misunderstanding. These interactional techniques have been widely researched, partic-
ularly within the conversation analytic tradition [Schegloff et al., 1977].

The relative ‘unnaturalness’ of the second referring expression used above, which
is the perceptually appropriate one for the robot, is then a direct consequence of these
properties: for a natural interaction the expression sounds both over-explicit (“small
reflecting ... on the ground”) and under-specific (“object” instead of “key”). Ways need
to be found of ameliorating both problems if more natural interactive styles are to be
achieved.

1.2 Qualitative spatial reference as a communicative device

To address these problems, a different, powerful strategy for achieving reference in
human-human communication can be considered more closely. Whereas many objects
may have some particular color, size or texture—which therefore give rise to more po-
tential confusion, or ‘distractors’, for a referential expression—the position of objects
is generally uniquely defining; if identified sufficiently restrictively, only one object
is in a given place at a time. This could make the use of explicit positional informa-
tion a good strategy for achieving unique reference in the human-robot communicative
situation also. However, specifying positional information in the human-robot context
also faces the above problems of mismatched perceptual systems (the robot is good at
exact range-finding, humans are not) and object identification (relative positions need
to reference other objects, and these objects again must be identifiable by the robot).
Therefore, although more constrained, the problems above still need addressing. In this
paper, we focus particularly on this use of positional information for reference to ob-
jects in human-robot interaction and attempt appropriate solutions to the accompanying
problems by means of empirically deriving a spatial representation supportive of natu-
ral interaction. Qualitative spatial reference then serves as a necessary bridge between
the metric knowledge required by the robot, and more ‘vague’ concepts that build the
basis for natural linguistic utterances, as suggested by Hernández (1994) . As the kinds
of spatial representations and appropriate language forms to be adopted still need to be
ascertained and evaluated empirically, we investigate this area further in an exploratory
study. The results are outlined in detail in section 4.

In our scenario, a human user is asked to instruct a robot to move to one of several
similar objects that are arranged in the spatial vicinity of the robot and in some cases
also in the vicinity of a further, different object. The robot is equipped with a prototyp-
ical object recognition system characterized by the following features: The system can
determine the metrical position (distances and angles) relative to the robot, and estimate
the approximate size of an object in relation to the robot’s size—i.e., larger or smaller
than the robot; it can make a coarse classification of the object’s shape (compact vs.
long); and it can provide coarse colour information (ca. six to eight colour categories,



although sharp distinctions between categories such as red and orange are not avail-
able). However, the system is unable to deal with gestural indications of direction. Fur-
thermore, due to these system limitations the robot is not able to make fine distinctions
between roughly similar objects. Thus, it will not be able to identify objects correctly
on the basis of a human instructor’s verbal input if such input refers to fine-grained
non-positional differences between the objects in question. The simple experimental
configuration then forces the human user to explore other ways of referring to objects
and, here, distinguishing objects on the basis of their position in space becomes a natu-
ral candidate. However, as humans in natural surroundings are not capable of providing
exact metrical information about distances and angles, the objects’ positions have to be
referred to by qualitative information such as their relative position and other referential
strategies. Ascertaining these strategies and their effectiveness was then one goal of our
experimental set-up.

To formulate hypotheses about the expected user strategies in qualitative linguistic
spatial reference, we can draw on previous research (e.g., [Levinson, 1996]) on human
strategies for achieving such reference within naturally occurring scenarios to a certain
degree. The perspective used in our scenario is, however, fundamentally different to
that in most human-human interaction scenarios. In a typical experiment carried out to
trigger human subjects’ linguistic references, a relevant question could be: “Where is
the object?”. A typical answer describes the object’s location by referring to its spatial
relation to other available entities, such as the speaker, the hearer, or another object. In
contrast, the restrictions we have seen in human-robot interaction readily create the need
to refer to objects in ways which are less common in natural human-human interaction.
Using the positional strategy for reference, for example, reverses this last perspective: it
is not the position of an object that is unknown, but rather the identity of one of several
entities with known positions. Thus, the issue at hand becomes: “Which of these similar
objects are you referring to?”. This scenario triggers strategies of linguistic reference
hitherto largely ignored in the literature on spatial reference systems. We have accord-
ingly adopted a very constrained scenario that effectively forces interaction of the kind
required.

1.3 Application in a situated and integrated instruction scenario

A spatial and instructional knowledge representation serves as point of integration for
the robot’s language and vision mediated information. This provides for an integrative
and coherent representation of objects, events and facts. Both modalities, language and
vision, are then made available to the processes of understanding via a common repre-
sentation level.

Central to the architecture of our experimental system is the insight that spatial
instruction is:

situated: the discourse relates to a scene which can be understood using only
limited previous knowledge. The visual access to a mutually perceived scene
supports a state of joint attention to real-world objects.

integrated: the integration of language and vision as well as action allows a
single consistent interpretation.



This architecture will be discussed below. These two central factors, situatedness and
integratedness, determine the procedure used in this paper.

1.4 Related research

Natural language is now established as a crucial component of any ‘natural’, user-
friendly and appropriate interface supporting communication between computational
systems and their human users. The integration of language and perception has a long
tradition ( [Neumann and Novak, 1983], [Wahlster et al., 1983], [Hildebrandt et al.,
1995], [Moratz et al., 1995]). In the context of spatial robot-human interaction, natu-
ral language performs several particularly important interactional functions: e.g., task
specification, monitoring, explanation/recovery, environment update/refinement (e.g.
Stopp et al. (1994) ). While mostly not focusing on spatial aspects of the interaction,
many current research efforts are attempting to improve the naturalness and ease of
such communication; projects such as Morpha (BMBF), SFB 360 (Bielefeld), SFB 378
(Saarbrücken) all give dialog a central place and consider it a necessary feature of robot-
human interaction. Each project places different priorities and emphases on different as-
pects of dialog. The situation is very similar for assistance systems, such as SmartKom.
Also within these projects, however, the linguistic channel is combined with interac-
tion via graphics, gestures and the like (e.g., Streit (2001) , Lay et al. (2001) , Wahlster
(2001) ). This is undoubtedly important and will significantly shape the interfaces of
the future. However, there are situations where the augmentation and replacement of
natural language based interaction through graphical, gestural and other channels is not
possible or appropriate. In such cases, as in our scenario, the only access to the robotic
system the user has is the linguistic channel.

While these research areas provide valuable contributions to the questions addressed
in this paper, the specific effect of a robot interaction partner on the linguistic and spatial
choices of a human speaker has not been addressed so far. As previous studies in the re-
lated field of human-computer interaction, e.g. [Amalberti et al., 1993], [Fischer, 2000],
have shown, such specific effects are highly probable, as the users’ conceptualisation of
their interaction partners has considerable impact on their language. Moreover, due to
the situatedness and integratedness of the communication situation the user is focused
on the interaction situation itself, which increases the influence of specific situational
variables. The question of which spatial reference systems are employed by speakers
under which circumstances when interacting with a robot therefore still needs further
exploration.

In the next section, we sketch the variability of qualitative spatial reference systems
available to humans when referring to a (visually available) object’s position. Then, we
describe the natural language controlled robot system that we used in our exploratory
study in human-robot interaction, which is presented in section 4. The data elicited
allow determining the range of spatial instructions used, showing the situatedness and
integratedness of the instructions. For the experiments, a preliminary version of our
computational model was used, which is described in detail in [Moratz et al., 2001]. In
section 5, we present a redesign of the model, which is based on the findings of our
experiment and which accounts for the range of representational choices employed by



the users. Finally, we open up perspectives for future work for using human spatial
reference in the interaction with robotic systems.

2 Spatial Instructions Using Intrinsic, Relative, and Absolute
Reference Systems

Previous research on reference systems employed by humans for locating one ob-
ject in relation to another object of a different natural kind (cf. [Levinson, 1996] and
[Herrmann, 1990]) has led to the identification of three different reference systems,
termed by Levinson (1996) intrinsic, relative, and absolute. Each of these occurs in
three further variations dependent on whether the speaker, the hearer, or a third entity
serves as the origin of the perspective employed. In this section, we start from this clas-
sification of spatial reference systems in order to apply it to our specific scenario involv-
ing the identification of one of several similar objects rather than the localisation of one
object. Here, objects may be classified (i.e. perceptually grouped) into and referred to
as groups rather than individual objects. The position of one of the objects may then be
referred to by determining its position relative to the rest of the group. Such a scenario
is rather typical in human-robot interaction, but has been largely ignored in previous
research on linguistic spatial reference. We offer an expansion of well-established clas-
sifications of spatial reference systems to address the question how one member of a
group of objects is identified1. Furthermore, we use several applicable results from pre-
vious psycholinguistic research to formulate assumptions about which options of the
variety of reference systems theoretically available to speakers can be expected to be
employed by the users in our scenario.

In intrinsic reference systems, the relative position of one object (the referent) to
another (the relatum) is described by referring to the relatum’s intrinsic properties such
as front or back. Thus, in a scenario where a stone (the referent) is situated in front of
a house (the relatum), the stone can be unambiguously identified by referring to the
house’s front as the origin of the reference system: “The stone is in front of the house”.
In such a situation, the speaker’s or hearer’s position are irrelevant for the identification
of the object. However, the speaker’s or hearer’s front or back, or, for that matter, left
or right, may also serve as origins in intrinsic reference systems: “The stone is in front
of you”. In such cases, no further entity (such as, in our example, the house) is needed,
which is why Herrmann (1990) refers to this option as two-point localisation.

In a scenario where groups of objects serve as relatum, they can only be used for an
intrinsic reference system if they have an intrinsic front. For example, to identify one
person in a group of people walking in one direction one could refer to “the one who
walks in the front of the group.”

Humans employing relative reference systems, or, in Herrmann’s terminology, three-
point localisation, use the position of a third entity as origin instead of referring to in-

1 Apart from the need for expansion of previous accounts, it is necessary to be very explicit
about the terminology employed in our approach, as the literature on spatial reference systems
is full of ill-defined, overlapping, or conflicting usages of terms. For instance, we avoid the
term deictic as used, among others, by [Retz-Schmidt, 1988], as it has been variously used to
denote contradicting concepts, see [Levinson, 1996].



built features of the relatum. Thus, the stone (the referent) may be situated to the left
of the house (the relatum) from the speaker’s, the hearer’s, or a further entity’s point
of view (origin): “Viewed from the hut, the stone is to the left of the house”. Here, the
house’s front and back are irrelevant, which is why this reference system can be em-
ployed whenever the position of an object needs to be specified relative to an entity (a
relatum) with no intrinsic directions, such as a box.

If the stone is related to a group of other stones, it may be situated, for instance, to
the left of the rest of the group, and this may be true from the speaker’s, the hearer’s,
or a third entity’s point of view. A typical example would be, “the leftmost stone from
your point of view”.

In absolute reference systems, neither a third entity nor intrinsic features are used
for reference. Instead, the earth’s cardinal directions such as north and south (or, in
some languages, properties such as uphill or downhill [Levinson, 1996]) serve as anchor
directions. Thus, the stone may be to the north of the speaker, the hearer, or the house.
Equivalently, if the stone is situated in a group of stones, it may be located to the north
of the rest of the group. Absolute reference systems are a special case in that there is
no way of labelling “origins” or “relata” in a way consistent with the other kinds of
reference systems, as directions behave differently than entities.

For our experimental scenario the following initial assumptions can be made. Al-
though humans generally use their own point of view in spatial reference, they usu-
ally adopt their interlocutor’s perspective if action by the listener or different cognitive
abilities on the part of the listener are involved [Herrmann and Grabowski, 1994] .
Both of these factors are true in our scenario; therefore, speakers are likely to use the
robot’s perspective in their instructions. Furthermore, speakers will disprefer absolute
reference systems as these are rarely used in natural human-human interaction in West-
ern culture in indoor scenarios (as opposed, for instance, to Tzeltal [Levinson, 1996],
[Levelt, 1996]) 2.

Accordingly, out of the various kinds and combinations of reference systems de-
scribed above, only three kinds of linguistic spatial reference are likely to be used for
communication in our scenario: First, the speakers may employ an intrinsic reference
system using the robot’s position as both relatum and origin. In this case, they specify
the object’s position relative to the robot’s front. Secondly, they can refer to a salient
object, if available, as relatum in a relative reference system, in which case they specify
the object’s position relative to the salient object from the robot’s point of view. Finally,
they may refer to the group as relatum in a relative reference system. In this case, they
specify the object’s position relative to the rest of the group from the robot’s point of
view.

3 The Natural Language Controlled Robot System

The architecture of the system used for experimentation is described in detail in [Habel
et al., 1999] . We summarize here the main properties of the system’s components.

2 While, to our knowledge, this intuition has not been directly addressed experimentally, it can
be derived from the literature on the kinds of spatial reference systems used by humans in
diverse scenarios.
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Fig. 1. Coarse architecture of a NL-instructable robot: modules and representations (from
[Habel et al., 1999])

The following components interact: the syntactic component, the semantic component,
the spatial reasoning component, and the sensing and action component (see figure 1).
We can see from the architecture a relatively traditional view of the role of language
in robot control in that it is assumed that the human user gives sufficiently clear and
unambiguous instructions for the robot to act upon; as we have suggested, for complex
reference tasks this is unlikely unless the user is specifically requested to perform in this
way (and even then they might not be very good at it). This simplification is appropriate
for our experimental purposes, however, in that it forces the user to work through the
range of referential strategies naturally available (see section 4).

The syntactic component is based on Combinatory Categorial Grammar (CCG), de-
veloped by Steedman and others (cf.[Steedman, 1996]). The syntactic component was
developed as part of SFB 360 at the University of Bielefeld [Moratz and Hildebrandt,
1998] , [Hildebrandt and Eikmeyer, 1999]. The output of the syntactic component con-
sists of feature-value structures.

On the basis of these feature-value structures, the semantic component produces
underspecified propositional representations of the spatial domain. In the exploratory
study, this component uses a first version of our computational model of projective
relations, which is described in more detail in [Moratz et al., 2001]. In section 5, we
present an extended version of this model which is based on the results gained in the
study. The model maps the spatial reference expressions of the given command to the
relational description delivered from the sensor component.

The spatial reasoning component plans routes through the physical environment. To
follow an instruction, the goal representation constructed by the semantic component is
mapped onto the perceived spatial context.

The sensing and action component consists of two subcomponents: visual percep-
tion and behavior execution. The visual perception subcomponent uses a video camera.
An important decision was to orient to cognitive adequacy in the design of the commu-
nicative behavior of the robot, using sensory equipment that resembles human sensorial



Fig. 2. Our Robot GIRAFFE.

capabilities [Moratz, 1997]. Therefore the camera is fixed on top of a pole with a wide
angle lens looking below to the close area in front of the robot (see figure 2). The images
are processed with region-based object recognition [Moratz, 1997]. The spatial arrange-
ment of these regions is delivered to the spatial reasoning component as a qualitative
relational description. The behavior execution subcomponent manages the control of
the mobile robot (Pioneer 1). This subcomponent leads the robot to perform turns and
straight movements as its basic motoric actions. These actions are carried out as the
result of passing a control sequence to the motors.

The interaction between the components consists in a superior instruction-reaction
cycle between both language components and the spatial reasoning component. Subor-
dinate to this cycle is a perception-action cycle started by the spatial reasoning compo-
nent, which assumes the planning function and which controls the sensing and action
component.



An example from our application illustrates the interaction of the components and
the central role of the spatial representation as follows. The command “fahre zum linken
Ball” (“drive to the lefthand ball”)3 is semantically interpreted as shown in figure 3.

 (A) ’fahre zum linken Ball’


(1) s: imperativ


(3)      agens: GIRAFFE

(4)      location: to: entity: token: ?

(5)                            type: BALL

(6)                            pose: relativ: xat: LINKS

(2) act: type: FAHREN

Fig. 3. Semantic interpretation

Now an object that denotes “the lefthand ball” has to be found in the perceived
scene. There is a configuration of two balls one of which is to the left of the centroid of
the group seen from the robot. This ball is identified as the goal of the robot. Since there
is no obstacle, the action invoked will be a direct goal approach to execute the users’
command.

More complex path planning is necessary for finding paths around obstacles. To
achieve this, the visual perception subcomponent has to localise the objects, and the
spatial reasoning component needs to find some suitable space for movement in order
to establish a qualitative route graph.

4 Exploratory study

Our exploratory study was carried out for three primary reasons:

– Human users do not necessarily employ spatial instructions that robots can under-
stand, and they may use strategies for spatial instruction that are different from
those investigated in human-to-human communication. One aim was therefore to
collect instances of spatial instructions actually employed by users in a human-
robot interaction scenario.

– Since spatial instruction is situated, integrated, and involves (at least) two discourse
participants, humans approach spatial instruction in an interactive way, using the
situation, the actions involved as well as the kinds of sensory input available, and

3 Translations are approximations and have to be treated with caution. In the mapping of spatial
reference systems to linguistic expressions, there is no one-to-one correspondence between
English and German.



the possibility of interaction as a resource for their verbal instructions. We there-
fore aimed at working out ways in which human-robot communication is situated,
integrated, and interactive.

– A third aim was to test the adequacy of the implemented version of our computa-
tional model with regard to the kinds of spatial reference systems employed by the
users.

In the following section, the experimental set-up is described, section 4.2 then de-
scribes the results. Subsequent sections describe the primary uses then made of the
experimental results.

4.1 Setting

The exploratory study involved a scenario in which humans were asked to instruct our
Pioneer 1 robot GIRAFFE (Geometric Inference Robot Adequate For Floor Exploration,
see figure 2) to move to one of several roughly similar objects. The experimenter used
only pointing gestures to show the users which goal object the robot should move to;
pointing was used in order to avoid verbal expressions or pictures of the scene that could
impose a particular perspective, for example, a view from above. Users were instructed
to use natural language sentences typed into a computer to move the robot; they were
seated in front of a computer in which they typed their instructions. The users’ percep-
tion of the scene was one in which a number of cubes were placed on the floor together
with the robot, which was set up at a 90 degree angle or opposite to the user, as shown
in figure 4. The fixed setting allows the analysis of the point of view taken by the par-
ticipant depending on the instructions used. The arrangement of the cubes was varied,
and in some of the settings, a cardboard box was added to the setting in order to trigger
instructions referring to the box as a salient object.

robot

goal objects

test subject

Fig. 4. The experimental setting

As outlined above, the robot can understand qualitative linguistic instructions, such
as “go to the block on the right”. If a command was successful, the robot moved to the
block it had identified. The only other possible response was “error”. This disabling of
the natural interactive strategies of reference identification challenged users to try out
many different kinds of spatial instruction to enable the robot to identify the intended
aim. We were therefore able to obtain both a relatively complete indication of the kinds



of strategies available to human users with respect to this task and an indication of
the user’s willingness to adopt them. 15 different participants carried out an average
of 30 attempts to move the robot within about 30 minutes time each. Altogether 476
instructions were elicited.

4.2 Experimental Results

Throughout the experiments, the participants employed the robot’s perspective, i.e.,
there were virtually no instructions in which the user expected the robot to use a refer-
ence system based on the speaker or a further object as origin (except for one case in
which after a mistake the user explicitly stated that she assumed the robot to be using
her point of view). Furthermore, whenever the users referred to the goal object, they
overwhelmingly used basic level object names such as Würfel [cube], and there was
also a very consistent usage of imperatives rather than other, more polite, verb forms.

However, the participants in the experiment nevertheless showed considerable varia-
tion with regard to the instructional strategies employed. Half of the participants started
by referring directly to the goal object, using instructions such as fahr bis zum rechten
Würfel [drive up to the right cube]. When instructions of this kind were not successful—
because of orthographic, lexical, or syntactic problems—the participants turned to di-
rectional instructions; if successful, they re-used this goal-naming strategy in later in-
structions. The other half of the participants started by describing the direction the robot
had to take, for instance, fahr 1 Meter geradeaus [drive 1 meter straight ahead]. If
they were unsuccessful with this type of instruction, some users turned to decomposing
the action into even more detailed levels of granularity, using instructions such as Dreh
dein rechtes Rad [turn your right wheel].

This pattern of usage reveals an implicational hierarchy among the adopted strate-
gies. On reaching a failure, users would change their strategy only in the direction of
expected ‘simplicity’; they would not attempt a strategy with expected ‘higher’ com-
plexity. Thus, a fixed order of instructional strategies became apparent which can be
roughly characterized as Goal - Direction - Minor actions. This is an important re-
sult for designing human-robot interaction—not least because the notion of ‘simplicity’
maintained by a user need not relate at all to what is actually simpler for a robot to
comprehend and carry out. Thus attempts on the part of the user to provide ‘simpler’
instructions may in fact turn out to confuse rather than aid the situation.4 Such mis-
matches can therefore lead to insoluble dialogic problems that are particularly frustrat-
ing for users, since they believe (mistakenly) that they are making things easier for the
robot. Thus, in the future dialogue components will need to be designed that can detect
such a situation and then correct the user’s underlying assumptions unobtrusively.

In the following, we analyse in detail the kinds of spatial reference systems em-
ployed in these different kinds of instruction. As our aim was to explore the range of
instructions employed by the users, and to analyse their instructional strategies on a
qualitative level, we did not attempt to work out user preferences quantitatively, using

4 A related instance of this problem has also been noted when attempting to have users produce
more intelligible speech. This can easily lead a user to ‘hyper-articulate’ which reduces the
reliability of speech recognition still further [Oviatt et al., 1998].



statistical measures. However, for illustration of the tendencies we worked out, we add
the absolute numbers of occurrence.

Goal instructions (183 occurrences) Spatial instructions indicating the position of the
goal object are identified as bounded linear oriented structures in [Eschenbach et al.,
2000] . They include directional prepositional phrases specifying the end of the path.
Out of the 183 linguistic instructions collected in our experiment that refer directly to
the goal object, 102 utterances use the group as a whole as relatum, identifying the in-
tended object by its position relative to the other objects in the group. 69 of these 102
group-based references used a particular expression schema consisting of an imperative
combined with a locative directional adjunct specifying relative position; as, for exam-
ple, in Fahr zum linken Würfel [Drive to the lefthand cube] where the locative adjunct
gives the relative position of the cube in the group to which it belongs. The lexical slots
for the verb and object in this schema were varied, as were the positional adjective of the
locative adjunct—yielding “mittleren” [middle], “hinteren” [back], “vorderen” [front]
in addition to “linken” [left].

For some situations, besides the cubes used as goal objects the setting included a
further object, namely a cardboard box which could be used as a reference object. In 19
cases of the 43 instructions uttered in situations where this salient object was present,
the cardboard box was used for a relative reference system with the salient object as
relatum. Here, the syntactic structure used most often is also quite stable: an imperative
and two hypotactic adjuncts are used, with the subordinated adjunct identifying the
relatum’s position relative to the adjunct specifying the reference object, as in: geh zum
Würfel rechts des Kartons [go to the cube to the right of the box].

The robot’s intrinsic properties are used for instruction in altogether 42 of the 183
goal-oriented instructions, using various linguistic expressions such as Fahr zum Würfel
rechts von dir [Drive to the cube to your right]. Although the orientation of the robot
is not stated explicitly in these commands, the speakers could not use an expression like
“to your right” without assuming a front of the robot.

Altogether, these results correspond to the expectations we outlined in section 2.
Those users who referred to the goal object all employed the three kinds of reference
systems expected, and they consistently used the robot’s perspective (which is actually
a more homogeneous usage than we might expect). Strikingly, in all of the goal in-
structions except for those employing the robot’s intrinsic properties, the users failed to
specify the point of view they employed, rendering the instructions formally ambigu-
ous with regard to the variability of origins but, we would claim, appropriate within the
particular situated interaction.

Direction instructions (210 occurrences) In altogether 210 instructions, the goal ob-
ject is not specified directly, but a direction of movement is indicated. In more than
half of these instructions, a verb of locomotion such as fahre [drive] or rolle [roll] is
used; the others simply specify the direction itself. This variability does not reflect any
relevant semantic differences (the only way the robot can move at all is by using its
wheels) and are therefore not discussed further here. Other verbs of motion such as
verbs of transport (“bring”), change of position (“enter”) and caused change of position



(“put”) (cf. [Eschenbach et al., 2000]) do not occur in this simple scenario. Directional
instructions indicate unbounded linear oriented structures, as only the initial step of an
intended goal-directed path is expressed. No further steps occur in this scenario for lack
of reaction by the robot. As an exception, two instructions may be combined in one
utterance (see below), but these still do not include a goal, i.e., the structures are still
unbounded. In more than half of the directional instructions (141 out of 210), the in-
trinsic point of view of the robot is used as origin of a reference system which employs
the principal directions as defined in [Eschenbach, 2001]. In 78 of these cases, these
principal directions are employed without modifications, as in: vorwärts [forward],
and gehe nach links [go to the left]. “Vorwärts” expresses the standard orientation of
a body during motion, i.e., the alignment of the object order of the path with the in-
trinsic front-back axis of the robot (cf. [Eschenbach, 2001]). Several users employed
the earth’s cardinal directions (12 occurrences) rather than relying on the principal di-
rections based on the robot’s physical properties, as in Gehe nach Norden [Go to the
North]. Altogether, in almost half (90 out of 210) of the directional, non-goal spec-
ifying instructions, the users indicated an unmodified principal or absolute direction
to make the robot move, obviously leaving further specifications of the path for later
instructions.

Nevertheless, many users seemed to assume that the intended goal was not directly
accessible by simply moving in one of these cardinal directions. Thus, in 32 instruc-
tions the angle in which the robot should move is specified more exactly, using ei-
ther quantitative (8 occurrences) measures such as 20 Grad nach rechts [20 degrees to
the right] or qualitative (24 occurrences) specifications, for instance, geradeaus etwas
rechts fahren [drive forward somewhat to the right]. One-third of these instructions
employed a combination of either a principal direction and an angle (in quantitative us-
ages), or two principal directions (in qualitative usages). Some users explicitly divided
such a combination into two partial instructions (4 occurrences) which were to be car-
ried out one after the other, as in gehe vorwärts dann nach rechts [move forward then
to the right].

Some users indicated the length of the intended path, using either quantitative (18
occurrences) measures such as Fahre 1 meter geradeaus [Drive forward 1 meter], or
qualitative (8 occurrences) expressions such as Fahre ein wenig nach vorn [Drive a
bit forward]. Interestingly, in contrast to the findings on angle specifications, in this
case the quantitative instructions outweighed the qualitative ones. One user tried out an
instruction specifying not only the direction but also the length of time during which
the robot was supposed to move in that direction: Fahre 1 Sekunde vorwärts [Drive
forward 1 second]. Some of the instructions (52 occurrences) relied on a different,
salient entity (a landmark) available in the room for specifying the intended path rather
than relying on the principal directions determined by the robot’s intrinsic properties.
Of these 52 instructions, 46 referred to the cardboard box which was available only
in some of the scenarios, as in: umfahre den Kasten [drive around the box]. Mostly,
these instructions (in contrast to the goal-based instructions) do not command the robot
to move to the box, but rather around it, behind it, or beside it. Thus, it is linguistically
expressed that the box is not itself the intended goal. The other 6 instructions used



entities located at a greater distance from the robot to specify the intended direction, as
in Fahre zur Wand [Drive to the wall].

Finally, in a few (4) instructions the users left it to the robot to decide about the
correct orientation, as in Fahre im Kreis [Drive in a circle].

Minor action instructions (83 occurrences) The remaining 83 instructions did not
specify either the goal object or a direction in which the robot should move, but instead
decomposed the action into minor activities. In 28 of these instructions, the users did
not command the robot to move in a direction, but rather to change its orientation into a
specific direction, as in dreh dich nach rechts [turn to the right].5 About half of these
instructions involved qualitative, the other half quantitative measures. 29 instructions
indicated that the robot should move, but were confined to the verbs of locomotion,
such as Fahren [Drive]. The remaining 26 instructions reflected the users’ individual,
sometimes rather desperate attempts to communicate with the robot at all, as exempli-
fied by utterances such as Tu was [Do something] and Schalte den Motor ein [Turn on
the engine].

5 A revised computational model for the spatial human-robot
interaction scenario

The experiments described above, which were carried out using a previous version of
the system, provided several valuable clues as to how a new system could be designed.
A new system is currently being set up, and instead of using the GIRAFFE platform,
this new system will use the Sony AIBO robotic system (see figure 5). Because of
its animal-like shape, the AIBO might be perceived as a more natural communication
partner. In addition, the AIBO is also well suited for gathering data on robots used in
an entertainment context.

However, the four-legged robot AIBO and the GIRAFFE differ regarding their re-
spective perceptual abilities (field vs. survey perspective; orientation knowledge vs. po-
sition - i.e., orientation and distance - knowledge), which might trigger various kinds of
interesting communication problems. Because the AIBO camera in its head is closer to
the ground than that of GIRAFFE, the AIBO is unable to calculate precise distances to
unrecognized objects. Thus AIBO has only orientation knowledge available to it, and
this knowledge has to tally with the survey knowledge provided by the human instructor.
By changing its position, the AIBO acquires new perspectives and further orientation
information on the scene. A spatial inference engine combines the information from the
AIBO’s different viewpoints, along with the survey knowledge provided verbally by the
human instructor, to build up a depiction of the environment. In order to draw spatial
inferences using the spatial inference engine, the verbal description provided by the hu-
man instructor must first be transferred into a spatial reasoning calculus (QSR calculus).
For our system, we employ the TPCC calculus, introduced in the current volume (see
Moratz, Nebel, Freksa (2002)).

5 These are not counted as directional movement instructions as they express an action on a finer
level of granularity, leaving out locomotion.



Fig. 5. Legged AIBO robot.

Given the results of our experiments, and building on the general results from psy-
chology and psycholinguistics on spatial expressions in human-to-human communica-
tion that we summarized in section 2 above, it was possible to design a level of represen-
tation that provides our robot with a model of the verbal strategies of spatial instructions
produced by users in the experimental scenario. This model consists of two parts: first, a
knowledge base representing the coarse structure and links to general world knowledge
(section 5.1); second, a representation capturing the fine grained positional information
(section 5.2) represented using the TPCC calculus [Moratz et al., 2002]. The knowledge
base offers a blueprint from which individual spatial instructions can be derived as par-
ticular instances. Such instances then provide the necessary link between the language
input module and the navigation module presented in section 3 above.

5.1 The semantic structure of spatial instructions for mobile robots

The representation formalism we adopt is derived from the ERNEST system ([Nie-
mann et al., 1990] , [Kummert et al., 1993], [Moratz, 1997]). ERNEST is a seman-
tic network formalism in the KL-ONE tradition, providing a subset of representation
and inference capabilities relevant for robotic reasoning. It can be used for the rep-
resentation of concepts and the relationships between them and has already been ap-
plied successfully in the context of integration of linguistic and perceptive knowledge
[Hildebrandt et al., 1995]. Since we do not use the inference mechanisms but only the
declarative component we can work with a simplified version of ERNEST, which we
present here in a short sketch.

The primary elements of an ERNEST semantic network are concepts, their at-
tributes and the relations between concepts. These are usually represented as nodes,



their internal structures and links between nodes respectively. We use two types of
nodes:

– A concept can represent a class of objects, events or abstract conceptions.
– An instance is understood as the concrete realisation of a concept in the input data;

i.e. an instance is the copy of a concept by which the general description is replaced
by concrete values.

Subordinate features of a concept, such as the size of an object or its colour, are rep-
resented by means of attributes. Concepts are therefore entities with internal structure.
Features of concepts that are important for the domain are represented as links to other
concepts. ERNEST supports the following standard link types:

– Through the link type role, two concepts are connected with each other if one con-
cept is understood as a prerequisite of the other.

– Through the link type specialisation and a related inheritance mechanism, a special
concept is stated to inherit all attributes and roles of the general one.

The knowledge present in the semantic network is utilized by creating instances. This
process requires that a complex object be recognized as an instance of a concept, which
in turn requires that all its necessary roles can be recognized.

The experimental results indicate that certain kinds of information concerning spa-
tial directions commonly occur together and others less so. This was modeled as the
semantic network fragment shown in figure 6. In the figure, specialisation links are ori-
ented horizontally and role links are oriented vertically. Optional role links (i.e., the
cardinality range includes zero) are shown dashed in the figure. The three main types
of instructions found empirically constitute the three specializations shown for the con-
cept ‘drive instruction’; the presence of a goal-object (as a subconcept of spatial-object)
and of a landmark (a further subconcept of spatial-object) in their respective instruc-
tion types are shown by the vertical role links. The obligatory relationship expressed
between ‘relative position’ and ‘orientation’ is the link to the ‘projective-expression’
concept which is the interface to the model of projective relations presented in the next
subsection.

Instances formed from these concepts interface directly with the robot’s control
components. Thus, the recognition of a linguistic instruction is responded to by a cor-
responding action on the part of the robot. Particular instances also have information
added via the robot’s perceptive apparatus; for example, exact position relative to the
robot and basic attributes of colour and size as mentioned above. We will return to some
further possible uses of this additional information in section 6 below.

5.2 The interpretation of projective relations

An essential aspect of the robot’s ability to execute instructions is its interpretation of
the spatial relations specified between objects functioning as landmarks or relatum and
the goal objects. The experimental results have a number of consequences for our model
of the projective relations and their uses. The computational model shown in figure 6
represents the different kinds of reference systems required for interpreting linguistic
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Fig. 6. Knowledge base for the semantic structure of spatial instructions.

references according to the three options outlined in section 2 and for handling the
corresponding instructions. Note that our empirical results already allow us to exclude
several theoretically possible alternatives that were not, in fact, selected as strategies
by our experimental participants: for example, intrinsic and relative reference systems
employing either the speaker or a salient object as origin.

The projective expressions are then further resolved as follows. To model reference
systems that take the robot’s point of view as origin, all objects are represented in an
arrangement resembling a plan view (a scene from above). This amounts to a projection
of the objects onto the plane � on which the robot can move. The projection of an object�

onto the plane � is called ����� ��� . The center 	 of the projected area can be used as
point-like representation

��

of the object

�
:
��
�� 	������� ����� . The reference axis is then

a directed line through the center of the object used as relatum (see figure 7), which may
be the robot itself, the group of objects, or other salient objects.

reference direction

left right

relatum

back

front

Fig. 7. Relatum and reference direction



The partitioning into sectors of equal size is a sensible model for the directions
“links” (left), “rechts” (right), “vor” (front) and hinter (back) relative to the relatum.
However, this representation only applies if the robot serves as both relatum and ori-
gin. If a salient object or the group is employed as the relatum, front and back are
exchanged, relative to the reference direction [Herrmann, 1990]. The result is a qualita-
tive distinction, as suggested, for instance, by Hernandez (1994) . An example for this
configuration is shown in figure 8. In this variant of relative localisation, the “in front
of” sector is directed towards the robot.

left

rightfront

back

Fig. 8. Relative reference model

In cases with a group of similar objects, the centroid of the group serves as virtual
relatum. Here the reference direction is given by the directed straight line from the robot
center to the group centroid. The object closest to the group centroid can be referred to
as the “middle object” (see figure 9).

left object

object
middle

right object

centroid

Fig. 9. Group based references

For combined expressions like “links vor” (left in front of) vs. precise expressions
like “genau vor” (straight in front of) we use the partition presented in figure 10. This



partitioning can account for the projective expressions used for the orientation in goal
instructions as well as the directions in directional instructions (see figure 6 above), in
which the robot’s position and physical orientation provide the basis for determining
the intended reference direction.

relatum

left back

left front

right back

right front

reference direction

exactly
left right

exactly

straight
front

straight
back

Fig. 10. Model for combined expressions

To define the partitions formally, we refer to the angle � between the reference
direction and the straight line from the relatum to the referent, or, respectively, the
denoted direction.

�������������
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The partitions described above exactly correspond to the acceptance areas used in
the QSR calculus TPCC (this volume [Moratz et al., 2002]). With the aid of these ac-
ceptance areas, the instructor’s verbal spatial description information can be matched



to the perceptually captured local view information from the AIBO. One difficulty in-
herent in this process is that the local view information captured by the AIBO contains
only orientation knowledge, lacking distance information. However, the knowledge rep-
resented in TPCC can be combined using constraint propagation, and thus it is possible
to generate survey knowledge from local knowledge.

6 First steps towards more natural interaction

The design and implementation of the mobile robot GIRAFFE reported so far has already
achieved the integration of several different informational modalities. Linguistic input,
perception and robot action all combine in the robot’s interpretation and execution of
the instructions it receives. The implemented model performs adequately in that its
primary behavioral mode, following goal-centered instructions, corresponds to the in-
struction strategy most preferred by users. Users overwhelmingly employed the robot’s
perspective and most of the spatial reference systems employed corresponded directly
to those implemented so that successful communication was achieved. Moreover, based
on the fact that there were situations in which other strategies were employed, such as
directional instructions or specifications of minor actions, our inclusion of these in the
model will allow successful interaction here also.

The experimental results of course raise many more issues. In particular, we con-
sider in this section a more sophisticated use of spatial representation in order to allow
successful operation in more demanding circumstances. The correct achievement of ref-
erence in human-human interaction is often more negotiated and interactively mediated
than was supported by our experimental scenario. However, given the representation
uncovered, we are now exploring ways of using interaction to clarify underlying mis-
conceptions on the part of the user such as that which led some of our test persons
to believe that they could not directly refer to the intended goal object; and to allow
more robust and powerful recognition by the robot of a user’s instructions. This can be
clarified with some simple examples. Goal objects can currently be recognized on the
basis of the linguistic input to the system only when there are not too many competing
potential referents. If, for instance, there are several cubes ‘to the left’ within a group
of cubes, then simple reference may fail. Moreover, the very fact that there is a more
complex situation for which a user must construct an appropriate referring expression
can lead to the production of language that falls outside the limited expressive power of
the semantic/pragmatic interpreter or even to expressions that are not strictly correct as
referring expressions.

We can improve on this situation by making sure that the user’s referring acts are
embedded in a discourse—in particular, in an ongoing interaction initiated by the robot
and which defines the rules of the game. Thus, if the robot first informs the user what
it can perceive in a scene, then the terms and perspectives available for reference are
already constrained favorably for the robot’s subsequent interpretation. This requires
that the robot be in a position to verbalize its scene perception. The kind of domain
knowledge representation for our newly designed AIBO scenario sketched in figure 6
already goes a considerable way towards this. Standard techniques from the area of
natural language generation (e.g., [Horacek, 2001]) work on collections of instances



organized in terms of domain conceptual hierarchies such as the one given here in order
to produce natural language descriptions of the requested content. Part of this work
involves aggregating the objects present into referring expressions that allow the user to
identify what is being described (cf. [Bateman, 1999]). These referring expressions can
then already be used to suggest to users particular ways of describing the goal objects
of their required instructions.

In a simple case, for example, there may be a scene in which there are several similar
cubes within the same spatial sector, but where those cubes differ with respect to some
other attribute: two may be red, another blue. Standard aggregation techniques can pick
out the differing attributes and use these to determine appropriate referring expressions:
thus, we can ascertain that ‘the blue cube’ is sufficient to identify the one blue cube
in question, while ‘the red cube’ will need further elaboration (e.g., by the projective
relations described above). As the situation to be described becomes more complex,
correspondingly more complex referring expressions may be produced that are limited
in the practical ways already investigated in detail in work such as that of Reiter and
Dale (1992) . In particular, aggregration can establish particular groups in the discourse
to serve as the relatum in projective expressions of the kind illustrated above. A robot-
produced utterance such as “To my left there are two red cubes and one blue cube”
introduces in addition to the three objects with the sector ‘left’ a subgroup consisting
of just the two red cubes. Subsequent reference can use this just as the perceptually
defined groups were used above: e.g., “the rightmost red cube”. Within an interaction,
interpretation of this expression can be constrained to the group of red cubes introduced
by the robot at that point, rather than referring to the entire set of red cubes possibly
available in the scene at large. Reference thus becomes both interactional and situated
as is natural in human-human interaction.

In a different scenario, human users may be expected to use spoken language to ad-
dress the robot, rather than to type their instructions. While such a scenario at first sight
is undoubtedly more natural to the users, it raises a range of different problems, such
as those occurring when the speech input is not recognised correctly by the system, or
those caused by user expectations about the system’s facilities. Compared to our sce-
nario, it is by no means clear which kinds of language users would employ if required
to talk rather than to type. It is well-known that spoken language differs in many re-
spects from written language; also depending on other situational factors [Biber, 1988].
Further research is needed to explore this and other kinds of variation with regard to
the enhanced human-robot interaction scenario with our new robot AIBO which we are
now implementing.

7 Conclusion

In this paper, we have described an implemented mobile robot system that follows sim-
ple instructions given by its human users. We have investigated empirically the kinds
of instructions that users employ and have provided a computational model of these
strategies as a level of spatial instruction knowledge representation that interfaces be-
tween the linguistic input provided to the robot and the robot’s sensing and action com-
ponent. This implemented version of the system was demonstrated to perform in an



adequate way, but only in a relatively simple set of possible task scenarios. We then
briefly sketched a current direction of research in which we are building on the explicit
spatial instruction model in order to provide more interactive linguistic behavior. This
will feed into a further round of empirical investigation, which will evaluate the effec-
tiveness of the functionalities provided. We have suggested that this is a necessary and
beneficial step towards achieving more robust and natural interactional styles between
humans and mobile robots.
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