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ABSTRACT

Human speakers plan and deliver their utterances incremen-
tally, piece-by-piece, and it is obvious that their choice regard-
ing phonetic details (and the details’ peculiarities) is rarely
determined by globally optimal solutions. In contrast, para-
metric speech synthesizers use a full-utterance context when
optimizing vocoding parameters and when determing HMM
states. Apart from being cognitively implausible, this impedes
incremental use-cases, where the future context is often at least
partially unavailable. This paper investigates the ‘locality’ of
features in parametric speech synthesis voices and takes some
missing steps towards better HMM state selection and prosody
modelling for incremental speech synthesis.

Index Terms— Speech Synthesis, Incremental Processing,
HMM Synthesis, Interactivity, Spoken Dialogue Systems

1. INTRODUCTION

Most speech synthesis software is not tailored towards inter-
active use, but instead expects full sentences (or utterances in
dialogue) to be available when processing starts. This mode
of operation is becoming more and more an impediment as
novel applications that require an incremental mode of opera-
tion (where utterances are constructed in a piece-meal fashion)
move into the focus of attention, such as speech-to-speech
translation [1], live commentary, for example in sports do-
mains [2], or highly responsive dialogue applications [3].

In such interactive domains, the outcome of the full utter-
ance is yet unknown when its beginning needs to be produced.
In this situation, conventional systems might deal with par-
tial input as if it were complete, which leads to sub-optimal
decisions when the assumed context of the decision-making al-
gorithm is limited by the availability of features: for example,
when determining the HMM states with decision trees that rely
on utterance-global features, but have to be determined based
only on a prefix of the utterance, the tree will select states that
would not be chosen (and considered optimal) if the remaining
words of the utterance were known. As an extreme example:
the last phone of a prefix will be synthesized as if no words
were to follow, despite the fact that more material is known to
be added before delivery actually reaches this point.

Incremental processing for speech synthesis has so far con-
sidered the problems of HMM emission probability estimation
in local contexts [4, 5], and symbolic prosody generation given
limited utterance contexts [6], but these works have largely
ignored the mismatch between decision tree training (with full
contexts) and use (within limited contexts), and only provide
the general insight that incremental synthesis is helpful in ad-
vanced use-cases. This paper aims to fill the gap by dealing
with the step between linguistic symbolic TTS pre-processing
and the input into vocoding parameter optimization via HMMs
[7], which is most often solved by decision trees.

Decision trees (such as CART [8]) have been exten-
sively used in speech synthesis, for example for linguistic
pre-processing, for prosody (duration and f0) modelling [9],
and in parametric speech synthesis for HMM state selection
[10]. In this work, we analyse the decision trees used in
speech synthesis as to their suitability for incremental speech
synthesis, where context is limited.

Related to the present problem of determining suitable
features for incremental speech synthesis, Watts et al. analysed
HMM-based synthesis using limited selection criteria [11].
While their goal was to limit features by level of linguistic
abstraction (and the corresponding complexity of inferring
them from text), the present goal is to examine the influence
of limiting decision tree features by lookahead into the fu-
ture. Cernak et al. [12] discuss the locality of features on
HMM-based synthesis and speech coding performance, and
subjectively and objectively evaluate the resulting audio, how-
ever do not describe the influence of feature availability on
individual HSMM feature streams.

We detail incremental speech synthesis in Section 2 before
we describe the setup of our experiments in Section 3 in which
we analyse the decision trees used in two speech synthesis
voices. Our detailed analysis is given in Section 4 and we
analyse the performance penalty from limited contexts in Sec-
tion 5. Section 6 discusses the results. We draw conclusions
and outline ideas for future work in Section 7.

2. INCREMENTAL SPEECH SYNTHESIS

Incremental speech synthesis is the task of starting to produce
speech given only a partial utterance specification that will
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Fig. 1. A processing scheme for incremental speech synthesis
(adapted from [13]); the dashed rectangle marks the task at
hand, generating HMM optimization input from decision trees.

later be extended [13]. Of course, incremental speech synthesis
may perform at lower quality, for example because prosody
contains long-range dependencies [14] which cannot fully be
modelled from incomplete information. However, incremental
systems should be designed in a way to take advantage of all
information that is available and to degrade gracefully when
confronted with missing information. This goal is in contrast
to the sHTS streaming architecture for speech synthesis [5],
where context is always limited, regardless of whether useful
information is available and could be used.

Instead, we propose to implement a system in such a way
that all useful information that is available is used, and sub-
stituted with plausible defaults when necessary. Furthermore,
as soon as information becomes available, it should be inte-
grated as quickly as possible. Such a process can be realized
in a just-in-time incremental processing architecture such as
InproTK [15]. In the architecture, levels of linguistic process-
ing are associated to different types of incremental units [16]
and future units are computed only as far as is necessary at a
given moment, resulting in a processing scheme as depicted in
Figure 1.

The lowest levels shown in the figure, the derivation of
vocoding parameter trajectories from HMM emission optimiza-
tion as well as vocoding itself have previously been shown to
work incrementally (or to perform reasonably well when used
incrementally) using fixed limited contexts of a few phonemes
[4]. Regarding the higher levels shown in the figure, prosody
processing has been shown to degrade gracefully under lim-
ited contexts [6]: the more context is available, the better the
prosody generation.

The area inbetween that is tackled here, is marked by the
dashed rectangle in the figure: deriving the input for HMM
optimization from the symbolic levels, using decision trees.

3. EXPERIMENT SETUP

We perform our decision tree analysis using MaryTTS [17]
with the BITS-1 [18] and the CMU-SLT [19] HSMM voices
for German and English, respectively, as they are delivered

with MaryTTS. We injected appropriate analysis code (for the
analyses in Section 4) and manipulation code (for artificially
limited contexts in Section 5) into the classes that perform the
decision tree lookups during speech synthesis.

MaryTTS uses decision trees both for f0 and phone du-
ration assignments (partially based on automatically derived
ToBI and stress labels), and for determining HMM state emis-
sion probabilities (mean and std dev).

HMM synthesis uses multiple, independent feature streams
that are combined in the vocoding step. This means that there
is more data to train HMM emission probabilities, but also
that HMM states have to be selected for each feature stream.
In the case of the voices investigated, there are Mel-cepstral
(MCP) and aperiodicity (STRAIGHT) parameter, duration,
and f0 streams, with individual decision trees for each of the
five HMM states per phoneme. For reasons of practicality,
data are aggregated in the analyses below.

The analyses presented below are limited to decision trees
as they are contained in these two voices of the MaryTTS
distribution. The results should, however, be broadly applica-
ble, as these reflect the data that can be observed in current
day speech synthesis corpora and reflect the capabilities of
state-of-the-art TTS technology.

4. NON-LOCALITY ANALYSIS

In this section we report results of our analyses of decision
tree features, and their use in decision trees (statically as well
as considering their use at runtime). Analyses were performed
for both German and English in order to test the universality of
results; where differences exist, they are pointed out explicitly.

4.1. Feature Analysis and Classification

MaryTTS uses 111 features for German, (104 for English)
with the 104 features being shared among both languages, and
ranging from phonetic aspects of the current phones to lexical
categories and prosodic aspects of upcoming phrases.

We classified the features along two dimensions particu-
larly relevant for incremental processing, namely:

• level of linguistic abstraction (which coincides with unit
size and hence determines processing granularity), and

• temporal direction of the feature (past, current, future).
Features that combine information on two levels of abstraction
are counted on the more abstract level (e. g. number of syllables
in the word is counted as a word-level rather than a syllable-
level feature). The results are presented in Table 1.

As can be seen in the table, most features relate to the
phone level (and there only to the quintuple context) and fewer
features relate to higher levels. As could be expected, the
non-locality of features as a function of time increases with the
size of linguistic units/the level of abstraction: on the phone
level, the ‘future’ only concerns the next two phones after
the current (likewise the past only concerns itself about the



Table 1. Counts of decision features, categorized along the
temporal axis and by levels of linguistic abstraction (indicating
granularity), for German. Feature classes are encircled.

past current future

phone 20 10 19
syllable 3 8 2

word 2 7 3
phrase/accentuation 11 10 10

full sentence — 5 —

previous two phones), which may last on the order of a few
hundred milliseconds. Relevant features on the word level
(e. g. lexical category of next word), and even more so on the
phrase/accentuation level (e. g. phrase tone of the next phrase)
may be several seconds away.

This temporal extension or lookahead, of course, has im-
plications on the availability of this information in real-time
synthesis. For example, the boundary tone of the current
phrase may not have been decided yet (even though the phrase
is already ongoing), or, the number of syllables until the next
accentuated syllable will only be certain once lexicalisation
(and hence the precise number of syllables) has completed.

In order to simplify the handling of the vast amounts of
data (that lead to a combinatorial explosion in manual analysis),
some approximation of the availability of data is helpful. For
this reason, features are grouped into the following classes:
no future no lookahead into the future at all; only information

in the past as well as information relating to the current
phone is available; features marked as ‘current’ but in a
higher-level representation (that typically also span the
short-term future) are left out

future 1/2-phones + curr. syll one (two) phones of look-
ahead as well as all information on the current syllable

future syll. + curr. word information pertaining to the next
syllable as well as the current word

future words + curr. phrase . . . to the next word and the cur-
rent phrase

full context all context is available, as in non-incremental
processing

The classes as defined above are encircled in Table 1.
In addition, more for educational purposes, we separate

the ‘no future’ case into past and curr. phone contexts in the
analyses below.

4.2. Static Analysis of Decision Trees

This subsection mainly concerns itself with the decision ques-
tions that are queried and hence analyses for the individual
trees are limited.

The decision trees contain between 4 and 28 levels and
contain between 132 and 1374 decision nodes, making indi-
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Fig. 2. Usage of per-class decision features for different types
of decision trees in the German BITS-1 voice.

vidual analysis of all trees and decisions (and their relation
to individual features) too cumbersome. Instead, summaries
were generated and analysed.

The vast majority of questions in the decision trees relate
to the current, previous, and next phone, as well as to the ‘past’
category. Decision trees ask the most informing questions early
on in the tree. For this reason we looked at the top 1/2/4 levels
of the tree, which supports the view that the ‘current phone’
category contains the most informing questions. Questions
relating to past, next phone, full phrase, or full sentence only
become important below the first two levels of the trees.

4.3. In-vivo Analysis of Decision Tree Usage

The previous subsection’s results cast a static view on the
outcomes of the training process that generated the decision
trees, which could potentially differ from the feature usage
at runtime. Here, we profile the usage of the decision trees
at runtime, by synthesizing 600 utterances from a collection
of German TTS corpora [20] (for English: 300 sentences
randomly sampled from the Blizzard challenge [21] test data
between 2007 and 2011). We counted the individual decisions
taken while traversing the decision trees, and the values of the
corresponding features.

Figure 2 shows the results for the German voice, differen-
tiated by the types of decision trees (cepstral, aperiodicity, f0,
and duration). Results for English were similar and underline
the conclusion from the previous subsection, namely that the
current phone, as well as the past, and the next phone are the
most important feature classes.

It can also be observed that feature importance differs by
decision type: cepstral and aperiodicity parameters are well
described by a very limited context. In contrast, both duration
and fundamental frequency (i. e. prosodic aspects) require the
full-utterance context as well as features from the ‘current
syllable’ and ‘current phrase’ classes. Furthermore, f0 does
not depend so much on the current phone.



5. PERFORMANCE OF INCREMENTAL DECISIONS
BASED ON DEFAULT REASONING

As mentioned above, features that rely on information fur-
ther out in the future utterance context will more often be
unavailable in incremental speech synthesis. In this section we
simulate the unavailability of features (by feature class) and
measure the associated performance penalty.

Our strategy is to substitute features that are marked as
missing with default values. Default values were gathered
from the previous in-vivo analysis of decision tree querying:
whenever a feature is queried, its value was recorded and
the most common value (for numeric features: the arithmetic
mean) is regarded as default. The chosen defaults were in-
spected and followed expectable and generic patterns. For this
reason, we here ignored the fact that the ‘training set’ for find-
ing default values is the same as the ‘test set’ when applying
these default values to the same corpus, as reported below.

There are at least two alternatives to using default reason-
ing to account for missing features, which, however, do not
allow to use standard ‘non-incremental’ voices as in our ap-
proach. Firstly, one could build custom decision trees for each
of the feature classes. However, as HMM state clustering and
decision tree generation are usually co-optimized, this would
entail the retraining of the much more complex voice; yet
such an implementation would still be limited to the envisaged
feature classes and could not make use of a feature unless all
features of the encompassing class are available. The second
alternative is much more straight-forward and only requires a
CART implementation that supports missing features. Depend-
ing on the implementation, this may also require re-training
the decision trees. In addition, this mainly takes the default
reasoning strategy to the corresponding node in the decision
tree, and does not differ qualitatively from our approach.

As in previous work [6], we follow the maxime that (lim-
ited) incremental processing cannot systematically outperform
non-incremental (full-context) processing. Hence, we evaluate
the limited-context output by comparing to the full-context
output. We calculate the mean absolute error resulting from
every limited-context decision as compared to full-context
decision and report z-normalized error scores (based on full-
context mean and std dev). For cepstral and source parameters,
which are multi-dimensional vectors, we compute the Euclid-
ian norm from the scores z-normalized along each dimension.
The results are reported in Table 2.

6. DISCUSSION

As can be seen in Table 2, the error for cepstral and source
parameters decays relatively quickly, roughly halving with
the addition of the ‘past’, ‘next phone’, and ‘current syllable’
classes. We hence infer that the lookahead required for these
parameters is relatively small. As the parameters mostly relate
to the immediate phonetic vicinity, this result seams reaonable.

Table 2. Z-normalized mean absolute error (MAE) of derived
values for increasingly specified feature settings relative to
non-incremental (full-context) processing; BITS-1 voice.

setting f0 dur MCP STR

CURRPHONE 0.77 0.70 2.72 0.89
+PAST 0.61 0.39 1.56 0.40

+1PHONE 0.53 0.27 0.64 0.20
+CURRSYLL 0.49 0.20 0.37 0.12

+2PHONE 0.48 0.17 0.25 0.10
+CURRWORD 0.45 0.13 0.21 0.10
+NEXTSYLL 0.45 0.13 0.21 0.09

+PHRASE&WORDS 0.27 0.10 0.10 0.05

In contrast, duration and especially fundamental frequency
errors do not decay as quickly. Prosody has long-range depen-
dencies which shows in our analysis. An informal listening
experiment underlines that the perceptual influence of crop-
ping features to certain feature classes has a higher influence
on the perceived speech quality for aspects of prosody genera-
tion (f0 and duration) than for cepstral and source parameters.
In addition, the f0 mean absolute error of 0.27 standard devia-
tions in the least limited setting is still well audible, whereas
the same MAE for cepstral coefficients is hardly noticeable.

We conclude that our simple default reasoning approach
works fairly well for cepstral and source parameters, whereas
some more elaborate method is necessary for incremental
prosody modelling with small lookaheads into the future.

7. CONCLUSIONS AND FUTURE WORK

We presented the analysis of feature usage (by ‘temporal
distance’ of feature classes) in decision trees for parametric
speech synthesis, with the goal of assessing the use of decision
trees in incremental speech synthesis systems. We have also
shown a simple implementation based on default reasoning
which shows that voice quality decisions can be taken with
relatively small lookaheads, whereas prosody requires a larger
lookahead or more advanced methods.

One limitation of the experiment was that feature classes
were cropped away regardless of whether the feature would
be available even in incremental synthesis. For example, the
information that the last word of an utterance has been reached
should result in all feature values becoming accessible. Such
an implementation would of course be preferable and produce
somewhat better results. We plan to fully integrate such a
more advanced approach into the InproTK incremental speech
synthesis component. In addition, features could also be de-
termined based on underspecified information, e. g. based on
information that is usually available in a dialogue system (like
dialogue state) and we plan to elaborate this.



Acknowledgements

The author would like to thank Sven Mutzl for performing
parts of the static decision tree analysis while on an internship
with Prof. Kai Yu at Jiao Tong University, Shanghai, China;
and Wolfgang Menzel and Arne Köhn for valuable comments.
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Canada, June 2012, pp. 437–445.

[2] David L. Chen and Raymond J. Mooney, “Learning
to sportscast: A test of grounded language acquisition,”
in Proceedings of the 25th International Conference on
Machine Learning (ICML-2008), Helsinki, Finland, July
2008.

[3] Timo Baumann, Incremental Spoken Dialogue Process-
ing: Architecture and Lower-level Components, Ph.D.
thesis, Bielefeld University, Germany, May 2013.

[4] Thierry Dutoit, Maria Astrinaki, Onur Babacan, Nico-
las d’Alessandro, and Benjamin Picart, “pHTS for
Max/MSP: A streaming architecture for statistical para-
metric speech synthesis,” Tech. Rep. 1, Université de
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